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We report within-host evolution of antibiotic resistance to trimethoprim-sulfamethoxazole
and azithromycin in a nontypeable Haemophilus influenzae strain from a patient with
common variable immunodeficiency (CVID), who received repeated or prolonged
treatment with these antibiotics for recurrent respiratory tract infections. Whole-genome
sequencing of three longitudinally collected sputum isolates during the period April 2016
to January 2018 revealed persistence of a strain of sequence type 2386. Reduced
susceptibility to trimethoprim-sulfamethoxazole in the first two isolates was associated
with mutations in genes encoding dihydrofolate reductase (folA) and its promotor region,
dihydropteroate synthase (folP), and thymidylate synthase (thyA), while subsequent
substitution of a single amino acid in dihydropteroate synthase (G225A) rendered high-
level resistance in the third isolate from 2018. Azithromycin co-resistance in this isolate
was associated with amino acid substitutions in 50S ribosomal proteins L4 (W59R) and
L22 (G91D), possibly aided by a substitution in AcrB (A604E) of the AcrAB efflux pump. All
three isolates were resistant to aminopenicillins and cefotaxime due to TEM-1B beta-
lactamase and identical alterations in penicillin-binding protein 3. Further resistance
development to trimethoprim-sulfamethoxazole and azithromycin resulted in a
multidrug-resistant phenotype. Evolution of multidrug resistance due to horizontal gene
transfer and/or spontaneous mutations, along with selection of resistant subpopulations is
a particular risk in CVID and other patients requiring repeated and prolonged antibiotic
gy | www.frontiersin.org June 2022 | Volume 12 | Article 8968231
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treatment or prophylaxis. Such challenging situations call for careful antibiotic stewardship
together with supportive and supplementary treatment. We describe the clinical and
microbio logica l course of events in th is case report and address the
challenges encountered.
Keywords: Haemophilus influenzae, CVID, multidrug resistance, case report, persistence
INTRODUCTION

Nontypeable Haemophilus influenzae (NTHi) frequently colonize
the respiratory tract in patients with chronic lung disease or impaired
immune system. Bacterial colonization is an independent risk factor
for progression to respiratory tract infections, often requiring
antibiotic treatment in such patients (Pulvirenti et al., 2018).
Recurrent infections and prolonged exposure to antibiotics
facilitate development of resistance by increasing the frequency of
horizontal acquisition of resistance genes and the rate of adaptive
chromosomal resistance mutations and selection of resistant
subpopulations (Blazquez et al., 2012; Baquero et al., 2021). With
the introduction of whole-genome sequencing (WGS), several
examples of within-host resistance development following
antibiotic exposure have been described (Didelot et al., 2016; Gatt
and Margalit, 2021), but well-documented cases have not been
reported in H. influenzae, to our best knowledge.

Common variable immunodeficiency (CVID) is the most
prevalent symptomatic primary immune disorder and
comprises a heterogenous group of clinical conditions
characterized by low levels of circulating immunoglobulins and
compromised production of specific antibodies, rendering CVID
patients particularly vulnerable to respiratory tract infections
(Bonilla et al., 2016). Recurrent lung infections impose a long-
term risk of development of bronchiectasis and pulmonary
sequelae, further fueling the disposition for bacterial infections
and the need for antibiotic treatment (Janssen et al., 2021).

Immunoglobulin substitution therapy is the mainstay of CVID
management but is not always sufficient to abate recurring
infections. Long-term antimicrobial prophylaxis has been
advocated as beneficial in selected patients, but clinical trials
supporting this practice are scarce (Bonilla et al., 2016), and the
risk of development and selection of resistant strains during
treatment is insufficiently investigated. We describe a patient with
CVID, where long-term treatment with trimethoprim-
sulfamethoxazole and azithromycin led to evolution of resistance
towards these antibiotics in an H. influenzae strain persisting in the
respiratory tract during April 2016 - January 2018.
CASE REPORT

A 48-year-old Norwegian male with a history of recurring
sinopulmonary infections was admitted to Haukeland University
Hospital (Bergen, Norway) in 2011 with pneumonia and concurrent
agammaglobulinemia. Following a thorough diagnostic evaluation
excluding lymphoid and bone marrow malignancy, chronic viral
infections, protein loss and drug-induced adverse reactions, the
gy | www.frontiersin.org 2
patient was diagnosed with CVID. Immunoglobulin replacement
therapy was initiated in 2012, and by the end of 2013 he achieved
sustained IgG levels above 6 g/L. The first isolation of H. influenzae
from a sputum sample was in November 2013, susceptible to beta-
lactam antibiotics and trimethoprim-sulfamethoxazole (Hi-
Alpha; Figure 1).

Over the course of the next two years, the patient experienced few
sinopulmonary infections, but in November 2015 he was admitted to
hospital with pneumonia. Microbiological samples were procured by
bronchoscopy andH. influenzaewas identified as sole pathogen (Hi-
Beta; Figure 1). This isolate displayed resistance to ampicillin and
cefuroxime due to beta-lactamase production and mutations in
penicillin-binding-protein 3 (PBP3), but was susceptible to
cefotaxime, ceftriaxone, trimethoprim-sulfamethoxazole, and
ciprofloxacin. The patient received ceftriaxone for five days,
followed by three weeks of oral ciprofloxacin.

In March 2016, saline inhalation therapy was commenced by
pulmonologists after bronchiectasis was detected on CT scan. H.
influenzae was again isolated from sputum in April 2016 (Hi-
117; Figure 1). Hi-117 expressed resistance to ampicillin,
cefuroxime, and cefotaxime, and was categorized as
intermediately susceptible to trimethoprim-sulfamethoxazole.
Four weeks of ciprofloxacin was prescribed.

During the period 2016 to 2018 the patient had IgG trough levels
above 8 g/L and received intensified inhalation therapy. Despite this,
he had frequently recurring infections, requiring repeated and
prolonged courses of antimicrobial therapy. Cultivation of sputum
in February 2017 revealed H. influenzae (Hi-226) with a resistance
pattern similar to Hi-117 from 2016 (Figure 1).

Given the deteriorating clinical course and the short-lived
improvement with each antibiotic course, a decision was made to
attempt long-term antimicrobial prophylaxis. A ten-week course
of low-dose trimethoprim-sulfamethoxazole 80 mg/400 mg daily
was initiated in March 2017, followed by two weeks of
ciprofloxacin 500 mg bid, immediately succeeded by twelve
weeks of azithromycin 500 mg daily from September 2017.
Rapid amelioration of respiratory symptoms was observed, and
the patient returned to a full working status.

In January 2018, he experienced worsening respiratory
symptoms, four weeks after terminating prophylactic
azithromycin. H. influenzae cultivated from sputum (Hi-197,
Figure 1), was resistant to trimethoprim-sulfamethoxazole.
Prophylaxis with azithromycin, 500 mg once daily, was
resumed on a permanent basis. Retrospective testing using
broth microdilution (BMD) revealed increased MICs to both
trimethoprim-sulfamethoxazole and azithromycin in Hi-197,
compared to Hi-117 and Hi-226. However, as susceptibility to
azithromycin was not tested routinely, this information was not
June 2022 | Volume 12 | Article 896823
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available to influence the choice of antibiotic. Although clinical
improvement was observed initially, the efficacy of azithromycin
gradually declined during 2018.

By January 2019, his disease burden was like the state prior to
initiation of prophylaxis. In September 2019, a bronchoalveolar
lavage performed at another hospital revealed profuse growth of
H. influenzae with a resistance profile identical to that of Hi-197.
During 2013-2020, despite comprehensive conventional and
molecular investigations, other respiratory pathogens were
detected only twice; DNA of Mycoplasma pneumoniae in 2016
and influenza B virus RNA in 2018.

His condition rapidly deteriorated and he developed several
CVID-complications, including granulomatous lymphocytic
interstitial lung disease, liver cirrhosis, and ultimately a high-
grade B-cell lymphoma. He died in July 2020 from a neutropenic
sepsis caused by Escherichia coli and Staphylococcus aureus.
PHENOTYPIC AND GENOTYPIC
CHARACTERIZATION OF H. influenzae

Figure 1 shows a time scale with antibiotic exposure, along with
results from phenotypic antimicrobial susceptibility testing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(AST) to relevant antibiotics for five H. influenzae isolates,
identified as the sole pathogen from samples representative for
lower respiratory tract, between November 2013 and January
2018. Routine AST results for these five isolates represent
primary testing with disk diffusion (Oxoid/Thermo Fisher
Scientific, Basingstoke, UK) and/or gradient diffusion
(Liofilchem, Roseto degli Abruzzi, Italy), whereas AST for the
sequenced strains was also determined by BMD using custom
panels (Sensititre NONAG7, Thermo Fisher Scientific). Disk
diffusion and BMD were done according to the standards of
the European Committee on Antimicrobial Susceptibility
Testing (EUCAST), while gradient diffusion was performed
according to the manufacturer’s recommendations. AST results
were interpreted using EUCAST clinical breakpoints (v. 12.0),
except azithromycin, for which susceptibility categorization was
based on the epidemiological cut-off value (4 mg/L).

Genetic relationship between Hi-117, Hi-226, and Hi-197 and
their molecular basis for resistance development were assessed
using WGS (Ion Torrent S5XL, Thermo Fisher Scientific).
Trimmed sequencing reads (PHRED score ≥ 20) were analyzed
with respect to conventional and core-genome multi-locus
sequence typing, ((cg)MLST) with subsequent assignment to
Minimum Spanning Tree (MST) clusters (Ridom SeqSphere+
v.8.0). Hi-117, Hi-226, and Hi-197 shared a novel MLST profile
FIGURE 1 | Time scale annotated with exposure to antibiotics (including dosages), along with results from phenotypic antimicrobial susceptibility testing (AST) to
relevant antibiotics for five H. influenzae isolates sampled between November 2013 and January 2018. The Hi-Alpha and Hi-Beta isolates were not available for
genomic characterization, and their potential phylogenetic relationship to the Hi-117, Hi226 and Hi-197 isolates could not be explored. Routine AST results for the
five isolates represent primary testing with disk diffusion and/or gradient diffusion, whereas reference AST results were produced retrospectively by determination of
broth microdilution (BMD) MIC using custom panels. Disk diffusion and BMD were done according to the standards of the EUCAST, while gradient diffusion was
performed according to the manufacturer’s recommendations. AST results were interpreted using EUCAST clinical breakpoints (v. 12.0), except azithromycin (no
clinical breakpoints), for which susceptibility categorization was based on the epidemiological cut-off value (4 mg/L). bid, twice daily; qd, once daily; Trim-sulfa,
trimethoprim-sulfamethoxazole; S, susceptible; I, intermediately susceptible (changed to “susceptible, increased exposure” from 2019); R, resistant; ND, no data.
June 2022 | Volume 12 | Article 896823
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(ST2386) comprising a novel adk allele (Table 1) and belonged
to the same MST cluster, separated by 1-7 allele differences in
1589 genes. The results confirm that Hi-117, Hi-226, and Hi-197
represent a single strain, persisting during April 2016 to
January 2018.

Table 1 summarizes the molecular basis of resistance to the
different antibiotic groups, and depicts virulence determinants
that might influence persistence, despite antibiotic therapy. Hi-
117, Hi-226, and Hi-197 had blaTEM-1B and identical amino acid
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
substitution patterns in PBP3, including the S385T substitution
associated with high-level beta-lactam resistance (Skaare et al.,
2014). They also shared multiple amino acid substitutions in
enzymes involved in the folate pathway; dihydrofolate reductase
(DHFR), dihydropteroate synthase (DHPS), and thymidylate
synthase (TS) (Fernandez-Villa et al., 2019), in addition to
single nucleotide polymorphisms (SNPs) in the DHFR
promoter region. Variant cal l ing (see Table 1 for
methodology) showed that Hi-197, which expressed
TABLE 1 | Molecular characteristics of Hi-117, Hi-226, and Hi-197.

Parameter Characteristics

Strain ID (accession) Hi-117 (GCA_923276745) Hi-226 (GCA_923282765) Hi-197 (GCA_923283335)
Sample type (date) Sputum (April 2016) Sputum (February 2017) Sputum (January 2018)
MLSTa ST2386 (254-11-18-18-62-1-5) ST2386 (254-11-18-18-62-1-5) ST2386 (254-11-18-18-62-1-5)
cgMLSTb MST cluster 9 MST cluster 9 MST cluster 9
Capsular serotypec Nontypeable Nontypeable Nontypeable
Other virulence determinantsd hmw, hap, igaA1 hmw, hap, igaA1 hmw, hap, igaA1
Transferable resistance genese blaTEM-1B blaTEM-1B blaTEM-1B

Chromosomal resistancef

- Beta-lactamsg PBP3 (ftsI) D350N, S357N, M377I, S385T, R517H,
T532S, V547I

D350N, S357N, M377I, S385T, R517H,
T532S, V547I

D350N, S357N, M377I, S385T, R517H,
T532S, V547I

PBP3 group High III-like(-) High III-like(-) High III-like(-)
- Quinolonesh GyrA (gyrA) – – –

ParC (parC) – – –

- Azithromycini L4 (rpl4) – – W59R
L22 (rpl22) – – G91D
23S rRNA – – –

- Trimethoprim-
sulfamethoxazolej

DHFR (folA) N13S, W31R, L67P, E69K, I74V, F79L,
I95L, K107Q, E135K

N13S, W31R, L67P, E69K, I74V, F79L,
I95L, K107Q, E135K

N13S, W31R, L67P, E69K, I74V, F79L,
I95L, K107Q, E135K

DHFR
(promoter)

A(-32)C, T(-24)C, G(-4)A A(-32)C, T(-24)C, G(-4)A A(-32)C, T(-24)C, G(-4)A

DHPS (folP) N87S, V95A, V101I, N108S, A150V,
I177V, G189C, I210N, I236V, A240V,
V268I, A273E

N87S, V95A, V101I, N108S, A150V,
I177V, G189C, I210N, I236V, A240V,
V268I, A273E

N87S, V95A, V101I, N108S, A150V, I177V,
G189C, I210N, G225A, I236V, A240V,
V268I, A273E

TS (thyA) H26R, V107I, E238K, T253S H26R, V107I, E238K, T253S H26R, V107I, E238K, T253S
- Effluxk AcrR (acrR) S14L, R22K, N26D, Q27R, L31H, L33I,

T77S, I121V, H131D, Q134K
S14L, R22K, N26D, Q27R, L31H, L33I,
T77S, I121V, H131D, Q134K

S14L, R22K, N26D, Q27R, L31H, L33I,
T77S, I121V, H131D, Q134K, S181F

AcrA (acrA) M20I, G32E, M67L, A75T, V76I, V147L,
S149N, A156V, D253N, V345A,
D369G, I473V

M20I, G32E, M67L, A75T, V76I, V147L,
S149N, A156V, D253N, V345A,
D369G, I473V

M20I, G32E, M67L, A75T, V76I, V147L,
S149N, A156V, D253N, V345A, D369G,
I473V

AcrB (acrB) P660A, T828N, F837Y, A854T, V855T,
A858I, I862V, H942Y, V1015I

P660A, T828N, F837Y, A854T, V855T,
A858I, I862V, H942Y, V1015I

A604E, P660A, T828N, F837Y, A854T,
V855T, A858I, I862V, H942Y, V1015I
aMulti-locus sequence typing (MLST) with assignment to sequence types (ST) based on allelic profiles of seven housekeeping genes (adk, atpG, frdB, fucK, mdh, pgi, and recA). ST2386 is
a single-locus variant (SLV) of ST836 with the novel allele adk-254 (Jolley et al., 2018).
bCore genomeMLST (cgMLST) with assignment to Minimum Spanning Tree (MST) cluster was performed with Ridom SeqSphere+ v. 8.0 (Münster, Germany) on a collection of 222 clinical
isolates of H. influenzae from Norway or Sweden (BioProject PRJEB49398).
cCapsular serotyping was performed with Hicap v.1.0.3 (Watts and Holt, 2019).
dVirulence determinants were called using a locally installed version of MyDbFinder v.2.0 with a custom database comprising genes from the virulence factor database (VFDB) (Liu et al.,
2022) and the following additional sequences, database downloaded 2021-08-24: hmwA1 (first 1269 bp) (NZ_LN831035.1), hap (U11024.1), hia (U38617.2), igaA2 (NDZN01000054.1),
igaB1 (DQ423203), and igaB2 (KC607498). Thresholds of 60% were used for identity and coverage.
eTransferable resistance genes were called with ResFinder v.4.1 (Bortolaia et al., 2020), using thresholds of 60% for identity and coverage. blaTEM-1B, 100% identity and coverage
(AY458016).
fAlterations in chromosomally encoded proteins, genes (in brackets) or promoter regions were called by multiple sequence alignment of translated coding genes using the msa package for
R (Bodenhofer et al., 2015) and H. influenzae Rd KW20 (GCA_000027305.1) as reference. Amino acid substitutions were confirmed by mapping of quality-trimmed sequencing reads
(PHRED score ≥ 20) against the reference sequence using BWA (Li, 2013), with subsequent variant calling and annotation using FreeBayes (Garrison and Marth, 2012) and SnpEFF
(Cingolani et al., 2012).
gSubstitutions in penicillin-binding protein 3 (PBP3) (transpeptidase region, aa 327-610) and grouping according to Skaare et al., 2014 (Skaare et al., 2014).
hSubstitutions in DNA gyrase (GyrA, subunit A) or DNA topoisomerase IV (ParC, subunit A) (quinolone-resistance determining regions, QRDR; aa 80-92) (Georgiou et al., 1996).
iSubstitutions in 50S ribosomal proteins L4 or L22, or single nucleotide polymorphisms (SNPs) in the six copies of the 23S rRNA gene (rrnA23S-rrnR23S) (peptidyl transferase center, nt
1900-2520) (Fyfe et al., 2016).
jSubstitutions in dihydrofolate reductase (DHFR) (or SNPs in promoter region), dihydropteroate synthase (DHPS), or thymidylate synthase (TS) (Fernandez-Villa et al., 2019).
kAlterations in the operon encoding and regulating the AcrAB efflux pump.
Differences between strains in bold.
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significantly higher MICs to trimethoprim-sulfamethoxazole and
azithromycin compared to Hi-117 and Hi-226 (Figure 1),
possessed additional substitutions in DHPS (G225A), 50S
ribosomal proteins L4 (W59R) and L22 (G91D), and the
components AcrR (S181F) and AcrB (A604E) of the AcrAB
efflux pump. All these mutations had 100% allelic uniformity and
convincing depths of coverage (range 41-74). The macrolide
binding site of 23S rRNA (Fyfe et al., 2016) and the quinolone-
resistance determining regions of GyrA and ParC (Georgiou
et al., 1996) lacked resistance-conferring mutations. blaTEM-1B

was the only horizontally acquired resistance gene.
DISCUSSION

This study describes persistent colonization of the respiratory
tract with an NTHi strain despite antibiotic treatment in line
with contemporary CVID guidelines, complicated by within-
host evolution of resistance-conferring mutations and selection
of subpopulations resistant to trimethoprim-sulfamethoxazole
and azithromycin, during long-term prophylaxis with
these antibiotics.

To our best knowledge, this is the first well-documented
example of within-host evolution of antibiotic resistance in H.
influenzae. Pfeifer et al. reported the emergence of a multidrug-
resistant H. influenzae strain in a CVID patient but were unable
to demonstrate persistence because earlier strains were not
available for molecular characterization (Pfeifer et al., 2013). A
study conducting partial genomic analyses on serially collected
NTHi from a bronchiectasis patient revealed genetic changes
associated with resistance to antimicrobial peptides in a
persistent strain (Garmendia et al., 2014). Two later studies
applied WGS for investigation of genetic changes associated
with host adaption during persistent respiratory tract infection
with NTHi, but within-host evolution of antibiotic resistance was
not demonstrated (Moleres et al., 2018; Pettigrew et al., 2018).

Trimethoprim interferes with the folate pathway by inhibiting
the enzyme DHFR (encoded by folA), and sulfamethoxazole by
inhibiting DHPS (encoded by folP) (Fernandez-Villa et al., 2019).
Resistance to trimethoprim-sulfamethoxazole in H. influenzae is
usually due to target alterations caused by folA or folPmutations,
DHFR overexpression due to mutations in the folA promoter
region, thymidine auxothrophy because of loss-of-function
mutations in thyA, or horizontally acquired sul genes encoding
sulfonamide-resistant isoforms of DHPS (Enne et al., 2002;
Rodriguez-Arce et al., 2017; Sierra et al., 2020). The low-level
resistant Hi-117 and Hi-226 harbored several substitutions in
DHFR and DHPS, including three SNPs in the DHFR promoter
region (Table1), previously described in resistant H. influenzae
(Enne et al., 2002; Sierra et al., 2020). The additional DHPS
substitution G225A in Hi-197 is to our best knowledge novel.
Crystallography shows that sulfonamides are sandwiched
between amino acids 63 and 220 in DHPS in E. coli (Achari
et al., 1997). The proximity of position 225 to the sulfonamide
binding site (Figure 2) and the lack of other changes in relevant
genes make it plausible that G225A caused the significant
increase in trimethoprim-sulfamethoxazole MIC in Hi-197.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Azithromycin inhibits protein synthesis in H. influenzae
through dual inhibitory effects on synthesis and function of the
50S ribosomal subunit (Champney and Miller, 2002). The drug
binds to 23S rRNA (nt 2058-2059) downstream of the peptidyl
transferase center, blocking the peptide exit tunnel close to a
constriction formed by hairpin loops of ribosomal proteins
L4 and L22 (Fyfe et al., 2016). Azithromycin resistance in
H. influenzae is predominantly caused by chromosomal
mechanism such as target alterations due to 23s rRNA
mutations or altered ribosome-macrolide interaction due to L4
and/or L22 substitutions; however, rare strains with efflux-
mediated resistance encoded by horizontally acquired mel and
mef genes have been reported (Atkinson et al., 2017). Hi-197
contained substitutions G91D in L22 and W59R in L4. While
G91D has been described in macrolide-resistant H. influenzae,
W59R seems novel and is located within the highly conserved
region 57KPWRQKGTGRAR68 of the extended hairpin loop of L4
(Figure 2), where alterations are associated with macrolide
resistance (Fyfe et al., 2016). This strongly suggests that both
substitutions contributed to the azithromycin-resistant phenotype
of Hi-197. In addition, while Hi-117, Hi-226 and Hi-197 shared
several substitutions in AcrA, AcrB, and the repressor AcrR of the
AcrAB efflux pump, the azithromycin resistant Hi-197 had
additional substitutions in AcrB (A604E) and AcrR (S181F).
Stepwise resistance to azithromycin has been reported with
truncated AcrR and a subsequent substitution in AcrB (R327S)
(Seyama et al., 2017). Truncated AcrR was not found in our strain,
but like R327S, the A604E substitution is in the periplasmic
domain where ligand binding occurs (Daley et al., 2005).
Accordingly, we cannot exclude that the AcrB substitution might
have contributed to azithromycin resistance; however, as Hi-197
expressed wild-type susceptibility to quinolones, chloramphenicol,
tetracyclines, gentamicin, and rifampicin (data not shown), the
effect of A604E might be discrete and/or azithromycin selective.

Whole-genome phylogenetic analysis revealed persistence of
an ST2386H. influenzae strain during April 2016 - January 2018,
despite repeated and prolonged exposure to antibiotics.

Evading antibiotic activity by biofilm formation and
intracellular invasion of host cells appear to be pivotal
mechanisms promoting bacterial persistence (Clementi and
Murphy , 2011) . Be t a - l a c t ams and t r ime thopr im-
sulfamethoxazole penetrate NTHi biofilm poorly. In an in vitro
study, amoxicillin/clavulanic acid eliminated 100% of planktonic
NTHi isolates, but only 3.6% of isolates in biofilm (Slinger et al.,
2006). Trimethoprim-sulfamethoxazole eliminated 68% of
planktonic but not biofilm isolates. Ciprofloxacin and
azithromycin eliminated 100% of planktonic isolates and had
biofilm elimination rates of 68% and 57%, respectively.

A notable observation in the present study was that repeated
and prolonged courses with ciprofloxacin did not eradicate the
strain, despite wild-type susceptibility to ciprofloxacin. This is
consistent with the suboptimal abilities of ciprofloxacin to
eliminate NTHi in biofilm (Slinger et al., 2006; Cavaliere et al.,
2014). As quinolones increase the genome-wide spontaneous
mutation rate (Long et al., 2016; Song et al., 2016) and may
promote mutational resistance to other drugs (Tanimoto et al.,
2008; Didier et al., 2011; Song et al., 2016), an intriguing yet
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unresolved question is whether ciprofloxacin exposure
immediately before azithromycin prophylaxis from September
2017 contributed to the emergence of L4, L22, and AcrR
substitutions in Hi-197.

Azithromycin is an appealing choice in the treatment of NTHi
infections based on high intracellular activity, a biofilm-
penetrating ability superior to most other drugs (albeit far from
100%), and a proven inhibitory effect against biofilm formation
(Lode et al., 1996; Slinger et al., 2006; Starner et al., 2008).
Moreover, several experimental studies suggest an
immunomodulatory effect of azithromycin on host inflammatory
response, reducing mucus production and ameliorating chronic
inflammation (Parnham et al., 2014). Consequently, azithromycin
prophylaxis has gained momentum in the management of chronic
and recurrent lung infections.

Contemporary CVID guidelines advocate the use of long-
term antibiotics in selected patients, although criteria for
identifying such patients are lacking (Bonilla et al., 2016;
Polverino et al., 2017; Hanitsch et al., 2020). The use of
antimicrobial prophylaxis is nevertheless widespread,
administered to 20% - 65% of CVID patients in different
temporal and geographic settings, and azithromycin is by far
the most frequently prescribed antibiotic (Kuruvilla and de la
Morena, 2013; Sperlich et al., 2018). The recommendations and
clinical practice predominantly lend support from three
randomized controlled trials exploring macrolide prophylaxis
for six to twelve months in non-cystic fibrosis bronchiectasis
patients (Wong et al., 2012; Altenburg et al., 2013; Serisier et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
2013). All demonstrated reduced number of infectious
exacerbations in the macrolide group.

However, the risk of macrolide resistance is not negligible. In
one study, macrolide resistance in pathogens isolated from the
respiratory tract increased from 35% to 88% in the azithromycin
group during the twelve-month study period, compared to 28%
and 25% in the placebo group (Altenburg et al., 2013).
Interestingly, emergence of macrolide resistance was not
associated with loss of efficacy in the subsequent months,
suggesting a pivotal role of the anti-inflammatory properties of
azithromycin. This may also have been the case in our patient;
however, azithromycin gradually lost activity after twelve
months, highlighting the need for publications with long-term
follow up.

EUCAST state that there is conflicting clinical evidence for
the efficacy of macrolides in H. influenzae respiratory infections
and have removed the clinical breakpoints (EUCAST, 2017). The
Clinical and Laboratory Standards Institute (CLSI) state that
susceptibility testing of azithromycin is often not necessary for
management of individual patients and categorize the drug as
Group C (alternative or supplemental agents) (CLSI, 2021).
Accordingly, azithromycin susceptibility was not investigated
routinely in the presented case. Retrospective testing revealed
that azithromycin prophylaxis was continued for 18 months after
the emergence of high-level resistance, exemplifying that
discrepancy between clinical and laboratory guidelines might
lead to non-beneficial or even potentially harmful treatment.
Considering the widespread use of macrolide prophylaxis in
A

B D

C

FIGURE 2 | Three-dimensional structure of dihydropteroate synthase (DHPS) and 50S ribosomal proteins L4 and L22 in H. influenzae Rd KW20, with positions of
newly acquired substitutions in strain Hi-197 highlighted (green). (A top left) DHPS in Rd KW20 (P43776), with focus on the binding site for sulfonamides. (B bottom
left), DHPS in E. coli K12 (P0AC13) with the sulfonamide molecule (S) sandwiched between amino acid positions 63 and 220. (C, D right), 50S ribosomal proteins
L4 [P44345, (C top)] and L22 [P44360, (D bottom)] in Rd KW20, with focus on the highly conserved regions 57KPWRQKGTGRAR68 (L4) and 87PRAKG91 (L22) of
the extended hairpin loops. Screenshots from UniProt (UniProt, 2021), licenced under CC BY 4.0.
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CVID and bronchiectasis patients, EUCAST and CLSI
recommendations for azithromycin susceptibility testing of H.
influenzae from these patient groups should be revisited, with
more emphasis on harmonization of clinical and laboratory
guidelines. Moreover, this case report underlines the
importance of maintaining close collaboration between
clinicians and microbiology laboratories.

The presented case illustrates that the immunologic
impairment in CVID patients extends beyond reduced IgG
levels, and they remain at risk of infections despite aggressive
IgG substitution therapy. Highly variable titers of antibodies
specific to Streptococcus pneumoniae and H. influenzae in
immunoglobulin replacement products, reduced half-life of
infused immunoglobulins, and lack of mucosal immunity all
likely contribute to the persistent susceptibility to these
pathogens (Mooney et al., 2017). Restoration of mucosal
immunity is l ikely not feasible through traditional
immunoglobulin substitution therapy. Recent studies with
nebulized administration of immunoglobulins or local
immunotherapy by sublingual administration of inactivated
bacterial pathogens report promising effects on mucosal
immunity (Vonarburg et al., 2019; Guevara-Hoyer et al., 2020).
However, their clinical efficacy is yet to be evaluated in larger
trials. Importantly, the repertoire of virulence determinants inH.
influenzae includes IgA proteases, as illustrated by the presence
of an igaA1 gene in our strain (Table 1).

Reduced vaccine response is one of the diagnostic criteria for
CVID and the therapeutic potential of active immunization in
this patient group remains questionable. Moreover, no vaccine is
available for NTHi, which currently constitute the major concern
in CVID patients (Slack et al., 2021).

Biofilm inhibitors have attracted interest as possible
supplements to antibiotic therapy or prophylaxis in patients
with chronic NTHi infections. DNase I, a mucolytic approved
for human use often combined with inhaled antibiotics in cystic
fibrosis patients (Manos, 2021), destabilizes biofilm matrix and
enhances the efficacy of antibiotic treatment of NTHi biofilms in
vitro (Izano et al., 2009; Cavaliere et al., 2014). Clarification is
needed as to whether DNase I, or other biofilm inhibitors or
mucolytic supplements represent useful adjuvants in
bronchiectasis and CVID patients.

A weakness of this study is that isolates from 2013 (Hi-
Alpha) and 2015 (Hi-Beta) were not available for retrospective
characterization, and we had incomplete information about
antibiotics prescribed by the patient’s general practitioner
during this period. Assessment with respect to development
of beta-lactam resistance and duration of persistence prior to
2016 was therefore not possible. Moreover, it is difficult to
determine the relative contribution of the persistent H.
influenzae strain to the patient's deteriorating clinical course
after January 2018, especially in the late stages with progressive
interstitial lung disease (Granulomatous and Lymphocytic
Interstitial Lung Disease (GLILD)). However, we did not
detect any other likely causative pathogens in respiratory
samples in this period.
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CONCLUSION

We describe chromosomal mutations responsible for within-host
evolution of resistance to trimethoprim-sulfamethoxazole and
azithromycin in a persisting NTHi strain in the respiratory tract
of a CVID patient, after prolonged exposure to these antibiotics. The
presented case illustrates the precariousness of long-term
antimicrobial prophylaxis in immunocompromised patients, and
the current clinical management and guidelines for CVID should be
scrutinized. We highlight the need for a multi-targeted approach for
treatment of respiratory tract infections and measures to hinder
pathogen persistence and development of antibiotic resistance in
this challenging patient group.
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