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The pandemic of respiratory diseases, such as coronavirus disease 2019 (COVID-19) and
influenza, has imposed significant public health and economic burdens on the world.
Wearing masks is an effective way to cut off the spread of the respiratory virus. However,
due to cultural differences and uncomfortable wearing experiences, not everyone is willing
to wear masks; there is an urgent need to find alternatives to masks. In this study, we
tested the disinfection effect of a portable ionizer on pandemic severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (strain V34) and influenza A virus (strain CA04).
Negative ions significantly reduced the concentration of particulate matter in the air above
and effectively disinfected viruses stuck to the solid plate at the level of both nucleic acid
and virus titer. The disinfection efficiency was >99.8% after 1-h exposure. Moreover,
negative ions effectively disinfected aerosolized viruses; the disinfection efficiency was
more than 87.77% after purification for 10 min. Furthermore, negative ions had a
significant protective effect on susceptible animals exposed to viral aerosols. When the
negative ionizer was switched from off to on, the inhalation 50% infective dose (ID50) for
golden hamsters challenged with SARS-CoV-2 rose from 9.878 median tissue culture
infective dose (TCID50) [95% confidence interval (CI), 6.727–14.013 TCID50] to 43.891
TCID50 (95% CI, 29.31–76.983 TCID50), and the inhalation ID50 for guinea pigs challenged
with influenza A virus rose from 6.696 TCID50 (95% CI, 3.251–9.601 TCID50) to 28.284
TCID50 (95% CI, 19.705–40.599 TCID50). In the experiment of transmission between
susceptible animals, negative ions 100% inhibited the aerosol transmission of SARS-CoV-
2 and influenza A virus. Finally, we tested the safety of negative ion exposure. Balb/c mice
exposed to negative ions for 4 weeks showed no abnormalities in body weight, blood
routine analysis, and lung pathology. Our study demonstrates that air ions can be used as
a safe and effective means of blocking respiratory virus transmission and contribute to
pandemic prevention and control.
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INTRODUCTION

Respiratory viruses continue to pose heavy burdens on global
health and economics. Since its first found in December 2019,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has spread globally for more than 2 years, causing 452,201,564
confirmed cases of coronavirus disease 2019 (COVID-19) and
6,029,852 deaths (World Health Organization). Influenza caused
annual seasonal epidemics, sporadic and unpredictable global
pandemic outbreaks. The WHO estimates that annual epidemics
of influenza result in ~1 billion infections, 3–5 million cases of
severe illness, and 300,000–500,000 deaths (Krammer
et al., 2018).

Airborne transmission is one of the important transmission
routes of respiratory viruses (Zhou et al., 2018; Ram et al., 2021).
Infected patients could produce droplets or aerosols when
breathing, coughing, sneezing, vomiting, etc. (Stilianakis and
Drossinos, 2010; Comber et al., 2021). Ma et al. (2021) found
that COVID-19 patients exhaled millions of SARS-CoV-2 RNA
copies per hour, and the air of patient wards had been proven to
contain virus-laden aerosols (Guo et al., 2020; Liu et al., 2020). Yan
et al. (2018) recovered infectious virus from 39% of the fine
aerosols (≤5 mm) sampled from volunteers with confirmed
influenza infection. Major known methodologies in place to
prevent respiratory viral disease include wearing masks (Brienen
et al., 2010) and vaccination (Zhu et al., 2020). However, due to
cultural differences and uncomfortable wearing experiences, it is
difficult to wear masks all the time. In addition, because the virus
mutates quickly, the vaccine needs to be frequently updated (Kim
et al., 2018), and the presence of antibodies in the body also cannot
guarantee not being infected (Zhang et al., 2021). Hence, attention
must be given to explore new alternative solutions such as air
disinfection by negative ions to reinforce efforts in preventing the
spread of respiratory viral disease.

On the one hand, negative ions can neutralize and capture
small particles and dust, so that they condense and precipitate,
effectively removing PM2.5 particulate pollutants in the air
(Grinshpun et al., 2005). On the other hand, negative ions can
directly disinfect pathogenic microorganisms. Negative ions gain
hydrogen from surface molecules of pathogens due to
electrostatic force. The elimination of hydrogen from or the
disruption of the surface molecules of pathogens results in
inactivation (Nunayon et al., 2022).

Studies have shown that negative ions could disinfect a wide
variety of aerosolized microorganisms, including Salmonella
typhimurium (Nunayon et al., 2022), Staphylococcus epidermidis
(Kim et al., 2011; Lee et al., 2014; Zhou et al., 2018; Nunayon et al.,
2022), Serratia marcescens (Zhou et al., 2018), Escherichia coli
(Huang et al., 2008; Park et al., 2009; Kim et al., 2011), Bacillus
subtilis (Huang et al., 2008), Aspergillus niger, and Aspergillus
versicolor (Huang et al., 2008). Escombe et al. (2009) found that
negative air ionization prevented most airborne Mycobacterium
tuberculosis transmission detectable by guinea pig air sampling.
Gast et al. (1999) found that negative ions reduced the airborne
transmission of Salmonella enteritidis to chicks. However,
previous studies on aerosolized microorganism disinfection by
negative ions mainly focused on bacteria; very few studies
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
determined the disinfection performance of negative ions against
aerosolized viruses. Hyun et al. (2017) found that bipolar ions
showed a disinfection effect on the filtration of aerosolized
bacteriophage MS2, and the antiviral efficiency of bipolar ions
was higher than that of positive air ions. Hagbom et al. (2015)
found that negative ions could inactivate calicivirus, rotavirus, and
influenza virus and 100% (4/4) prevent airborne transmission of
influenza A virus between guinea pigs. The reduction of
transmission of Newcastle disease virus by negative ions was
also reported previously (Estola et al., 1979; Mitchell and King,
1994). However, none of them evaluated the effects of negative
ions on blocking coronavirus infection and transmission in animal
experimental setups.

In this study, the disinfection effects of negative ions on two
pandemic respiratory viruses (SARS-CoV-2 and influenza A
virus) were experimentally investigated. The disinfection
efficiency at two heights (30 and 50 cm) was studied.
Furthermore, we also tested the performance of negative ions
in preventing infection by viral aerosol exposure and blocking
natural aerosol transmission. Finally, the safety of negative ions
was evaluated by mouse exposure experiment, and concern on
ozone emission is also discussed.
MATERIALS AND METHODS

Ethics Statement
All experiments with animals were performed in strict
accordance with the guidelines on animal welfare of the World
Organization for Animal Health. Experimental protocols
involving animals were approved by the Animal Care and Use
Committee of the Changchun Veterinary Institute (approval
number: SMKX-20200915–11). All experiments with SARS-
CoV-2 and influenza A virus were performed in a Biosafety
Level 3 laboratory.

Viruses
Two pandemic viruses, SARS-CoV-2 and influenza A virus, were
selected as test pathogens. The human SARS-CoV-2 isolate was
BetaCoV/Beijing/IME-BJ05-2020 (abbreviated as V34), and the
human influenza A virus isolate was the 2009 pandemic H1N1
A/California/04/2009 (abbreviated as CA04). SARS-CoV-2 and
influenza A virus were grown in VeroE6 cells and Madin-Darby
Canine Kidney (MDCK) cells [purchased from American Type
Culture Collection (ATCC)], respectively. SARS-CoV-2 and
influenza A virus were titrated in the VeroE6 cells and MDCK
cells, respectively, to determine the median tissue culture
infective dose (TCID50) using the Reed–Muench method. They
were all stored at -80°C before use.

Negative Ionizers
The negative ionizers were portable and wearable products made
of brush-type ion-generating emission tips with power packs in a
custom-made plastic casing (Model EKT-001; AIRCLEAN
Electronic and Technology Co. Ltd., Beijing, China). When
worn around the neck, the ion-generating emission tips was
usually 30–50 cm below the head (Figure S1). Therefore, we
April 2022 | Volume 12 | Article 897416
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chose 30 and 50 cm as test heights in the experiment. The
concentration of negative ions was determined by an air counter
(Model LD-FY1; Lanende Inc., Shandong, China) of which the
ion count capacity can reach up to 50 million ions/cm3.

Particulate Matter Purification
Two laser particle counters (Model 9306, TSI Inc., MN, USA)
were used to monitor the concentration of particulate matter
(PM) in the air. They were placed 30 and 50 cm above the
ionizer, respectively. Data were recorded every 10 s. The
sampling rate of the laser particle counter was 2.83 L/min, and
the air sampling time was 6 s. We first switch on the laser particle
counters. After collecting approximately 50 background data,
then the negative ionizer was switched on.

Disinfection of Fixed Virus
A piece of gelatin filter (diameter 25 mm; SKC, Inc.) was placed in
the middle of a sterile cell culture plate, and then 100 ml of virus
suspensionwasdroppedon thefilter.After the virus suspensionwas
absorbed and the filter adhered to the plate, the plate was placed
upside down 30 or 50 cm above the ionizer. The disinfection time
was set to 5, 10, 20, 40, and 60 min. After disinfection, the gelatin
filter was collected, melted at 37°C, and subjected to virus titration,
RNA extraction, and real-time RT-PCR.

Disinfection of Aerosolized Virus
The disinfection effect of negative ions on aerosolized virus was
evaluated in a Biosafety Level 3 glove box. A mannequin of the
upper body wearing a mask is placed on one side of the glove
box, and a button sampler (SKC, Inc.) is placed next to the head
at the height of the mouth. The negative ionizer was 30 or 50 cm
below the mouth of the mannequin. A 24-jet Collison-type
nebulizer (BGI, Inc.) was used to generate viral aerosols, and it
was placed at the same height as the mouth and at a horizontal
distance of 50 cm. The generator outlet is facing the mouth and
nose position of the mannequin.

Viruses were diluted to 500 TCID50/ml and subsequently
transferred into the 24-jet Collison-type nebulizer and
aerosolized. Compressed air was delivered to the nebulizer
through a dry-cleaned air supply system consisting of a dryer
and filter. The pressure of the compressor was maintained at
103.42 kPa. Air sampling was conducted using the button sampler
loaded with a 25-mm-diameter gelatin filter. The sampling flow
rate was 4.0 L/min. Air sampling was initiated at the same time as
aerosol generation. After 10 min, aerosol generation and air
sampling were both switched off. The gelatin filter was dissolved
in 2 ml TRIzol (Thermo Fisher Scientific Inc.) and subsequently
used to extract RNA for viral nucleic acid testing. The mask was
cut into 1 × 1-cm pieces, and 6 of them were vortex oscillated in 1
ml TRIzol for 5 min, and then the supernatant was used to extract
RNA for viral nucleic acid testing. Between each air sampling time,
laboratory wipes with 75% ethanol were used for sterilizing the
sampler and the mannequin.

Viral Aerosol Exposure
To better simulate the protective effect of negative ions on virus
exposure, we conducted experiments on animals exposed to viral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
aerosol in an animal exposure cabin. The air ionizer is mounted
on the inner wall of the cabin. Five-week-old male golden
hamsters and Hartley strain female guinea pigs weighing 300–
350 g (Beijing Vital River Laboratory Animal Technology Co.
Ltd.) were used as susceptible experimental animals for SARS-
CoV-2 and influenza A virus, respectively.

Viruses were diluted to 62.5, 125, 250, 500, 103, 2 × 103

TCID50/ml, respectively, and subsequently transferred separately
into the 24-jet Collison-type nebulizer and aerosolized. Two fans
are installed in the exposed chamber for mixing the internal
aerosols. All groups of animals (n = 10) were challenged with
viral aerosol for 10 min. After exposure, the animals were placed
in individually ventilated cages. Nasal washes of these animals
were collected and titrated at 3 days post exposure to determine
being infected or not. When carrying out the experiment with the
highest concentration of virus suspension, we collected internal
aerosol samples using button sampler to calculate the inhalation
dose (IND) of animals. IND was calculated as: IND = (Sv * Va)/
Vs, where Sv is the virus titer collected by button sampler, Va is
the respiratory dose per minute of an animal, and Vs is the
sampling rate of the button sampler. The inhalation dose of other
groups was calculated in proportion to the concentration of the
pre-spray virus suspension concentrations.

Transmission Evaluation
Five-week-old male golden hamsters and Hartley strain female
guinea pigs weighing 300–350 g were used as susceptible
experimental animals for SARS-CoV-2 and influenza A virus,
respectively. Six donor animals per group were intranasally
inoculated with 105 TCID50 of the corresponding virus. At 24
h post inoculation, 3 donors per group were transferred to a new
cage and cohoused with three naive animals for the direct contact
transmission studies, and another 3 donors per group were
transferred to a wire-frame cage adjacent to another 3 naive
animals for the aerosol transmission studies. The distance
between the donor animals and the aerosol-contact animals
was 5.0 cm. In the direct contact transmission experiment, the
air ionizer is mounted on the inner wall of the cage. In the aerosol
transmission experiment, the air ionizer is placed between the
donor and the naive animals. Nasal washes of these animals were
collected and titrated at 1, 3, 5, and 7 days post inoculation
or exposure.

Viral Nucleic Acid Testing
RNAwas extracted using theQIAampViralRNAMini kit (Qiagen,
Germantown, MD, USA) and detected using the One Step
PrimeScript™ RT-PCR Kit (TaKaRa, Japan) according to the
manufacturers’ protocol. Quantitative real-time PCR (Q-RT-
PCR) assays were performed by using a set of primers and probes
(For V34, Forward: 5′-GGGGAACTTCTCCTGCTAGAAT-3′;
Reverse: 5′-CAGACATTTTGCTCTCAAGCTG-3′; Probe: FAM-
5′-TTGCTGCTGCTTGACAGATT-3′-TAMRA; Targeting
regions: N gene. For CA04, Forward: 5′-CATTGAAGGGGG
GTGGACAG-3′; Reverse: 5′-GGTGGTTGAACTCTTTACC
TACTGC-3′; Probe: FAM-5′-ACCATCAAAATGAGCAGGGGT
CAGG-3′-TAMRA; Targeting regions: HA gene], and the PCRs
were run on the ABI 7500 System (Thermo Fisher Scientific,
April 2022 | Volume 12 | Article 897416
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Waltham, MA, USA). Standard curves were calibrated for virus
copynumber usingplasmids containing a cDNAcopyof theQ-RT-
PCR target amplicon.

Safety Evaluation
To verify the safety of exposure to negative ions, 20 female Balb/c
mice (6-week-old, weighing 18–20 g) were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
These mice were fed in the IVC system and given normal
water and feed during the experiment. These Balb/c mice were
separated into two groups, each with 10 mice. One group served
as the control, while the other served as the negative ion exposure
group. The air ionizer is mounted on the inner wall of the cage.
The body weight of mice was monitored daily for 30 days. On
day 30, blood samples of these mice were collected for blood
routine analysis according to the manual of automatic blood cell
analysis instrument (BT-3200, Better, China), and the lungs of
mice were fixed with formalin, embedded in paraffin, and stained
with hematoxylin and eosin (HE).

Statistical Analysis
Statistically significant differences were determined using one-way
analysis of variance (ANOVA) with GraphPad Prism software (San
Diego, CA, USA). All of the assays were run in triplicate and are
representative of at least 3 separate experiments. The error bars
represent the standard deviation. P values <0.05 indicated significant
differences. The 50% infective dose (ID50) was evaluated by probit
analysis. The independent variable for the probit analysis was dose,
and the dependent variable was infection rate.
RESULTS

Particulate Matter Purification by
Negative Ions
The ion concentrations at 30 and 50 cm above the negative ionizer
were 1.06 ± 0.08 × 105 ions/cm3 and 5.61 ± 0.64 × 104 ions/cm3,
respectively. To test the efficiency of PM purification, laser particle
counters were used to monitor the PM concentration before and
after switching on the negative ionizer. As shown in Figure 1,
negative ions exhibited significant PMpurification effect at both 30-
and 50-cm height. At 30-cm height (Figures 1A, B), the PM
concentrations before and after negative ion purification were
32.65 ± 2.01 particles/cm3 and 9.87 ± 1.93 particles/cm3,
respectively. The purification efficiency was 69.77%. The response
time to reach the average PM concentration after purification was
220 s. At 50-cm height (Figures 1C, D), the PM concentrations
before and after negative ion purification were 33.36 ± 2.56
particles/cm3 and 12.18 ± 2.02 particles/cm3, respectively. The
purification efficiency was 63.49%. The response time to reach the
average PM concentration after purification was 300 s.

Fixed Virus Disinfection Efficiency of
Negative Ions
To determine the disinfection efficiency of negative ions on
SARS-CoV-2 and influenza A virus, the virus was adhered on
a cell culture plate and placed upside down 30 or 50 cm above the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
negative ionizer. As shown in Figure 2, both SARS-CoV-2 and
influenza A virus were highly susceptible to negative ions. Both
viral titer and RNA copies were decreased with the extension of
disinfection time. The disinfection efficiencies at different time
points and different heights were listed in Table S1. After
disinfection for 1 h, the disinfection efficiencies of negative
ions were more than 99.98% for SARS-CoV-2 and influenza A
virus at both viral titer and RNA copy levels.

Aerosolized Virus Disinfection Efficiency of
Negative Ions
We further determined the disinfection performance of negative
ions against aerosolized virus. A 24-jet Collison-type nebulizer
was used to aerosolize the virus suspension. A button sampler
was placed at the same height, 50 cm horizontally, and used to
sample the air with a flow rate of 4 L/min. The air ionizer was
placed 30 or 50 cm below the button sampler. When the 10-min
sampling is over, the relative abundance of viral RNA in the air
samples was compared when the ionizer was active or inactive.
At the height of 30 cm, the disinfection efficiencies were 89.96%
and 91.27% for SARS-CoV-2 and influenza A virus, respectively
(Figures 3A, C). While at the height of 50 cm, the disinfection
efficiencies were 87.77% and 89.50% for SARS-CoV-2 and
influenza A virus, respectively (Figures 3B, D). These results
indicate that airborne virus can be largely inactivated by
negative ions.

Furthermore, we investigated whether negative ions could
reduce the amount of virus that stick on masks during the
aerosolized virus exposure. A mannequin of the upper body
wearing a mask is placed next to the button sampler. After 10
min of aerosol exposure, the mask was cut into 1 × 1-cm pieces
and 6 of them were vortex oscillated in 1 ml TRIzol for 5 min,
and then the supernatant was used to extract RNA for viral
nucleic acid testing. As shown in Figure 4, negative ions
significantly reduced the amount of viral nucleic acid stuck on
masks. The disinfection efficiencies were 99.58% (7.90 log2
reduction) and 98.31% (5.88 log2 reduction) for SARS-CoV-2
at the height of 30 and 50 cm, respectively (Figure 4A). The
disinfection efficiencies were 99.32% (7.19 log2 reduction) and
97.35% (5.24 log2 reduction) for influenza A virus at the height of
30 and 50 cm, respectively (Figure 4B).

Protection Against Viral Aerosol Exposure
by Negative Ions
Next, we investigated whether negative ions could protect the
susceptible animals from being infected by viral aerosol exposure.
Groups of animals (n = 10) were challenged with viral aerosol in
an animal exposure cabin when the ionizer was active or inactive.
The infection rate plots were shown in Figures 5A, C. Negative
ions, to some extent, protected animals from aerosol infection. For
SARS-CoV-2, when the ionizer was inactive, the inhalation ID50

for hamsters challenged with viral aerosols was estimated to be
9.878 TCID50, with 95% confidence interval (CI) of 6.727–14.013
TCID50 (Figure 5B). In contrast, when the ionizer was active, the
ID50 rose to 43.891 TCID50, with 95% CI of 29.31–76.983
TCID50 (Figure 5C).
April 2022 | Volume 12 | Article 897416
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A B

DC

FIGURE 1 | Particulate matter purification effect by negative ions. The concentrations of particulate matter (PM) were monitored by two laser particle counters
placed 30 (A) and 50 cm (C) above the ionizer. Downward arrow means that the ionizer was switched on at that moment. Upward arrow indicates the moment
when the concentration of PM first dropped to the mean value after negative ion purification. The PM concentrations before and after negative ion purification at 30
(B) and 50 cm (D) height were also compared. The bar means: Mean ± SD. *** means P value <0.001.
A B

DC

FIGURE 2 | Fixed virus disinfection effect by negative ions. The disinfection effect of negative ions on fixed severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (A, B) and influenza A virus (C, D) was analyzed at different time points and different heights. Both viral titer and RNA copies were determined. Dashed lines
indicate the lower limit of virus detection. The bar means: Mean ± SD.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org April 2022 | Volume 12 | Article 8974165
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For influenza A virus, when the ionizer was inactive, the
inhalation ID50 for guinea pigs challenged with viral aerosols was
estimated to be 6.696 TCID50, with 95% CI of 3.251–9.601 TCID50

(Figure 5E). In contrast, when the ionizer was active, the ID50 rose
to 28 .284 TCID50 , wi th 95% CI of 19 .705–40 .599
TCID50 (Figure 5F).

Prevention of Airborne-Transmitted SARS-
CoV-2 and Influenza A Virus Infection
Between Animals by Negative Ions
Finally, we determined if negative ions could prevent direct
contact and aerosol transmission of SARS-CoV-2 and
influenza A virus between animals. In the direct contact
transmission experiment, the air ionizer is mounted on the
inner wall of the cage. In the aerosol transmission experiment,
the air ionizer is placed between the donor and the naive animals.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
As shown in Figure 6, when the negative ionizer was inactive,
100% (3/3) of the animals in contact and aerosol transmission
groups were infected (Figures 6A, C). In contrast, when the
negative ionizer was active, the ionizer protected 100% (3/3) of
hamsters from SARS-CoV-2 aerosol transmission (Figure 6B)
and 100% (3/3) of guinea pigs from influenza aerosol
transmission (Figure 6D). Although negative ions did not
block direct contact transmission, viral loads in nasal washes
were reduced in both infected and transmitted animals
compared to those of the control group.

Safety Evaluation
Six-week-old female Balb/c mice were exposed to the negative
ions for 30 days. The body weight of mice was monitored daily.
As shown in Figure 7A, the body weight of mice in the negative
ion group increased gradually, and there was no significant
A B DC

FIGURE 3 | Aerosolized virus disinfection effect by negative ions. A 24-jet Collison-type nebulizer was used to aerosolize the virus suspension. A button sampler
was placed at the same height, 50 cm horizontally, and used to sample the air with a flow rate of 4 L/min. The air ionizer was placed 30 (A, C) or 50 cm (B, D)
below the button sampler. When the 10-min sampling is over, the relative abundance of viral RNA in the air samples was compared when the ionizer was active or
inactive. The bar means: Mean ± SD. *** means P value <0.001.
A B

FIGURE 4 | Negative ions reduce the amount of viral nucleic acid that stuck on masks. Syndrome coronavirus 2 (SARS-CoV-2) (A) and influenza A virus (B). A
mannequin of the upper body wearing a mask was facing the outlet of the nebulizer with a horizontal distance of 50 cm. The negative ionizer was 30 or 50 cm below
the mouth of the mannequin. After 10 min of aerosol exposure, the mask was cut into 1 × 1-cm pieces, and six of them were vortex oscillated in 1 ml TRIzol for 5
min, and then the supernatant was used to extract RNA for viral nucleic acid testing. Dashed lines indicate no fluorescence signal to the maximum cycle (45). The
bar means: Mean ± SD. *** means P value <0.001.
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difference in body weight compared to that of the control group
(P > 0.05). On day 30, blood of the mice was collected for blood
routine analysis. All of the blood routine indexes were within the
normal range of Balb/c mice (Zou et al., 2019; Li et al., 2021), and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
no significant difference was found between the control group
and the negative ion group (Table S2). The lungs of mice were
fixed with formalin, embedded in paraffin, and stained with
hematoxylin and eosin. The bronchial epithelial cells of the two
A B

D E F

C

FIGURE 5 | Infection rate and 50% infective dose (ID50) plots for animals exposed to aerosolized virus. The infection rate of animals exposed to aerosolized severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (A) or influenza A virus (D)when the ionizer was active or inactive was determined. Panels (B, C, E, F) show the probit analysis
to determine ID50 for aerosolized SARS-CoV-2 or influenza A virus exposure when the ionizer was active or inactive. Dashed lines show 95% confidence interval for the analysis.
A B

DC

FIGURE 6 | Aerosol transmission of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (A, B) and influenza A virus (C, D)was blocked by negative
ions. Six donor animals per group were intranasally inoculated with 105 median tissue culture infective dose (TCID50) of the corresponding virus. At 24 h post inoculation, 3
donors per group were transferred to a new cage and cohoused with three naive animals for the direct contact transmission studies, and another 3 donors per group were
transferred to a wire-frame cage adjacent to another 3 naive animals for the aerosol transmission studies. Nasal washes of these animals were collected and titrated at 1, 3, 5, and
7 days post inoculation or exposure. Each color bar represents the virus titer in an individual animal. Dashed lines indicate the lower limit of virus detection.
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groups of mice were closely arranged, evenly colored, and in
normal shape in lung sections (Figures 7B, C); the thickness of
the alveolar wall was uniform, and no obvious thickening was
observed; the morphology of the alveolar epithelial cells was
normal, the size of the alveoli was uniform, and the alveoli were
clean, and no obvious abnormality was observed in the tissues.
DISCUSSION

Controlling the source of infection, cutting off the transmission
route, and protecting the susceptible population are the key
measures to block the transmission of respiratory pathogens
(Esike et al., 2021). In this study, the method of inactivating viral
aerosol by negative ions is one of the important ways to cut off
the transmission route. We chose SARS-CoV-2 and influenza A
virus as test pathogens because they are important
representatives of the pandemic respiratory virus of concern.

This study confirmed that air ionization is an effective means of
pandemic virus inactivation. Negative ions effectively reduced the
infectivity and RNA copies of fixed viruses. The disinfection
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
efficiency was >99.8% after 1-h exposure. Moreover, negative
ions could also effectively inactivate aerosolized viruses and
protect susceptible animals from artificial viral aerosols. The
inhalation ID50 of SARS-CoV-2 and influenza A virus were
increased 4.44 times and 4.22 times with the use of the negative
ionizer. In particular, negative ions 100% inhibited the aerosol
transmission of SARS-CoV-2 and influenza A virus between
infected animals and naive animals, which is closer to the
authentic natural infections.

However, the inactivation mechanism against microorganisms
by negative ions is still not well known. The generation of reactive
radicals such as O2

- may contribute to the damage to either the
protein or the nucleic acid structure of the viruses and eventual
inactivation (Nishikawa and Nojima, 2003; Hagbom et al., 2015).
Kim et al. (2011) used field emission scanning electronmicroscopy
images and fluorescence microscopy images and found that
electrostatic disruption of bacteria might be the dominant
antibacterial effect. Digel et al. (2005) proposed that the in situ
hydroxyl radical formation on the surface of bacteria might the
leading mechanism of bacterial inactivation. Although the
antimicrobial mechanism of negative ions is still controversial,
A

B C

FIGURE 7 | Body weight change and lung pathological observation of mice exposed to negative ions for 30 days. Ten mice were exposed to negative ions for 30 days,
and the other 10 mice were used as control. The air ionizer is mounted on the inner wall of the cage. The body weight of mice was monitored daily (A). Lungs of the
control mice (B) and ion-exposed mice (C) were collected on day 30 and were fixed with formalin, embedded in paraffin, and stained with hematoxylin and eosin.
TABLE 1 | Performance comparison of different preventive strategies.

Preventive strategy Performance

Price Reusability Wear comfort Broad-spectrum antimicrobial properties Particulate matter purification

Negative ionizer Cheap Reusable Comfortable High Yes
Vaccine Very expensive Update periodically / Low No
Face mask Very cheap Single use Uncomfortable High Yes
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these possible mechanisms all determine that the ion disinfection
method has the advantage of broad spectrum. Viruses, bacteria,
and fungi of any subtype, species, or variant can all be inactivated.

In addition to disinfection and purification functions, negative
ions are also beneficial to human health. Lee et al. (Lee et al., 2017)
found that negative ions mediated the regulation of autonomic
nervous system activity and enhanced parasympathetic activity.
Pino and Ragione (2013) reviewed the evidence base of negative
ions in improving neuropsychological performance and treating
mood disorders. Nakane et al. (2002) found that negative air ions
were effective for the reduction of and the prompt recovery from
stress caused by computer operation.

Thenegative iondisinfectionmethodhas a varietyof application
scenarios. In this study, we used a wearable air ionizer, which was
30–50 cmbelow theheadwhenworn. It providednegative ionswith
the concentration of 5.61 × 104~1.06 × 105 ions/cm3 in the head
area, which could not only purify air particles but also inactivate
microorganisms. In addition, negative ion disinfection technology
can also be made into an indoor air purifier for indoor space
disinfection (Grinshpun et al., 2005) and applied for ventilation
system filter disinfection (Huang et al., 2008; Hyun et al., 2017) or
ventilation duct disinfection (Zhou et al., 2018; Nunayon et al.,
2022) to prevent the movement of microorganisms through
ventilation bulk airflows and eventual transmission.

In terms of safety, one major contentious concern about air
ionizers is the production of ozone, which has strong oxidation
and adversely affects the respiratory functions in humans
(Castillejos et al., 1992). According to the ozone emission
standard of indoor air cleaning devices issued by the California
Air Resources Board (California Air Resources Board), the ozone
emission concentration should not be more than 50 ppb. In this
study, the air ionizer did not produce detectable levels of ozone
(<1 ppb, measured by pump type ozone detector, model OZA-
T30, Honri Airclean Technology Co., Ltd.), much lower than the
emission standard. Moreover, BALB/c mice exposed to negative
ions for 4 weeks showed no abnormalities in body weight, blood
routine analysis, and lung pathology. Therefore, the effects on
human of ozone emission from the air ionizer in this study
are negligible.

Our study has 2 limitations. First, the inactivation mechanism
against viruses by negative ions is not included in this study and
needs further study. Second, the negative ionizer cannot reduce
the infection rate when the susceptible animals were exposed to
high viral aerosols (Figure 5D), which is a limitation of
this strategy.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
The performance of the negative ionizer compared to
vaccines and wearing masks was summarized in Table 1. Our
finding proposed that negative ions could serve as a new
preventive strategy in addition to vaccines and wearing masks
and make contributions in the prevention and control of
respiratory infectious diseases.
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