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Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival
in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However,
the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different.
Whereas antibiotic resistance is genetically determined and hence represents a rather
stable phenotype, antibiotic persistence marks a transient physiological state triggered by
various stress-inducing conditions that switches back to the original antibiotic sensitive
state once the environmental situation improves. The molecular basics of antibiotic
resistance are in principle well understood. This is not the case for antibiotic
persistence. Under all culture conditions, there is a stochastically formed,
subpopulation of persister cells in bacterial populations, the size of which depends on
the culture conditions. The proportion of persisters in a bacterial population increases
under different stress conditions, including treatment with bactericidal antibiotics (BCAs).
Various models have been proposed to explain the formation of persistence in bacteria.
We recently hypothesized that all physiological culture conditions leading to persistence
converge in the inability of the bacteria to re-initiate a new round of DNA replication caused
by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of
formation of a functional orisome. Here, we extend this hypothesis by proposing that in
this persistence state the bacteria become more susceptible to mutation-based antibiotic
resistance provided they are equipped with error-prone DNA repair functions. This is - in
our opinion - in particular the case when such bacterial populations are exposed to BCAs.

Keywords: persistence, resistance, ATP-DnaA complex, DNA replication initiation, bacterial pathogens
1 INTRODUCTION

1.1 Antibiotic Resistance Acquired by Mutations and Horizontal
Gene Transfer
Human bacterial pathogens with increased resistance to one or even more antibiotics represent a
severe world-wide health problem. Antibiotic resistance, in contrast to the antibiotic-tolerant
persistence phenotype (discussed below) is always genetically determined by well-defined genes.

Resistance genes providing defense to the detrimental action of their own dangerous drugs, are
found in most antibiotic-producing microorganisms or evolve in natural environments by the
gy | www.frontiersin.org July 2022 | Volume 12 | Article 9008481
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interaction between antibiotic producers and the surrounding
antibiotic-sensitive bacteria (Aminov and Mackie, 2007; Wright,
2007; Wright, 2010; Martinez, 2014; Peterson and Kaur, 2018;
Larsson and Flach, 2021). Most of the known antibiotics are
produced by different soil bacteria, especially members of the
genera Streptomyces and Bacillus, and by some fungi, especially
members of the genera Penicillium and Cephalosporium.
Production of antibiotics may help the producers to limit the
competition by other antibiotic-sensitive microorganisms in
their immediate environment (Demain and Fang, 2000;
Falkinham et al., 2009; Foster and Woodruff, 2010). In
response, some of these latter co-resident bacteria acquire or
evolve genes coding for a variety of biochemical mechanisms that
protect them from the killing or growth-inhibiting actions
triggered by these antibiotics, thus generating a stable
genetically determined resistance to one or even more
antibiotics. These antibiotic resistance (ABR) genes are passed
on to their next generations and may also be eventually
transferred horizonta l ly to other bacteria in their
immediate environment.

Human bacterial pathogens can acquire resistance to
antibiotics by two major genetic strategies which protect the
pathogens from the detrimental action of antibiotics when
exposed to them: (i) by specific mutations and the passing on
of the mutation-based ABR to the offspring by vertical gene
transfer (VGT) and (ii) by acquisition of external ABR genes
through horizontal gene transfer (HGT). For details see
(Foster, 2007).

In short, chromosomal mutations resulting in ABR (i) lead to
modified cell targets which in general can no longer bind the
respective antibiotics, (ii) decrease the uptake efficiency of the
bacterial cell for the antibiotic, (iii) increase the activity of
specific efflux pumps causing extrusion of the antibiotic from
the bacterial cell, (iv) inactivate repressors for the expression of
genes that code for enzymes (especially specific ß-lactamases)
which inactivate the antibiotic (in this case ß-lactam antibiotics)
(Alekshun and Levy, 2007; Blair et al., 2015; Munita and Arias,
2016; Li et al., 2019a), or (v) extend the hydrolytic activity
towards a broad spectrum of ß-lactam antibiot ics
(Bradford, 2001).

A large number of mutations in chromosomal genes has been
identified that lead to resistance of many bacterial pathogens to
one or even more antibiotics (belonging to most classes of
antibiotics). Acquisition of mutation-based ABR is quite
diverse and varies significantly among bacterial pathogens
(George, 1996; Davies, 1997; Martinez and Baquero, 2000;
Zankari et al., 2012; Lopez-Causape et al., 2018). This
“mutational antibiotic resistance” arising by treatment with
BCAs (and other antibiotics) will be described below in
more detail.

HGT of ABR genes within and between bacterial species is
achieved essentially by three major genetic mechanisms:
transformation, transduction and conjugation (Burmeister,
2015; Blokesch, 2016; Zhou et al., 2021). Transformation
includes the transfer of naked DNA to competent (Com)
recipient bacteria and its incorporation into the recipient´s
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
chromosome by homologous recombination. Transduction
uses bacteriophages as vehicles for the DNA transfer and has
been reported to play a role in the microbiome of cystic fibrosis
patients, in particular of Pseudomonas aeruginosa (Rolain et al.,
2011). Conjugation requires the direct contact between donor
and recipient bacteria, often achieved with the help of specific cell
appendages/pili. DNA transfer by conjugation most frequently
involves mobile genetic elements such as plasmids, transposons
and integrons (Babakhani and Oloomi, 2018; Partridge et al.,
2018). However, transfer of chromosomal DNA from the donor
to the recipient may also occur by conjugation (Manson et al.,
2010). A recently discovered fourth horizontal transfer
mechanism of plasmids via extracellular vesicles (EVs,
vesiduction) shedded from the outer membrane has been
described for Acinetobacter baumannii and Escherichia coli
(Rumbo et al., 2011; Tran and Boedicker, 2017; Toyofuku
et al., 2019). However, the impact of EV-mediated plasmid
transfer for evolution of ABR is still unclear.

For plasmid transfer by conjugation the donor requires
sufficient ATP and proton motive force (PMF) for the involved
type IV secretion system (T4SS) and the recipient must be able to
produce immediately double-stranded DNA (Palmen et al.,
1994). For transformation, the recipient must also be energized
(ATP; PMF) to induce competence (Com) and the DNA uptake
machinery (Domenech et al., 2020; Rosch and Tuomanen, 2020).
However, it is unclear if vesiduction requires energy for
plasmid transfer.

Among human bacterial pathogens, natural transformation
has been shown as the major HGT mechanism for the transfer of
antibiotic resistance genes for Streptococcus pneumoniae,
Helicobacter pylori , Campylobacter jejuni , Neisseria
gonorrhoeae, and Acetinobacter spp. (Domingues et al., 2012).
Transduction appears to be the most common HGT mechanism
for transfer of ABR (and virulence) genes in Staphylococcus
aureus (Chen and Novick, 2009; Varga et al., 2012).

Conjugation is probably the most efficient HGT mechanism
to transfer ABR genes to clinically important bacterial pathogens
and plays the most relevant role in the dissemination of ABR
(Thomas and Nielsen, 2005; Munita and Arias, 2016). Whereas
transformation and transduction normally depend on
homologous recombination and DNA repair which restricts
successful DNA transfer to related bacteria with sufficient
homology between donor and recipient genomes, conjugation
allows DNA transfer (including ABR genes) without
homologous recombination. Especially broad-host-range
plasmids allow the spreading of ABR genes from a donor
bacterium even to distantly related recipient bacteria (Thomas
and Nielsen, 2005; Johnston et al., 2014).

ABR genes are often assembled in integrons, containing genes
and genetic structures which facilitate the capture and
mobilization of foreign genes by site-specific recombination
and thereby the risk of their spreading (White et al., 2001;
Rowe-Magnus et al., 2002; Stalder et al., 2012). Integrons often
carry multiple ABR genes which are localized on mobile genetic
elements, such as plasmids and transposons. These genetic
structures strongly contribute to the spreading of multiple ABR
July 2022 | Volume 12 | Article 900848
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in the environment and in clinical context (Jones et al., 1997;
Fluit and Schmitz, 2004; Randall et al., 2004; Kaushik
et al., 2019).

1.2 Conditions and Proposed Mechanisms
Leading to Antibiotic-Tolerant States
(Persistence and Heteroresistance)
Whereas ABR in bacteria is in general a rather stable, genetically
determined state, antibiotic persistence and heteroresistance
confer transient tolerance to (often multiple) antibiotics. Both
antibiotic-tolerant phenotypes occur temporarily in
subpopulations of growing and/or resting bacterial
populations. For definition of antibiotic persistence and
heteroresistance, see (Balaban et al., 2019).

In contrast to ABR populations, the antibiotic-persistent
subpopulations do not or hardly grow in the presence of the
antibiotic(s) and remain genetically unaltered compared to the
antibiotic-sensitive majority of the bacterial populations from
which they arise. The persister subpopulations differ
significantly in size, strongly depending on the environmental
conditions of the respective bacterial cultures. Antibiotic-
persistent subpopulations become again sensitive to the
antibiotic(s) upon resuscitation under favorable growth
conditions and in the absence of the antibiotic(s) (Gollan
et al., 2019; Jung et al., 2019; Bakkeren et al., 2020). Some of
the main features of antibiotic persistence are summarized
in Figure 1B.

Heteroresistance describes a phenotype in which a
subpopulation of cells in a bacterial population shows – in the
presence of an antibiotic – a significant reduction in antibiotic
susceptibility compared to the main population. In contrast to an
antibiotic-persistent subpopulation, a heteroresistant
subpopulation is – similar to an ABR population – still able to
grow in the presence of the antibiotic. However, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
heteroresistant phenotype is – in contrast to the true resistant
phenotype – in general unstable and rapidly reverts to
susceptibility in the absence of the antibiotic, similar to the
antibiotic persistent phenotype. Heteroresistance seems to be
mainly caused by the amplifications of genes that cause ABR and
its transient character appears to be due to the instability of this
genetic arrangement (Nicoloff et al., 2019). Heteroresistance has
been observed for different bacterial species and different classes
of antibiotics (Andersson et al., 2019). Clinical studies show that
heteroresistance appears to be also a serious problem associated
with antibiotic treatment (Band and Weiss, 2019). The
heteroresistance phenotype appears to be, however, less
relevant for our line of discussion and will not be further
addressed in this review. For more details on this topic, see
(Dewachter et al., 2019; Gollan et al., 2019; Jung et al., 2019;
Bakkeren et al., 2020).

1.2.1 A Short Summary of the Described
Mechanisms Leading to Persistence in Bacteria
In the following, we will focus on the persistence phenotype.
The fact that small antibiotic-persistent subpopulations are
present even in bacterial populations growing in rich culture
media suggests that suitable physiological state(s) leading to
antibiotic-persistence can stochastically occur in few cells of a
bacterial population. Various environmental and growth
conditions, often causing stress on the bacterial cell, have
been described that favor the generation of antibiotic-
persistent subpopulations. The most extensively studied
stress conditions leading to antibiotic persistence include:

(i) increased release of the toxin component of various toxin/
antitoxin (TA) modules, especially those belonging to the type I
and type II TA modules (Maisonneuve et al., 2011; Balaban et al.,
2013; Maisonneuve and Gerdes, 2014; Cheverton et al., 2016;
Gerdes, 2016; Kedzierska and Hayes, 2016; Rycroft et al., 2018),
A B

FIGURE 1 | Formation of the antibiotic-tolerant persistence state (according to our hypothesis). (A) Different stress-induced physiological conditions (including
treatment with BCAs) lead to increased production of reactive oxygen species (ROS) that damage cell components including DNA, to reduced energy production
that inhibits DNA replication and repair, and to reduced metabolic activities. (B) Replicating DNA is particularly sensitive to irreparable damage (especially double
strand breaks) which leads to killing of the bacteria (a). Cells with terminated chromosomal DNA replication but unable to re-initiate replication (due to the lack of
sufficient ATP-DnaA initiator complex – see text for details) have closed circular supercoiled (ccs) DNA that is rather insensitive to lethal DNA damage (b). According
to our hypothesis, this cellular state arrested in the termination of DNA replication represents the state of persistence (c). Solid blue circle, parental chromosomal
DNA; dashed blue circle, replicating DNA; dashed green vertical line, beginning of cell division; ccs, closed circular supercoiled DNA in the terminated state; oriC,
origin of replication marked by the red triangle; BCAs, bactericidal antibiotics.
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(ii) induction of the stringent response together with the
alarmone guanosine tetra-/pentaphosphate ((p)ppGpp)
(Korch et al., 2003; Germain et al., 2015; Liu et al., 2017b),

(iii) induction of the RpoS-mediated general stress
response (Mok et al., 2015; Liu et al., 2017b; Mok and
Brynildsen, 2018),

(iv) oxidative stress, also caused by BCAs, leading to
reactive oxygen species (ROS) production (Wu et al., 2012)
with subsequent DNA damage and induction of the SOS
response (Dörr et al., 2009; Kreuzer, 2013; Völzing and
Brynildsen, 2015),

(v) impaired ATP production (Amato et al., 2013; Amato and
Brynildsen, 2015; Shan et al., 2017; Mok and Brynildsen,
2018), and

(vi) feedback-regulation of cellular core processes, i.e.
chromosome replication, transcription and translation
(Pontes and Groisman, 2019; Pontes and Groisman, 2020),
and protein aggregation (Pu et al., 2019; Bollen et al., 2021).

Recently, epigenetic regulation has been suggested to play a
major role within bacterial persistence formation (Riber and
Hansen, 2021) and DNA adenine methylation by Dam has been
shown to affect persister formation in uropathogenic E. coli (Xu
et al., 2021).

Triggered by corresponding environmental (stress) stimuli
including BCAs, all these processes can lead to a very
significant increase of an antibiotic-tolerant fraction within
bacterial populations. Thus, antibiotic-tolerant persistence is
not only due to reduced inhibition of the actual antibiotic
targets, but is also strongly supported by a variety of altered
physiological events that are caused by antibiotics, such as
disturbance of cell metabolism (Yang et al., 2017; Zampieri
et al., 2017) (see below, for further details), e.g. leading to
decreased ROS production and hence less DNA lesions
(Völzing and Brynildsen, 2015; Hong et al., 2019).

Therefore, it is not surprising that, unlike the limited number
of mutations providing antibiotic resistance, a rather wide range
of mutations seems to be able to influence the level of antibiotic
tolerance (persister phenotype) in bacteria, as mentioned above.
This fact highlights the fundamental difference between the
mechanisms of tolerance (persistence) and resistance against
antibiotics and raises the question of how these two
mechanisms are linked.

1.2.2 Metabolism and Persistence
Metabolism plays an important role in initiating, maintaining
and ending the persister state in bacteria (Amato et al., 2013;
Orman and Brynildsen, 2013; Amato et al., 2014; Prax and
Bertram, 2014; Hartman et al., 2017; Radzikowski et al., 2017;
Cabral et al., 2018). However, our knowledge on the precise
metabolic events occurring in this state is still fragmentary,
since the specifically altered processes of persister cells are
difficult to determine due to the generally low abundance of
the persister subpopulations, their transient nature and the
often similar morphology of persister and normal cells
(Orman et al., 2015; Rowe et al., 2016).

It is reasonable to assume that in order to survive antibiotic
stress, the persister cells must shut down or silence essential
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
physiological cell functions which antibiotics would
irreversibly damage, but maintain viability during stasis, in
order to resume growth once the stress is lifted. Persistence,
often described as a “dormant state”, obviously represents a
metabolic state of low activity (Spoering et al., 2006; Prax and
Bertram, 2014; Radzikowski et al., 2016) that is characterized
by a large decline of most anabolic processes, a continued low
ATP production via specific catabolic processes (with
substrate phosphorylation) and/or respiration (via oxidative
phosphorylation) still allowing membrane energizing and
repair processes (in particular DNA repair) by residual or
even increased synthesis of a special set of proteins supporting
these processes (Babin et al., 2017; Ayrapetyan et al., 2018).
Recently, dormancy depth of bacterial persisters was related to
protein aggregation in the cytosol, due to the decline of the
amphiphilic ATP concentration (acting as a biological
hydrotrope) in the cytosol, resulting in a state similar to
that of the viable but non-culturable (VBNC) state (Patel
et al., 2017; Pu et al., 2019; Bollen et al., 2021).

The persistence-promoting metabolic processes apparently
occur already stochastically in untreated bacterial populations but
are significantly enhanced in the presence of (especially bactericidal)
antibiotics (and under the other stress conditions mentioned above).
This has been especially shown by in vitro culture studies and also in
animal models (Dörr et al., 2010; Radzikowski et al., 2016; Gutierrez
et al., 2017; Meylan et al., 2017; Yang et al., 2017).

Bacterial persisters have been associated with chronic or
recurrent infections (Mulcahy et al., 2010; Grant and Hung,
2013; Fisher et al., 2017), but, on the whole, the clinical
significance of bacterial persistence (e.g. in chronic infections)
is less clear and still under debate (Westblade et al., 2020;
Moldoveanu et al., 2021).
1.2.3 A Novel Hypothesis to Explain the Emergence
of Bacterial Persistence
Regarding the physiological aspects linked to persistence, we
would also like to refer to our recent review (Eisenreich et al.,
2020). There, we focused in particular on persistence of
intracellular bacterial pathogens (IBPs) and pointed out that
some of these pathogens which are able to successfully reach a
persistence state, in particular obligate IBPs like Chlamydiae, lack
most of the specific stress response factors and pathways which -
as stated above - apparently support the generation of the
persistence state in the model bacteria that are mainly used for
studying persistence., i.e. in particular E. coli (in particular
laboratory K12 strains). Considering this fact, we proposed a
new hypothesis that might explain persister formation not only
for the latter IBPs but for bacteria in general (Figure 1A). This
hypothesis is mainly based on a metabolic strategy that appears
to be responsible for the replication of IBPs within mammalian
host cells which we termed “bipartite metabolism” (Grubmüller
et al., 2014; Eisenreich et al., 2015).

In short, bipartite metabolism consists of two distinct
metabolic networks:

(i) A mainly catabolic network (previously termed P1)
(Eisenreich et al., 2020) which is devoted to the production of
July 2022 | Volume 12 | Article 900848
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energy and some essential TCA intermediates (e.g. oxaloacetate, a-
ketoglutarate, succinate) that are substrates for other cellular
processes, like cell wall synthesis or respiration. This network is
fed mainly by C3 substrates (e.g. pyruvate, glycerol).

(ii) A largely anabolic network (previously termed P2), which
is mainly fed by intermediates of the upper part of the glycolytic
pathway and the pentose phosphate pathway (PPP). P2 is
essential for the production of indispensable anabolic
components (in particular carbohydrate components for cell
envelope biosynthesis) that cannot be provided by the host cell.

The P1 and P2 networks are differently linked depending on
the physiological state of the host cell (Eisenreich et al., 2017;
Eisenreich et al., 2019). For the active multiplication of IBPs
within host cells, the full function of both networks is necessary.
In the persistent state of the IBPs, P2 will be largely turned off
whereas P1 must still function, albeit at a low level, to provide
sufficient energy to maintain vital cell processes, such as DNA
repair and membrane energizing. Such a specific low metabolic
flux is most likely the basic core for establishing persistence not
only for IBPs but also for other bacteria with greater metabolic
capacities, while persistence-stimulating factors, like various TA
modules, ppGpp, RpoS etc. may have a more modulating and/or
stabilizing function for establishing this basic metabolic
background activity (Radzikowski et al., 2016).

Our hypothesis assumes that persistence represents a
metabolic state in which the DNA replication is terminated,
but re-initiation of DNA replication is prevented due to an
insufficient amount of active ATP-DnaA initiator caused either
by insufficient ATP, blockade of de novo DnaA protein synthesis,
failure to anchor the ATP-DnaA-OriC initiation complex to the
membrane site, or the combination of these events (Figure 1).
This mechanism of persister formation could be valid for
bacteria in general, even for those, like Chlamydiae and
Rickettsiae that lack most of the factors and stress response
pathways shown to enhance persistence in model bacteria, like E.
coli. In contrast to the latter factors, nearly all bacteria including
the obligate IBPs depend on active ATP-DnaA for re-initiating
DNA replication and hence cell division (Kaguni, 2006; Leonard
and Grimwade, 2015; Hansen and Atlung, 2018; Trojanowski
et al., 2018). It is also interesting to note that all previously
described conditions, as well as BCAs that lead to increased
persister formation, inhibit either DNA replication,
transcription, translation or cell envelope (peptidoglycan)
synthesis and hence block either de novo DnaA protein
synthesis, reduce the ATP level thus preventing the critical
cellular concentration of the ATP-DnaA complex, or block the
formation of a new anchoring site for this initiation complex at
the membrane. However, all of these steps are necessary for the
formation of the ATP-DnaA initiation complex at the
chromosomal OriC site (origin of replication) and hence for
the initiation of a new round of DNA replication (Matsunaga
et al., 1986; Regev et al., 2012; Samadpour and Merrikh, 2018; Li
et al., 2019b). Recently, this hypothesis was also supported by the
observation that under starvation E. coli converts ATP to
polyphosphate (PolyP)-chains by PolyP-kinase (Pkk) which
serves as a matrix for Lon protease binding and activation.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
This results in degradation of DnaA-ADP (Gross and
Konieczny, 2020; Charbon et al., 2021). In addition to DnaA-
degradation, starvation also results in modulating the super-
coiled state of the origin of replication (Kraemer et al., 2019). For
more details on this hypothesis, see (Eisenreich et al., 2020).

However, the generation of the antibiotic-tolerant persister
state (especially when generated by BCAs) does not only
temporarily prevent the complete eradication of a basically
antibiotic-sensitive bacterial population but may also enhance
the development of mutants with genetically fixed antibiotic
resistance. This is frequently observed in Pseudomonas-infected
cystic fibrosis (CF) patients (Oliver and Mena, 2010; Levin-
Reisman et al., 2019; Windels et al., 2019; Colque et al., 2020;
Huemer et al., 2020; Sulaiman and Lam, 2021). In the following,
we will address this connection between antibiotic persistence
and antibiotic resistance on the example of BCAs also taking into
account the described hypothesis that persistence is linked to a
decreased level of the ATP-DnaA complex which is insufficient
for re-initiation of DNA replication.

2 BACTERICIDAL ANTIBIOTICS–
GENERATION OF ANTIBIOTIC
PERSISTENCE AND RESISTANCE IN
PRESENCE OF BCAS

2.1 BCAs, Their Modes of Action and the
Acquisition of Resistance to
These Antibiotics
BCAs comprise the three main groups, quinolones, ß-lactams
and aminoglycosides.

Quinolones, especially fluoroquinolones, are meanwhile the
most important antibiotics. The fluoroquinolones, active against
Gram-negative and Gram-positive bacteria, represent the second
generation of the synthetic quinolone antibiotics. Medically most
widely used quinolone antibiotics are ciprofloxacin, norfloxacin,
levofloxacin and some others. The quinolones interfere directly
with DNA replication in bacteria by blocking the activity of the
two type II topoisomerases, DNA gyrase and topoisomerase IV.
Both proteins are essential for DNA replication by relaxing the
positive supercoiled DNA formed ahead of the replication fork,
and by decatenating the two DNA rings formed at the replication
termination point, respectively. This is achieved by introducing
transient double-strand breaks in phosphodiester bonds and
rejoining them in an ATP-dependent reaction. The active
DNA gyrase is composed of two subunits, GyrA and GyrB,
forming an A2B2 complex. The supercoiling activity is mediated
by the GyrA subunits, while the GyrB subunits are responsible
for the ATPase activity required for supercoiling. The
topoisomerase IV is also an A2B2 tetramer composed of the
subunits ParC and ParE. For further details, see (Hooper, 2001;
Heisig, 2009; Aldred et al., 2014; Hooper and Jacoby, 2016; Nitiss
et al., 2019; Bush et al., 2020).

Bacteria acquire resistance to (fluoro)quinolones mainly by
mutations in the chromosomal genes gyrA or parC, but also by
several plasmid-determined gene products, such as Qnr and the
July 2022 | Volume 12 | Article 900848
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aminoglycoside acetyltransferase AAC(6´)-Ib (Robicsek et al.,
2006; Bush et al., 2020). The Qnr family members are
characterized as pentapeptide proteins (PRPs) which probably
mimic DNA and thus prevent binding of quinolones to gyrase
and topoisomerase IV, whereas AAC(6´)-Ib modifies the (fluoro)
quinolones resulting in reduction of its target-binding activity.
Moreover, several efflux pumps can reduce the cellular
concentration of quinolones. The import of quinolones
depends on the density of porins in the outer membrane
(OmpA and OmpX) (Woodford and Ellington, 2007; Minarini
and Darini, 2012; Aldred et al., 2014; Hooper and Jacoby, 2015;
Samadpour and Merrikh, 2018; Bush et al., 2020).

The other class of gyrase inhibitors is represented by the
aminocoumarins which include the widely used drugs
novobiocin and coumermycin. These antibiotics inhibit DNA
gyrase - in contrast to quinolones - by binding to the ATPase
active site of the GyrB subunit (Schröder et al., 2013; Heide,
2014). Because of serious side effects in patients, this group of
gyrase inhibitors is now restricted to veterinary medicine.

b-Lactams, including penici l l in and derivatives ,
cephalosporins, monobactams, carbapenems and carbacephems
inhibit the last step in the synthesis of the peptidoglycan layer of
bacterial cell walls through acylation of the transpeptidase which
is involved in cross-linking of the different peptide moieties of
Gram-positive and Gram-negative bacteria. This step is essential
for the rigidity of peptidoglycan. The primary targets of the ß-
lactams are the penicillin-binding proteins (PBPs). The
interaction inhibits the terminal transpeptidation process and
induces loss of cell viability and lysis by various autolytic
processes. For further details, see (Fisher and Mobashery, 2020).

Resistance to ß-lactam antibiotics, which is wide-spread and
represents a severe health problem, is mainly caused by a large
number of different ß-lactamases. These enzymes hydrolyze the
ß-lactam ring common to all ß-lactam antibiotics thereby
forming a linear metabolite incapable of PBP binding. The
genes coding for the ß-lactamases are frequently localized on
mobile genetic elements such as plasmids and transposons
(Salverda et al., 2010), and can therefore be easily transmitted
to other still sensitive bacteria by horizontal gene transfer (HGT).
Point mutations in the ß-lactamase genes leading to amino acid
changes in the ß-lactamases result in rapidly growing families of
Extended Spectrum Beta-Lactamases (ESBLs) and TEM-ß-
lactamases. For more details, in particular of ESBLs and
metallo-b-lactamases, see (Bradford, 2001; Behzadi et al., 2020).

Other mechanisms causing resistance to ß-lactam antibiotics
include alterations of the PBP targets (e. g. in S. pneumoniae),
reduced access to the periplasm (mainly in Gram-negative
bacteria, e.g. OprD of P. aeruginosa), or efflux of the
antibiotics from the periplasm of the latter bacteria by specific
pumps (Nikaido, 1985; Tang et al., 2014; Decousser et al., 2017;
Fisher and Mobashery, 2020). Methicillin-resistance of S. aureus
(MRSA) is acquired by uptake of the mobile Staphylococcal
Cassette Chromosomal mec Element” (SCCmec) carrying the
mecA or mecC gene encoding PB2a, a penicillin-binding protein
with low affinity to customary ß-lactam antibiotics (Peacock and
Paterson, 2015).
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Aminoglycosides are the third group of BCAs active against a
wide spectrum of Gram-positive and Gram-negative bacteria by
affecting translation (Krause et al., 2016). Streptomycin, isolated
from Streptomyces griseus, was the first representative of the
meanwhile large group of aminoglycosides that include natural
products from Streptomyces spp. (e.g., neomycin, kanamycin,
tobramycin) and Micromonospora (e.g., gentamicin, sisomicin)
as well as chemically modified derivatives of the natural
aminoglycosides (e.g., amikacin, netilmicin, arbekacin,
plazomicin). Aminoglycosides have been most frequently used
for the treatment of serious bacterial infections for many
decades. However, for several reasons (parenteral application,
ototoxic and nephrotoxic effects), aminoglycosides are used
more frequently for the treatment of severe infections in
combination with ß-lactam antibiotics (Wright et al., 2017).
Since the 1980s, these antibiotics were increasingly replaced by
the new generation of cephalosporins, carbapenems, and
fluoroquinolones which seem to be less toxic and recognize an
even broader spectrum of bacterial pathogens than the
aminoglycosides. Nevertheless, the development of novel
aminoglycosides, such as arbekacin and plazomicin, designed
to overcome the common aminoglycoside resistance
mechanisms, has renewed the interest for the aminoglycosides
(Cox et al., 2018).

Resistance to aminoglycosides is caused by several
mechanisms: (i) enzymatic inactivation of the aminoglycosides
by N-acetyltransferases (catalyzing acetyl-CoA-dependent
acetylation of an amino group), O-adenyltransferases
(catalyzing ATP-dependent adenylation of a hydroxy group),
or phosphotransferases (catalyzing ATP-dependent
phosphorylation of a hydroxy group); the responsible enzymes
are found in Gram-positive and Gram-negative bacteria as well
(Ramirez and Tolmasky, 2010), (ii) modifications of the 30S
ribosomal subunit inhibiting the binding of the aminoglycosides,
(iii) point mutations in the gene fusA1, which encodes the
elongation factor G (EF-G1A) of P. aeruginosa, resulting in
lower aminoglycoside affinity to the ribosome, (iv) decreased
permeability of the bacterial cell membrane for these antibiotics
(PMF-dependent import), in particular under anaerobic growth
conditions, and (v) increased efflux of the antibiotics from the
bacterial cell. For further details, see (Magnet and Blanchard,
2005; Wilson, 2014; Serio et al., 2017; Bolard et al., 2018).

2.2 Increased Production of Reactive
Oxygen Species in Presence of BCAs
In addition to the well-studied primary targets of the BCAs, these
drugs also lead to diverse, lesser known downstream events that
contribute strongly to the killing effect. For a recent review on
this topic, see (Baquero and Levin, 2021). A common feature
observed for all BCAs appears to be – similar to other stress
conditions – the increased production of ROS (Kohanski et al.,
2007; Zhao and Drlica, 2014; Van Acker and Coenye, 2017;
Hong et al., 2019). Despite previous challenging reports (Keren
et al., 2013; Liu and Imlay, 2013), now there is rather general
agreement that ROS, induced by BCAs, substantially contribute
to the cell killing caused by these drugs (Zhao et al., 2015; Hong
July 2022 | Volume 12 | Article 900848
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et al., 2019). However, the extent of ROS production and its
contribution to the BCA-mediated cell killing seem to strongly
depend on the environmental conditions, such as availability of
oxygen and free ferrous/ferric iron (McBee et al., 2017; Van
Acker and Coenye, 2017).

ROS are mainly generated in the electron transfer respiratory
chain (ETC) by single-electron reduction of oxygen (Cabiscol
et al., 2000; Imlay, 2003) and include superoxide anion (O2

-),
hydrogen peroxide (H2O2), and hydroxyl radicals (OH*). The
latter radical is produced from H2O2 by the Fenton reaction
catalyzed by Fe2+ (Henle and Linn, 1997; Cabiscol et al., 2000).
O2

- has a short lifespan and a low diffusion rate across
membranes, in contrast to H2O2 which has a long lifespan and
a high diffusion rate across membranes; OH* has a very short
lifespan. Hot spots for ROS production are the NADH
dehydrogenase (NDH) and the succinate dehydrogenase
(SDH) belonging to complex I and complex II, respectively, of
the ETC (Messner and Imlay, 2002; Esterhazy et al., 2008).
Aspartate oxidase (NadB) is another significant source for
H2O2 production (and thus for ROS) in E. coli under aerobic
conditions (Korshunov and Imlay, 2010). These ROS-generating
enzymes are wide-spread among the bacterial pathogens
(Table 1). It is notable that most bacterial pathogens showing
a high frequency of mutation-based ABR (highlighted in yellow
in Table 1) have these ROS-generating enzymes while those
showing a low frequency (highlighted in blue in Table 1) lack
these enzymes. This will also be further discussed later in
another context.

Under normal growth conditions, bacteria keep the cellular
levels of ROS in balance by several mechanisms: the
superoxide dismutases, SodA and SodB, convert O2

- to
H2O2, which is further detoxified by catalases (Cat) and
alkyl hydroperoxide reductases (Ahp). There is no known
enzyme that detoxifies cellular OH*. When the capacity of the
constitutively expressed Sod and Cat enzymes is exhausted,
the SoxRS and OxyR regulons of E. coli are induced by O2

- and
H2O2, respectively (Christman et al., 1989; Pomposiello and
Demple, 2001; Blanchard et al., 2007). This leads to enhanced
gene expression of two regulons, the products of which
prevent further increase of ROS (mainly by the induced Sod
and Cat enzymes), or protect and repair structures damaged
by ROS (Zheng et al., 1999; Pomposiello et al., 2001; Hebrard
et al., 2009). Nevertheless, overproduction of ROS (in
particular of OH*) leads to severe damage of essential cell
components, particularly of proteins, lipids and DNA (Droge,
2002; Baquero and Levin, 2021).

In summary, the three major BCA groups, i.e. quinolones, b-
lactams and aminoglycosides, apparently stimulate the
production of ROS in oxygen-respiring bacteria. ROS seem to
contribute significantly to the lethal effect of the BCAs by
interfering with several essential cell structures, in particular
DNA (Imlay, 2006; Dwyer et al., 2007; Kohanski et al., 2008;
Hong et al., 2019; Rasouly and Nudler, 2019). Although these
secondary ROS-dependent damages are caused by all
bactericidal drugs, the ROS-dependent secondary damage
seems to have a drug-specific context as well (Hong et al., 2019).
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2.3 DNA Damage Generated by ROS and
Induction of the SOS Response
In the following, we mainly focus on the ROS-triggered DNA
lesions and on the subsequently induced SOS response as these
events are crucially linked to ABR. The DNA lesions are caused in
different ways by oxidation of nucleobases, mainly through OH*.
DNA exposed to OH* yields more than 20 different oxidatively
modified purine and pyrimidine bases (Demple and Harrison,
1994). Formation of 8-oxo-7,8-dihydroguanine (8-OxoG) by
oxidation of guanine is the most abundantly altered base.

Incorporation of 8-OxoG in DNA can occur via direct
oxidation of G in DNA or via oxidation of dGTP in the
nucleotide pool to 8-OxodGTP, followed by incorporation of
8-OxodGTP into the DNA by DNA polymerase(s). MutT
phosphatase (if present in the bacteria, see Table 2) can,
however, sanitize the 8-OxoGTP pool by hydrolyzing it to 8-
OxoGMP (Fowler and Schaaper, 1997). 8-OxoG incorporated
into DNA is able to pair with both cytosine (C) and adenine (A)
with an almost equal efficiency leading to a G!T transversion
during replication or DNA repair (Sekiguchi and Tsuzuki, 2002;
Mundt et al., 2008; Cerchiaro et al., 2009).

Additional DNA damage caused by ROS includes the
formation of abasic sites and of single- and double-strand
breaks (Chakarov et al., 2014) by stalling of the replication
fork when it encounters ROS-generated obstacles (Radman,
1975; Marnef et al., 2017). These events are in part lethal
(especially double-strand breaks) and in part mutagenic (e.g.
single-strand breaks and base modifications), if not properly
repaired by error-free repair processes (Girard and Boiteux,
1997; Pages and Fuchs, 2002).

Many bacteria react to ROS-generated DNA lesions by
inducing the SOS response or/and other stress responses
(Friedberg et al., 2006a; Wu et al., 2012; Maslowska et al.,
2019). However, in all bacteria with a SOS regulon (Table 1),
its induction appears to be the most important response to
DNA damage.

In short, the SOS regulon is a tightly controlled network
comprising more than 40 genes in E. coli (Simmons et al., 2008)
that are engaged in cell protection and repair of essential cell
structures (DNA, proteins, lipids). For more detailed
information about the genes of bacterial SOS regulons, see
(Kreuzer, 2013). The key regulators controlling this regulon are
LexA and RecA (Table 2). Under unstressed growth conditions,
dimeric LexA represses the transcription of all genes belonging to
the SOS regulon by binding to the SOS-box, a specific sequence
present in the promoter region of the genes belonging to the SOS
regulon (Walker, 1984).

RecA is a co‐protease that stimulates self‐cleavage of LexA.
RecA binds to single-stranded DNA and is thereby converted - in
the presence of (d)ATP - to the active form (the RecA*
nucleoprotein filament) that stimulates the self‐cleavage of
LexA. This process decreases the LexA affinity for the SOS
boxes leading to the gradual de-repression of SOS genes,
depending on the binding strength of LexA to the respective
SOS box of the LexA-controlled gene (Little and Mount, 1982;
Neher et al., 2003).
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Different DNA lesion events can generate ss-DNA, e.g. stalled
replication caused by BCA-induced ROS, or HGT by
conjugation or transformation (see below). These events can
activate RecA, subsequently leading to induction of SOS
response (Cox, 2003).

Increased BCA-triggered production of ROS in treated
bacteria causing induction of RecA/LexA-dependent SOS
response has been observed for all three groups of BCA under
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
laboratory cultivation conditions (Phillips et al., 1987; Miller
et al., 2004; Dörr et al., 2009; Baharoglu et al., 2014). Even ß-
lactams, the primary targets of which are penicillin-binding
proteins, i.e. extracellular proteins, affect - besides causing
bacteriolysis - also respiration in E. coli and other bacteria
leading to increased intracellular accumulation of ROS (Dwyer
et al., 2015; Leger et al., 2019). Thus, ß-lactams can also induce in
E. coli and other bacteria, similar as quinolones, an SOS response
TABLE 1 | Bacterial pathogens and their enzymes and pathways influencing the cellular level of ROS.

A
EBP Genome Size (Mbp) G+C content of

chromosomal DNA
NAD(P)H-producing

enzymes of the TCA-cycle
ROS-generating enzymes Oxidative stress regulon

ca. % IDH OGDH MDH NDH SDH NadB OxyR SoxRS

eco 4,60 51 + + + + + + + +
yen 4,55 + + + + +
ype 4,65 + + + - -
kpn 5,50 57 + + + + + + + +
smar 4,90-6,30 59 + + + + + + + +
vch 4,03 + + + + +
bpe 4,12 + + - (+) -
ngo 2,23 52 + + - + + + (+) -
nme 2,27 + + + (+) -
efa 3,00 + - - - -
pae 5,60 67 + + - + + + + (-)
abau 3,98 39 + + + + + + (+) -
hpy 1,66 39 + - - + - - - -
cje 1,64-1,90 + + - - -
tpa 1,14 52 - - - - - - - -
without a peptidoglycan layer
mpn 0,82 - - - - -

B
bsu 4,21 + + + - -
ban 5,50 + + + - -
cdl 4,30 + - + - -
sau 2,80 33 + + - + + - - -
spn 2,14 40 - - - - - - - -
spy 1,85 - - - - -

C
IBP

Vacuolar
sty (f) 4,60 52 + + + + + + + +
lpn (f) 3,40 + + + + +
mtu (f) 4,40 65 + + + + + + - -/-
bhe (f) 1,84 (-) + - - -/-
bme (f) 3,30 + + - (+)* -/-
cbu (o) 1,97 + + + + +
ctr (o) 1,00 41 - + + - - - - -/-
Cytosolic
sfl (f) 4,50 51 + + + + + - + +
lmo (f) 2,90 - - + - -/-
ftu (o) 1,90 33 + + + + + + + +
rpr (o) 1,10 29 + + + + + - - -/-
July 2022
 | Volume 12 | A
abau, Acinetobacter baumanii; ban, Bacillus anthracis; bhe, Bartonella henselae; bme, Brucella melitensis; bpe, Bordetalla pertussis; bsu, Bacillus subtilis; cbu, Coxiella burnetii; cdl,
Clostridioides difficile; cje, Campylobacter jejuni; ctr, Chlamydia trachomatis; efa, Enterococcus faecalis; eco, Escherichia coli; ftu, Francisella tularensis; hpy, Helicobacter pylori; kpn,
Klebsiella pneumoniae; lmo, Listeria monocytogenes; lpn, Legionella pneumophila; mpn, Mycoplasma pneumoniae; mtu, Mycobacterium tuberculosis; ngo, Neisseria gonorrhoeae, nme,
Neisseria meningitidis; pae, Pseudomonas aeruginosa; rpr, Rickettsia prowazekii; sau, Staphylococcus aureus; sfl, Shigella flexneri; smar, Serratia marcescens; spn, Streptococcus
pneumoniae; spy, Streptococcus pyogenes; sty, Salmonella enterica ser. Typhimurium; tpa, Treponema pallidum; vch, Vibrio cholerae; Yen, Yersinia enterocolitica; ype, Yersinia pestis. (A)
Extracellular Gram-negative bacterial pathogens (EBP); (B) Gram-positive EBP; (C) facultative intracellular (f) and obligate intracellular (o) bacterial pathogens (IBP), replicating preferentially
in vacuoles or in the cytosol of their host cells. Pink underlined pathogens show high incidences of ABR (according to WHO), while blue underlined pathogens show low incidences of ABR.
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through activation via RecA/LexA (Kohanski et al., 2007;
Kohanski et al., 2010; Dwyer et al., 2015).

Aminoglycosides also induce SOS response in several Gram-
negative pathogens, like Vibrio cholerae, Klebsiella pneumoniae,
Photorhabdus luminescens, but not in E. coli (Baharoglu et al.,
2013). E. coli seems to restore DNA lesions formed by
aminoglycosides preferentially by the SOS-independent very
short patch mismatch repair (VSPR) and by mismatch repair
(MMR) when VSPR is impaired (Baharoglu et al., 2014).

The SOS regulon also contains several genes whose products
are directly involved in DNA repair (Baharoglu and Mazel, 2014;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Maslowska et al., 2019). For our present discussion, the role of
these SOS-induced DNA repair functions is highly relevant as
some of these processes can subsequently lead to increased
mutation rates and thus eventually to mutation-based ABR
(Fuchs and Fujii, 2013).

The major DNA repair pathways to be considered are: (i) the
nucleotide excision repair (NER), (ii) the base excision repair
(BER), and in particular (iii) translesion DNA synthesis (TLS).
The gene products encoded by bacterial SOS regulons that
directly participate in DNA repair, include: UvrA and UvrB
involved in the NER pathway and RecA, that - among other
TABLE 2 | EBPs and IBPs and their regulons and pathways involved in DNA repair.

A
EBP Genome Size SOS Response COM NER BER TLS

(Mbp) LexA RecA ComEC UvrA UvrB UvrC Ung MutM MutY Nth (Endo III) MutT Pol II Pol IV Pol V

eco 4,60 + + + + + + + + + + + + + +
yen 4,55 + + + + + + + + + + + + + +
ype 4,65 + + + + + + + + + + + + + -
kpn 5,50 + + + + + + + + + + + + + +
smar 4,90-6,30 + + + + + + + + + + + + + +
vch 4,03 + + + + + + + + + + + + + -
bpe 4,12 + + - + + + + + + + + - + -
ngo 2,23 - + + + + + + + + + - - + -
nme 2,27 - + + + + + + + + + + - + -
efa 3,00 + + + + + + + + + + + - + -
pae 5,60 + + + + + + + + + + + + + +
abau 3,98 + + + + + + + + + + + - + +
hpy 1,66 - + + + + + + - + + - - - -
cje 1,64-1,90 - + + + + + + - + + - - - -
tpa 1,14 - + comE + + + - - + + - - - -
without a peptidoglycan layer
mpn 0,82 - + - + + + + + - - - - + -

B

bsu 4,21 + + + + + + + + + + + - + Pol IV,2; +*
ban 5,50 + + + - + + + + + + + - + +*
cdl 4,30 + + - + + + + + + + + - + -
sau 2,80 + + + + + + + + + + + - + +*
spn 2,14 - + + + + + + + + + + - + -
spy 1,85 - + + + + + + + + + + - + -

C
IBP

Vacuolar
sty (f) 4,60 + + + + + + + + + + + + + +
lpn (f) 3,40 UmuD* + + + + + (+) + + + + – + +
mtu (f) 4,40 + + - + + + + + + + + - + +
bhe (f) 1,84 + + + + + + (+) + + + + – + +
bme (f) 3,30 + + (+) + + + – + + + + – + –

cbu (o) 1,97 – + – + + + + – + + + – + –

ctr (o) 1,00 - + - + + + + - + + - - - -

Cytosolic
sfl (f) 4,50 + + - + + + + + + + + + + +
lmo (f) 2,90 + + + + + + + + + + – – + –

ftu (o) 1,90 - + - + + + + + - + + - - -
rpr (o) 1,10 - + - + + + - - - + - - - -
July 2022
 | Volume
 12 | Art
COM, competence pathway; NER, nucleotide excision repair; BER, base excision repair; TLS, translesion DNA synthesis. For further abbreviations and color marking see legend to
Table 1 and text. Using Kegg´s Genes Data Base, the components involved in the major DNA repair pathways were screened for the most frequently occurring extra- and intracellular
bacterial pathogens.
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functions - also participates in the activation of a TLS
DNA polymerase.

The TLS DNA polymerases are named (in E. coli) Pol II
(product of dinA), Pol IV (product of dinB) and Pol V (or
UmuD’2C; product of umuC and umuD). Pol IV and Pol V
belong to the Y-family polymerases (Yang, 2014) and function
with significantly higher error frequencies than Pol II as they lack
the error-correcting exonuclease function which is inherent in
Pol II and in the replicative polymerases Pol III and Pol I.
Therefore, Pol IV and in particular Pol V cannot correct errors
during the ongoing replication; such errors can be repaired only
post-replicatively as a consequence of the SOS response. Pol V
but not Pol IV depends on RecA for its activation (Goodman and
Woodgate, 2013).

NER and BER are wide-spread DNA repair pathways among
bacteria including bacterial pathogens (Table 2). Both repair
systems work largely error-free; they are involved in the repair of
different DNA lesions, i.e. NER is responsible for the removal of
bulky DNA lesions (e.g. those induced by UV light), whereas
BER takes care of individual base modifications (in particular
those induced by oxidation, alkylation and deamination of single
purines or pyrimidines, respectively (Wozniak and
Simmons, 2022).

TLS is the most important pathway for post-replication repair
showing high lesion tolerance (Chatterjee and Walker, 2017;
Henrikus et al., 2018; Yang and Gao, 2018; Joseph and
Badrinarayanan, 2020) at the expense of increased replication
errors and hence high mutation rates. TLS appears to be
therefore more relevant for the generation of mutation-based
ABR and will be therefore described in some more detail in
the following.

In contrast to the replicative DNA Pol III, the TLS DNA
polymerases involved in post-replication repair of damaged
DNA are capable of bypassing lesions in the template DNA. In
E. coli and other bacteria (including some IBPs, see Table 2),
three SOS-inducible DNA polymerases, Pol II, Pol IV (also
named DinB), and Pol V (UmuD’2C) participate in TLS. In
contrast to Pol II (which is a member of the high-fidelity B-
family DNA polymerases), Pol IV and especially Pol V have
rather low base selection fidelity. Both polymerases belong to the
Y-family DNA polymerases which lack proof-reading activity
(Goodman and Woodgate, 2013; Yang, 2014).

In E. coli, the TLS polymerases replace the replicative Pol III
at DNA lesions with different efficiencies (Raychaudhury and
Basu, 2011) and mainly act at stalled replication forks or in
lesion-containing gaps left behind the replisome (Henrikus et al.,
2018; Marians, 2018). Mutations performed in each of the genes
encoding the three TLS polymerases suggest that Pol V is most
efficient in bypassing DNA lesions. In addition, Pol V, but not
Pol IV, can also participate in gap-filling reactions over several
hundred nucleotides. Pol V interacts with the active RecA*-
filament which seems to have a chaperone-like function for this
TLS polymerase (Goodman and Woodgate, 2013; Fujii and
Fuchs, 2020). Pol IV is most widespread among bacterial
pathogens, while Pol II is found only within species of the
family of Enterobacteriaceae and a few other Gram-negative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
enteric bacterial pathogens. PolV and PolV-related repair
polymerases which give rise to the highest mutation rates
(Maor-Shoshani et al., 2000), are less common among bacterial
pathogens than Pol IV (Table 2).

2.4 DNA Repair in the Absence of LexA-
Controlled SOS Regulons
Considering that a number of extra- and intracellular bacterial
pathogens lacks LexA (Table 2) and hence a LexA-controlled
SOS regulon, it is not surprising that there are also LexA-
independent mechanisms which trigger DNA repair pathways
to restore DNA damage generated by BCAs.

Quinolones can stimulate SOS-independent induction of
RecA-mediated processes including HRR (Drlica and Zhao,
1997; López et al., 2007). SOS-independent induction of DNA
repair pathways appear to be mainly responsible for the repair of
aminoglycoside-caused DNA lesions, especially in Gram-positive
pathogens (Claverys et al., 2006). Several b-lactams can induce
the TLS polymerase IV (DinB) in a LexA/RecA-independent way
(Pérez-Capilla et al., 2005). DNA repair genes ofMycobacterium
tuberculosis can be also induced by BCA-triggered DNA damage
in a LexA/RecA-independent manner (Rand et al., 2003). In E.
coli, fluoroquinolones stimulate DNA damage repair functions
by intra- and inter-chromosomal recombination through a
LexA-independent mechanism (López et al., 2007).

As shown for S. pneumoniae which lacks LexA and the SOS
regulon, aminoglycosides (as well as quinolones) lead instead to
expression of the competence regulon (Com) which may replace
the SOS regulatory network, and induces expression of recA and
other DNA repair genes - in addition to the com genes essential
for the transformation process (Martin et al., 1995; Prudhomme
et al., 2006; Slager et al., 2014). Indeed, it has been argued that
competence may have evolved as a DNA damage response in
SOS-deficient bacteria (Charpentier et al., 2011).

Under stress conditions, H. pylori, also lacking an SOS
regulon, can induce its DNA uptake machinery and an enzyme
that liberates DNA from neighboring cells. This genetic exchange
mechanism enhances recombination between exogenous DNA
and the inherent genome. This process can repair DNA lesions in
the recipient strain, but also significantly contributes to the high
genetic diversity of H. pylori isolates and the high spread of
antibiotic resistance among clinical strains (Dorer et al., 2010;
Ailloud et al., 2021).

Among the intracellular bacteria, the obligate intracellular
pathogen Coxiella burnetii resides within a unique vacuole with
lysosomal characteristics (Hackstadt and Williams, 1981; Voth
and Heinzen, 2007) where it is exposed to a variety of DNA
damaging agents, including ROS (Akporiaye et al., 1983;
Brennan et al., 2004). Compared to the other obligate IBPs, C.
burnetii has more DNA repair genes (Table 2) that partly belong
to a SOS regulon which is constitutively expressed due to the lack
of LexA. This LexA-independent SOS arrangement seems to
reflect a unique repair adaptation of C. burnetii to its hostile
niche (Mertens et al., 2008).

In summary, BCAs stimulate production of ROS in oxygen-
respiring bacteria (Dwyer et al., 2007). These highly deleterious
July 2022 | Volume 12 | Article 900848
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molecules interfere with essential cell structures, including DNA
(Imlay, 2006; Dwyer et al., 2007; Kohanski et al., 2007; Kohanski
et al., 2008). Especially OH* cause DNA lesions which
subsequently lead to the induction of SOS-dependent and SOS-
independent error-free and, at increasing DNA damage error-
prone DNA repair pathways (Imlay and Linn, 1987; Modell et al.,
2014; Tan et al., 2015). The finding that the antibiotic-tolerant
persister subpopulation of a bacterial culture apparently
produces much less hydroxy radicals and forms less lethal
DNA lesions than the major part of the population, which is
killed by the antibiotics (Kim et al., 2011), is also in line with
these conclusions.

Note that most bacterial pathogens with a high frequency of
mutation-based ABR possess SOS or Com regulons encoding error-
prone repair enzymes (in particular Y-type TLS polymerases), while
those showing a low frequency lack SOS or Com regulons and the
error-prone repair enzymes (Table 3). This will be discussed later in
more detail below in another context.

2.5 BCA-Induced DNA Repair can Lead to
Increased Mutation Rates
The above described repair processes (particularly those carried
out by the TLS polymerases of the Y-family) appear to be mainly
responsible for the enhanced mutational events observed in
presence of BCAs. The enhanced mutation frequency
contributes to the remarkable ability of bacteria to rapidly
adapt to these and other antibiotics and finally leads to the
development of mutation-based ABR (Friedberg et al., 2006b;
Kohanski et al., 2010; MacPhee and Ambrose, 2010; Baharoglu
et al., 2013; Handel et al., 2015; Windels et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
In particular, the ROS-induced generation of 8-OxoG
frequently mispairs with adenine, leading to G!T transversion
during DNA replication and DNA repair. This mispairing plays
an essential role in increased mutagenesis and for the emergence
of ABR observed upon treatment with BCAs (Kohanski et al.,
2007; Kreuzer, 2013; Belenky et al., 2015; Kawai et al., 2015).

As described above, the SOS regulon comprises (among
others) several genes encoding error-prone repair enzymes, in
particular the TLS polymerases Pol IV and Pol V. These DNA
polymerases are able – in contrast to the replicating Pol III – to
overcome stalled replication sites, however, at the expense of
increased mismatch base pairing leading to enhanced mutations.
Among the three E. coli TLS polymerases (Pol II, IV and V), the
mutation rate is highest for Pol V and lowest for Pol II (Fujii and
Fuchs, 2020). In particular, the error-prone gap-filling activity of
Po l V s ign ifican t l y con t r ibu te s to the inc rea s ed
mutation frequency.

The induction of the TLS polymerases is timely controlled by
the strength of the LexA-binding sites determining the
expression of the operons encoding these polymerases. The
umuDC operon encoding Pol V has one of the tightest LexA-
binding sites and is induced last in the SOS response, i.e. 30–40
min after DNA damage (Sommer et al., 1993). The induction of
the TLS DNA polymerases and, hence, the mutation frequencies
will therefore depend on the cellular ROS concentration
triggered by the BCAs.

The connection between BCA treatment, ROS production
and increased mutagenesis is further suggested by the
observation that bacteriostatic antibiotics, recognizing the same
primary targets as BCAs, do not trigger ROS production and
TABLE 3 | List of bacterial pathogens with the highest and lowest incidences of ABR (according to WHO).

BP Genome Size (Mbp) G+C content of chromosomal DNA TLS Polymeras es

ca. % Pol II Pol IV Pol V Others

A
eco 4,60 51 + + +
kpn 5,50 57 + + +
smar 4,90-6,30 59 + + +

ngo 2,23 52 - + -
efa 3,00 39 - + +++*

pae 5,60 67 + + - +
abau 3,98 39 - + +
hpy 1,66 39 - - - + (Pol I)
sau 2,80 33 - + - +
spn 2,14 40 - + -
sty 4,60 52 + + +
mtu 4,40 65 - + - +
sfl 4,50 51 + + +
B
tpa 1,14 52 - - - -
ctr 1,00 41 - - - -
ftu 1,90 33 - - - -
rpr 1,10 29 - - - -
July 2022 | V
olume 12 | Article
(A) Bacterial pathogens (BP) with the highest frequency of ABR; (yellow): priority 1, (green): priority 2, (blue): priority 3; (B) Bacterial pathogens with low frequency of ABR. For abbreviations,
see legend to Table 1 and text.
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apparently cause fewer mutations and less mutational antibiotic
resistance (Kohanski et al., 2007).

When severe DNA damage is sustained, activation of error-
prone TLS DNA polymerase(s) can result in a further increased
mutation rate. This is called the SOS mutator phenotype (or
hypermutation) which strongly contributes to mutation-based
ABR (Jolivet-Gougeon et al., 2011; Weigand and Sundin, 2012).
In clinical context, such hypermutator strains of P. aeruginosa
have been isolated from the lungs of cystic fibrosis (CF) patients
and analyzed phenotypically by focusing on ABR and virulence
and by genome sequencing to identify mutations associated with
ABR development and metabolic adaptation to the environment
of the respiratory tract of CF-patients (Hogardt et al., 2007;
Woodford and Ellington, 2007; Colque et al., 2020). These
studies of P. aeruginosa isolates of long-term-infection revealed
novel regulatory pathways of genes involved in ampC expression
(encoding the dominant ß-lactamase AmpC of P. aeruginosa),
the regulation of more than six efflux pumps to diverse BCAs,
and a mutation of fusA1 (encoding EF-G1 elongation factor)
which inhibits aminoglycoside-binding to the ribosome (Lister
et al., 2009; Poole, 2011; Lopez-Causape et al., 2018; Colque et al.,
2020; Glen and Lamont, 2021; Zwama and Nishino, 2021).

2.6 Horizontal Gene Transfer can Also
Induce SOS Response and Hence DNA
Repair and Mutagenesis
As mentioned above, HGT, in particular conjugation and
transformation, is the most important mechanism for intra- and
inter-species DNA transfer in bacteria, including the transfer of
antibiotic resistance genes. DNA transfer from donor to recipient
bacterial cells by conjugation or transformation - even if the transfer
event is abortive - generates single-stranded (ss) DNA. This ss-DNA
can activate RecA and trigger a RecA*/LexA-induced SOS response
in the recipient cell. As a result, expression of the genes encoding
DNA repair enzymes is induced with the possible consequence of
enhanced mutagenesis and the emergence of ABR (Baharoglu et al.,
2010; Baharoglu et al., 2012; Liu et al., 2019; Virolle et al., 2020).
However, this does not apply for all plasmid incompatibility (Inc)
groups. The most frequently encountered plasmids in human
infections (IncF, IncI and IncN plasmids) carry plasmid-encoded
SOS-inhibitors such as PsiB (interacting with RecA) and the
ssDNA-binding protein SSP which together suppress the SOS
response in the donor cell (Golub et al., 1988; Petrova et al., 2009;
Baharoglu et al., 2010). These SOS-response suppressors are pre-
transferred to the recipient by the plasmid-encoded type IV
secretion system (T4SS) of the donor and can even be produced
by the recipient cell during ssDNA transfer (Virolle et al., 2020; Al
Mamun et al., 2021). Integrases encoded by integrons, if present in
the recipient bacteria, can also be up-regulated during this process
resulting in increased rearrangements of these chromosomal
cassettes (Baharoglu et al., 2010).

In addition, induction of SOS response due to BCAs (e.g. ß-
lactams, fluoroquinolones)-triggered DNA damage can induce,
in suitable donor bacteria (e.g. V. cholera, Salmonella, S. aureus),
the expression of genes necessary for the conjugative transfer. As
a result, the transfer frequency of plasmids, transposons,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
integrons and lysogenic phages carrying ABR genes (and
eventually pathogenicity islands) from the donor to recipient
bacteria can be enhanced (Beaber et al., 2004; Hastings et al.,
2004; Maiques et al., 2006; Bearson and Brunelle, 2015; Liu et al.,
2017a; Blazquez et al., 2018).

It should be emphasized that HGT-linked events may also play a
crucial role in triggering the spreading of mutation-based ABR. A
typical example is N. gonorrhoeae that has developed severe
resistance to many antibiotics (Tapsall, 2005; Unemo and Shafer,
2014) (Table 2). This ABR has been mainly developed by
spontaneous mutations and transfer of the mutant genes to other
sensitive gonococcal strains. N. gonorrheoae has a high capability for
HGT and, therefore, ABR gene(s) arising by mutation in any strain
can easily be transferred to other gonococcal strains. The antibiotic
resistant strains are then further selected and distributed by antibiotic
pressure in the clinics and by social contacts. Such events are not
only a major driving force for HGT of antibiotics resistance genes in
clinical and social connections, but can also enforce the spread of
ABR genes between bacteria in the environment (Davies, 1994;
Martinez, 2008; Lopatkin et al., 2016). However, conjugational
plasmid transfer requires energy (ATP and PMF) and hence
declines in the stationary growth phase and upon starvation
(Palmen et al., 1994; Headd and Bradford, 2018; Neil et al., 2021).

In this context, it is worth mentioning that even non-
antibiotic anti-microbial chemicals, such as certain heavy metal
ions, including Cu2+, Ag+, Cr6+, and Zn2+ at environmentally-
relevant concentrations (Zhang et al., 2018) and even
antimicrobial agents, like triclosan, widely used in consumer
products such as toothpaste, skin creams, deodorants, soaps and
plastics (Halden and Paull, 2005), can promote the transfer of
ABR genes within and across bacterial genera in the environment
(Lu et al., 2018). The mechanisms of this phenomenon seem to
involve again enhanced ROS formation with the subsequent
induction of SOS response, leading to increased expression of
SOS-controlled genes which are essential for the activation of
TLS polymerases, and of conjugation-relevant genes in the donor
(Lu et al., 2018; Zhang et al., 2018).

In summary, HGT stimulated by BCAs can enhance the intra-
and interspecies transfer of preexisting ABR plasmids,
transposons and integrons. Thereby, it also significantly
contributes to the generation and spreading of new ABR genes.

2.7 Persister Formation is Enhanced
by BCAs
Similar to other stress conditions, the treatment with BCAs leads in
growing bacterial populations to enhanced formation of antibiotic-
tolerant persister subpopulations (Gollan et al., 2019; Eisenreich
et al., 2020; Zou et al., 2020). Indeed, the phenomenon of bacterial
persistence was first reported in staphylococcal infections treated
with penicillin (Bigger, 1944). Treatment of bacterial cultures with
BCA is meanwhile the most frequently used method in studies
analyzing persister formation in model bacteria (mainly E. coli).

The data obtained in these studies clearly show that the
treatment of an antibiotic-sensitive bacterial population with
members of all three BCA groups does not only select already
existing, stochastically generated persister cells, but triggers,
July 2022 | Volume 12 | Article 900848
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particularly when the antibiotic is applied at sub-inhibitory
concentrations, the formation of antibiotic-insensitive
persisters (Cui et al., 2018; Li et al., 2018). The persister
subpopulation created by a single BCA is often also tolerant to
other antibiotics, including bacteriostatic ones (Keren et al.,
2012; Li et al., 2018).

Thus, it is reasonable to assume that in the BCA-generated
persistence state the bacterial cell metabolism is altered such that
persister cells in general avoid the lethal downstream processes
induced by all BCAs, even when they recognize different primary
targets. As mentioned above, increased ROS production appears
to be a common downstream process apparently triggered by all
BCAs. Among other cell damages, ROS lead to DNA lesions,
which in turn trigger induction of the SOS regulon and, hence, of
DNA repair pathways. This step appears to be also important for
persister formation: mutants that lack the lexA or the recA gene
and which are therefore unable to induce the SOS regulon are (i)
more susceptible to BCAs, such as (fluoro)quinolones, and, (ii)
exhibit significantly reduced persistence in presence of the BCAs
(Dörr et al., 2009; Fung et al., 2010; Wu et al., 2012). On the other
hand, constitutive expression of lexA and recA strongly enhances
persistence upon treatment with these antibiotics (Dörr et al.,
2009). These results suggest that persistence triggered by BCAs
requires the ability of the bacterial cell to repair DNA damage. In
line with this hypothesis, the key role of the SOS response in the
generation of bacterial persister cells has been recently shown for
several clinically significant bacterial pathogens (Podlesek and
Zgur Bertok, 2020).

The metabolic background of the persister cells, in which they
are refractory to multiple antibiotics, is still poorly defined.
However, the existing data show that the dormant” state
associated with persistence is characterized by low energy
production and reduced anabolic metabolism, including
slowed-down synthesis of essential macromolecules (Lewis,
2007; Amato et al., 2014; Harms et al., 2016).

ROS production, induced by BCAs, and the associated killing
events, especially the extended DNA lesions, are apparently
reduced to a lower level in the persistence state (Grant et al.,
2012; Trastoy et al., 2018). As described above, ROS are
generated mainly in the ETC, especially by complex I NADH
dehydrogenase (NDH) and complex II succinate dehydrogenase
(SDH). NDH and SDH normally use quinones (ubiquinone,
menaquinone) as electron acceptors under aerobic conditions.
However, if the electrons are accidentally transferred to oxygen,
ROS, particularly O2

- and subsequently H2O2 and OH*, can be
produced (see above). Slowing-down of NADH-yielding
reactions in the TCA cycle, in particular those that are
catalyzed by a-ketoglutarate dehydrogenase and malate
dehydrogenase has been observed in the persister state. The
resulting reduction of cellular NADH levels probably leads to a
reduced production of ROS followed by less ROS-induced cell
killing – an essential prerequisite for persister formation (Trastoy
et al., 2018; Jung et al., 2019). Furthermore, fumarate reductase, if
present, is induced under oxygen-limited conditions (e.g. in
biofilms and in the stationary phase) and converts - opposite
to SDH - quinols (mainly reduced menaquinone) to quinones
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
using fumarate as electron acceptor. This respiratory process
occurs without generating ROS and may also contribute to
persister formation (Kim et al., 2016). These metabolic changes
probably also lead to the induction of most factors and pathways
outlined above which have been shown to stimulate
persister formation.

The shut-down of the primary targets recognized by the BCAs
(DNA replication, protein and cell wall synthesis, respectively),
together with these downstream metabolic changes caused by
BCAs, inhibit (directly or indirectly) de novo protein synthesis
and ATP production. This in turn prevents the formation of the
strictly regulated ATP-DnaA complex which together with
additional proteins, including DiaA and IHF, is required for
the initiation of new rounds of DNA replication and cell division
(Leonard and Grimwade, 2010; Katayama et al., 2017; Hansen
and Atlung, 2018). As already mentioned above, we recently
hypothesized that the blockade of this step might be the final and
decisive step for the establishment of the persistent state in
bacteria (Eisenreich et al., 2020).

In this context, it should not go unmentioned that
bacteriostatic antibiotics, e.g. tetracyclines, which do not
induce synthesis of ROS, can also trigger persister formation
by yet largely unknown mechanisms. Altered expression of DNA
repair pathways, arrested protein synthesis and various other
processes have been suggested at least in part as cause for the
persister formation under these conditions (Kwan et al., 2013;
Cui et al., 2018). Our proposed ATP-DnaA/OriC-based
hypothesis can also readily explain the persister formation in
the presence of bacteriostatic antibiotics (Eisenreich et al., 2020).

2.8. The Frequency of Mutations in
General and, in Particular, of Mutation-
Based ABR Is Increased in the
Persistence State
A considerable number of reports show that the bacterial
persistence state also promotes the generation of genetically
fixed ABR (Cohen et al., 2013; Vogwill et al., 2016; Jung et al.,
2019; Levin-Reisman et al., 2019; Liu et al., 2019; Windels et al.,
2019; Bakkeren et al., 2020). This is rather unexpected, since both
traits represent - as described above - entirely different
mechanisms to cope with antibiotics.

As described above, BCAs can trigger production of ROS that
damage DNA in a number of ways. These events induce the
expression of error-free and error-prone DNA repair pathways
by SOS response. Especially the error-prone repair mechanisms
enhance the mutation frequency in general and can thereby also
lead to increased mutation-based ABR within the persistent
subpopulations (Vogwill et al., 2016; Sebastian et al., 2017;
Yang and Walsh, 2017; Levin-Reisman et al., 2019; Windels
et al., 2019).

According to our hypothesis, the state of persistence is
characterized by the terminated DNA replication phase. In this
phase, most bacterial genomes are in a closed circular
supercoiled form that could still contain not yet repaired
incorrect bases, such as 8-OxoG, as well as abasic sites, but no
lethal double-stranded breaks which are mainly formed during
July 2022 | Volume 12 | Article 900848
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the replication elongation step. As discussed above, it can be
assumed that the persister cell contains a reduced ROS level and
probably active SOS-induced repair pathways, including TLS
(Dörr et al., 2009).

TLS is a post-replication repair pathway which uses as main
tools error-prone DNA polymerases, i.e. Pol IV and Pol V in E.
coli and related enteric bacteria (Table 2) or other Pol V-related
Y-family DNA polymerases especially in Gram-positive bacteria
(Table 2) (Timinskas and Venclovas, 2019). DNA lesions, such
as incorrect base pairings, abasic sites, can still be present or even
newly generated by ROS in the terminated DNA of the persisters.
These lesions can be repaired especially by the TLS DNA
polymerases, however, at the expense of increased mutations.
The thereby increased chromosomal mutation rate will also lead
to mutations that cause resistance to the challenging antibiotic
and even to other antibiotics.

A common property of all DNA repair pathways, including
TLS, is their dependence on ATP. This means that repair of DNA
lesions can only occur as long as a residual energy metabolism is
maintained in the damaged cell. ATP deficiency has serious
consequences when DNA damage occurs in the elongation phase
of DNA replication as this can lead to lethal double strand breaks
that can be no more repaired. Residual ATP supply is also
necessary for the viability of persister cells (Völzing and
Brynildsen, 2015). Even in persister cells with terminated DNA
replication, DNA damage has to be repaired before proper re-
initiation of DNA replication can occur. In the complete absence
of ATP, even persister cells are unable to awake.

Whether spread of ABR, determined by conjugative plasmids,
can also occur through horizontal gene transfer (HGT) in the
persistence state remains an open question. Studies on mice
perorally infected with Salmonella Typhimurium showed that,
after treatment with ceftriaxone, the persister population
surviving in intestinal tissue is, when released into the gut
lumen, still capable of promiscuous conjugation and can foster
the spread of plasmids in the gut, including ABR plasmids
(Bakkeren et al., 2019). However, this study does not show,
whether transfer of the plasmids already occurred when the
donor salmonellae were still in the persister state (the persister
state of intracellular salmonellae is based on the action of t-RNA
acetyltransferase TacT and leads to a partial blockade of
translation, probably without harmful loss of ATP (Rycroft
et al., 2018) or – more likely – already in the awakened state.

Based on our (still speculative) hypothesis on the generation
of the bacterial persistence state (Eisenreich et al., 2020), we
assume that - in principle - persister cells could act as donors for
the transfer of conjugative plasmids even in the persistence state
under certain conditions. According to this hypothesis, the lack
of a functional ATP-DnaA/oriC complex is the ultimate cause
for the generation of the persistence state. Transfer of
conjugative plasmids is initiated at the transfer origin (oriT)
and is independent of ATP-DnaA. Conjugation initiated at oriT
requires a plasmid-encoded relaxase which introduces a single
strand break in oriT (Lee and Grossman, 2007). The transfer of
the formed single strand plasmid DNA across the membrane
needs ATP and PMF (proton motive force) (Palmen et al., 1994).
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This requirement could be met in the persisters if the lack of
functioning ATP-DnaA/oriC complex is due to a blockade of
protein synthesis or to a missing new oriC site in the persister
donor cells rather than due to the lack of ATP. As noted above,
the expression of the plasmid-encoded Tra proteins, also
required for the transfer of a conjugative plasmid to a bacterial
recipient cell (Lee and Grossman, 2007), is even induced in the
persistence state.

Taken together, the state of persistence may not only lead to
increased mutation-based ABR due to the enhanced mutation
rate, but could even allow the spread of ABR plasmids (if present
in the persister bacteria) to suitable recipients in
the environment.
3 THE SUSCEPTIBILITY TO MUTATION-
BASED ABR APPEARS TO BE LINKED TO
THE PRESENCE OF ERROR-PRONE DNA
REPAIR PATHWAYS

An interesting concept, explaining the presence or absence of
DNA repair pathways, termed proteomic constraint”, has been
described by Acosta and colleagues (Acosta et al., 2015). They
postulated that the number of DNA repair pathways, which a
bacterial species carries, positively correlates with the
information content of its genome (called the proteome value P).

This concept seems to apply among extracellular bacterial
pathogens for H. pylori, C. jejuni and Treponema pallidum
(Table 2) and especially for the obligate IBPs, i.e. C.
trachomatis, F. tularensis and R. prowazeki (Table 2). These
pathogens lack genes for LexA and many of the SOS-controlled
DNA repair enzymes, in particular TLS polymerases, whereas
genes for the NER-associated enzymes UvrA, B and C and RecA
(involved in HRR) are present. As pointed out above, an
exception is C. burnetii which lives within the host cell in a
particularly hostile niche and is more threatened by host cell
generated ROS. This obligate IBP has developed a LexA-
independent SOS regulon and has more DNA repair functions
than the other obligate IBPs, e.g. C. trachomatis and R.
prowazekii (Mertens et al., 2008) (Table 2).

There seems to be also a correlation between the susceptibility
to develop ABR and the presence of DNA repair pathways
(especially of the error-prone TLS) among the bacterial
pathogens (Table 2). This applies in particular to the IBPs.
There are also several extracellular bacterial pathogens with
relatively small genomes, e.g. N. gonorrhoeae, S. aureus, S.
pyogenes, S. pneumoniae, and Enterobacter spp., that are
equipped with most DNA repair genes (Table 2), including
genes for TLS polymerases that appear to be particularly
responsible for high mutation rates and, therefore, for the
emergenc e o f mu ta t i on -ba s ed ABR ( Jo s eph and
Badrinarayanan, 2020). As mentioned above, these pathogens
also show a high propensity for natural transformation (N.
gonorrhoeae, S. pyogenes, S. pneumoniae) or transduction (S.
aureus) which may further enhance their susceptibility to ABR.
July 2022 | Volume 12 | Article 900848
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These correlations are also consistent with the data of the
WHO Global Priority List (for 2017 and 2020) which includes
multidrug resistant bacteria that pose a particular threat in
hospitals (Table 3). The bacterial pathogens in the most
critical group of community- or hospital-acquired infections
(including Acinetobacter baumanii, P. aeruginosa and various
Enterobacteriaceae spp., in particular K. pneumoniae and
uropathogenic E. coli) have become resistant to a large number
of antibiotics, including carbapenems and third generation
cephalosporins, that represent the best available antibiotics for
treating multidrug resistant (MDR) bacteria. Most bacterial
pathogens of this group possess all properties that – as
described above – favor the development of mutation-based
ABR: (i) the ETC enzymes (NDH/complex I and SDH/
complex II) and NadB, generating ROS under oxidative stress
conditions, (ii) NAD(P)H-delivering enzymes of the TCA cycle,
necessary for the function of complex II (SDH) (Table 1), (iii)
the SOS and/or Com regulons, and (iv) error-prone repair
enzymes, in particular TLS DNA polymerases belonging to the
Y-family (Table 2) (Tang et al., 2000; Tegova et al., 2004; Norton
et al., 2013; Aranda et al., 2014; Bunnell et al., 2017). Exceptions
to this rule are H. pylori and S. pneumoniae which lack most of
these properties. But as stated above, their high frequency of
mutation-based ABR is favored by their high propensity for
natural transformation competence.

Vice versa, lower mutation rates and lower susceptibility to
ABR are exclusively observed in (mainly obligate intracellular)
bacterial pathogens that have low proteome values p (see above)
and in particular lack all error-prone TLS polymerases (Table 3)
(Rolain and Raoult, 2005; Stamm, 2015; Mestrovic and Ljubin-
Sternak, 2018). However, the members of this latter group are
still able to efficiently form persisters in the presence of BCAs
(Eisenreich et al., 2020). This indicates that the state of
persistence alone is not enough to trigger increased mutation-
based ABR. Rather, it seems to be the combination of persistence
and the presence of active error-prone DNA repair pathways
which is decisive for the increased formation of ABR in the
presence of BCAs (Mo et al., 2016).

Obviously, intracellular bacterial pathogens (IBPs), when
growing within mammalian host cells, are rarely if at all in
contact with unrelated bacteria. Thus, transfer of ABR via HGT
is rather unlikely under intracellular conditions. However, under
these conditions, the IBPs are exposed to ROS produced by the
host cells, especially by phagocytes. The concentration of ROS, in
general detrimental for the IBP, depends on the particular host
cell and the host cell niche that the IBP occupies (Dupre-Crochet
et al., 2013). The oxygen and nitrogen radicals generated by the
host cells (e.g. H2O2, NO, HOCl) can also lead to lesions in the
bacterial DNA and subsequently to the induction of stress
responses, e.g. induction of SOS response (if present), with
increased mutation rates and, as a consequence, the generation
of mutation-based ABR.

From the data shown in Tables 1, 2, it is obvious that
facultative IBPs (e.g. S. enterica Typhimurium, S. flexneri, and
M. tuberculosis) show a much higher rate of ABR than obligate
IBPs (e.g. C. trachomatis and R. prowazekii). This also applies to
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antibiotics that can reach the interior of the host cells. Some of
the facultative IBPs even belong to the bacterial pathogens with
the highest susceptibility to develop ABR, while most of the
bacterial pathogens with the lowest susceptibility to ABR are
obligate IBPs. Nevertheless, these latter pathogens, especially
several Chlamydia species, are the causative agents of common
infectious diseases in humans and are treated with antibiotics
(including BCAs) similar to those used for infections caused by
facultative IBPs. There are two main reasons for the different
incidences of ABR in facultative and obligate IBPs:

(i) Most of the facultative IBPs (e.g. Salmonella enterica in
broiler house) are efficient recipients (and subsequent donors) of
transmissible ABR plasmids (Martinez and Baquero, 2002;
Schlüter et al., 2007). In contrast, obligate IBPs carry less often
transmissible plasmids and rarely serve as recipients of such
plasmids (Bordenstein and Reznikoff, 2005; Sandoz and Rockey,
2010; Borel et al., 2016). In addition, the spread of these plasmids
to and from facultative IBPs generally occurs in the extracellular
state and in pathogen-specific favorable environments, e.g. the
gut for enteric IBPs, where they can encounter potential donors
of conjugative ABR plasmids (Wain et al., 2003; Baker et al.,
2018; Puzari et al., 2018; Bakkeren et al., 2019; McMillan et al.,
2020). Obviously, these opportunities of acquiring and spreading
ABR are less accessible to obligate IBPs. Natural environments,
as well as terrestrial or marine mammals, may also serve as
reservoirs for the spreading of ABR plasmids by HGT to and
from facultative IBPs, e.g. Listeria monocytogenes, L.
pneumophila, and Brucella melitensis (Charpentier and
Courvalin, 1999; Wattam et al., 2009; Allen et al., 2010; Von
Wintersdorff et al., 2016; Shevtsov et al., 2017; Kuang et al., 2018;
Olaimat et al., 2018; Baquero et al., 2020). Stress conditions
caused by reduced pH, reduced temperature and increased
osmotic pressure - applied in food preservation - have also
been shown to trigger the transfer of conjugative plasmid
between pathogenic and nonpathogenic bacteria. In addition to
HGT, exposure to these environmental stresses, as well as biofilm
formation, and - connected to it - increased formation of
persister cells, also favor the development of mutation-based
ABR in facultative IBPs (Beuls et al., 2012; Olaimat et al., 2018).

(ii) The mutation rates and hence the acquisition of
mutation-based ABR is considerably higher in facultative IBPs
than in obligate IBPs (Woodford and Ellington, 2007; Gomes
et al., 2016). Indeed, mutations are the main cause of ABR in
some facultative IBPs, in particular M. tuberculosis (Gygli et al.,
2017). Resistance to the antibiotics which are active against this
pathogen, given the apparent lack of HGT (Lawrence, 1999;
Gagneux and Small, 2007; Bolotin and Hershberg, 2015), appears
to be mainly caused by chromosomal mutations (Gygli
et al., 2017).

Resistance to synthetic antibiotics, e.g. fluoroquinolones, is
also predominantly acquired by mutations. Mutation-based
resistance against these antibiotics occurs in facultative IBPs
much more frequently than in obligate IBPs (Almahmoud et al.,
2009; Rakic-Martinez et al., 2011; Shadoud et al., 2015; Zhang
et al., 2016; Cuypers et al., 2018; Deguchi et al., 2018; Siebert
et al., 2019), although such mutants can be obtained even with
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obligate IBPs by in vitro mutagenesis (Binet and Maurelli, 2005;
Rolain and Raoult, 2005; Biswas et al., 2006). The low frequency
of mutation-based ABR in obligate IBPs is consistent with the
fact that these bacteria (with the exception of Coxiella spp.) have
less error-prone DNA repair functions (especially TLS) than
facultative IBPs (Table 2), which - as discussed above - seem to
be mainly responsible for high mutation rate and mutation-
based ABR in vivo and especially in the persistence state.

The finding that the obligate IBP C. burnetii shows a higher
susceptibility to ABR than R. prowazekii, F. tularensis and C.
trachomatis (Table 2) also fits into this concept (Rolain and
Raoult, 2005; Sandoz and Rockey, 2010; Vranakis et al., 2011;
Caspar and Maurin, 2017; Mestrovic and Ljubin-Sternak,
2018; Vanrompay et al., 2018). Although Chlamydia and
Coxiella species clearly differ in their susceptibility to ABR,
they both have a similar high tendency to develop persistence
(Beatty et al., 1995; Maurin and Raoult, 1999; Kazar, 2005;
Panzetta et al., 2018; Eisenreich et al., 2020). This again
demonstrates that it is not the state of persistence per se
which is responsible for the generation of increased mutation-
based ABR (Salcedo-Sora and Kell, 2020), but rather the
combination of persister formation along with the ability to
perform error-prone DNA repair.

The persistence state is characterized – according to our
hypothesis (Eisenreich et al., 2020) – by the inability of the
bacteria to initiate a new round of DNA replication due to an
insufficient amount of the ATP-DnaA initiator complex
(Figure 1). In this state, the chromosomal DNA of most
bacteria is in a closed circular supercoiled (ccs) form which is
less susceptible to lethal DNA lesions, such as double strand
breaks, than DNA that is still in the elongation process of
replication. DNA lesions that can still be introduced by ROS
into the terminated ccs DNA in the persistence state, such as
nucleobase (especially guanine) oxidation and generation of
abasic sites, can be repaired before or after resuscitation,
depending on the cellular ATP concentration, by error-free
and especially error-prone repair processes. However, the latter
processes will give rise to increased mutations including
mutations that lead to ABR (Figure 2).

It is also interesting to note that the chromosomal DNAs of
the obligate IBPs, with low mutation-based ABR, have also a
rather low G+C content (Table 1) and hence may show a lower
susceptibility to G oxidation which leads to the formation of
highly mutagenic 8-OxoG. It is in accord with this assumption
that these obligate IBPs also lack MutY and/or MutT (Table 2),
which remove 8-OxoG incorporated into the DNA and free 8-
OxoGTP from the cellular GTP pool, respectively.
4 SUMMARY AND CONCLUSIONS

It is now widely accepted that treatment of bacterial pathogens
with BCAs that block different key cellular processes, i.e. DNA
replication, protein biosynthesis or cell wall synthesis, also leads
to increased ROS generation by disturbed respiration and
subsequently to induction of oxidative stress responses. In
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
addition to other cell damage, ROS cause DNA lesions, the
severity of which depends on the cellular ROS concentration.
Intracellular bacterial pathogens (IBPs) may in addition be
affected by ROS, produced by their respective (often
phagocytic) host cells as defense against the invading bacteria.

These detrimental processes kill the vast majority of bacteria
in a growing population. However, a subpopulation whose
formation is apparently further triggered by the BCAs will
enter the persistence state in which the bacteria are insensitive
to these anti-bacterial processes. Although a large number of in
vitro and animal model studies, in part outlined above,
convincingly document the link between BCA treatment, ROS
production and persister formation, it should not go
unmentioned that its clinical significance (e.g. in chronic
infections) is less clear and studies addressing this problem are
still rather scarce (Fauvart et al., 2011; Fisher et al., 2017; Jung
et al., 2019).

The persistent bacteria apparently carry out an altered, more
anoxic metabolism characterized by reduced ATP and ROS
synthesis. In the persistence state, the bacteria are tolerant to
the challenging BCA and even to additional antibiotics, but
remain genetically unaltered compared to the original bacterial
population, and upon resuscitation, which occurs under
favorable physiological conditions, these persisters become
again antibiotic-sensitive (see Figure 2).

BCA-induced ROS lead in many bacteria to the induction of
SOS- or Com-regulons. Both regulons include genes encoding also -
in addition to the specific functions involved in oxidative stress
response and competence, respectively - enzymes for error-free and
error-prone repair of DNA lesions. These genes are timely induced
depending on the severity of the DNA damage. The genes encoding
FIGURE 2 | Emergence of mutation-based ABR in persisters. Treatment of a
bacterial population with BCAs leads to killing of the majority of the bacterial
cells that are in an active DNA replication phase and to the generation of
persisters with terminated DNA replication (see Figure 2 and text for details).
The ccs chromosomal DNA of the persisters may contain non-lethal DNA
damages (green bars) that can be repaired mainly by error-prone DNA repair
processes, e.g. by TLS DNA polymerases, however at the expense of
increased mutation rates that lead – among others – to ABR mutants.
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the error-prone TLS DNA polymerases are induced last. Most of the
TLS DNA polymerases in contrast to the replicative DNA
polymerases (Pol III and Pol I) are able to pass through even
severe DNA lesions – however at the expense of a high mutation
rate (Joseph and Badrinarayanan, 2020).

According to our hypothesis (Eisenreich et al., 2020), the
persistence state is characterized by the inability of the bacterial
cell to initiate a new round of replication of its chromosomal
DNA due to the lack of a sufficient amount of ATP-DnaA and
hence of a functional orisome complex that is decisive for the re-
initiation of DNA replication (Leonard et al., 2019). In this
replication termination state, the chromosomal DNA is in a
closed circular supercoiled (ccs) form (provided the
chromosomal DNA is circular, which is the case in most
bacterial pathogens). The ccs DNA is - compared to actively
replicating circular DNA - rather insensitive to lethal DNA
lesions, such as double strand breaks (Mizuuchi et al., 1980).
Less severe (and repairable) DNA lesions, including those that
arise from nucleobase (especially guanine) oxidation and the
generation of abasic sites, can still be introduced by ROS
(especially by hydroxyl radicals) into the ccs chromosomal
DNA present in the persistence state. However, these lesions
can be repaired before or immediately after resuscitation, mainly
by error-prone repair processes, provided the cell contains still
enough ATP to repair the lesions. These repair processes will,
however, cause increased mutations, including mutations that
lead to resistance against the challenging BCA and/or other
antibiotics. Thus, the antibiotic-tolerant persistence state,
together with the error-prone repair processes, can significantly
enhance the emergence of genetically fixed (mutation-
based) ABR.

The particular importance of the error-prone DNA repair
processes - especially those carried out by the error-prone TLS
DNA polymerases - is also suggested by the high frequency of
mutation-based ABR in those bacterial pathogens that possess
these enzymes and the significantly lower susceptibility to
mutation-based ABR in other bacterial pathogens that lack the
main error-prone repair enzymes.

These conclusions are supported by the fact that the bacterial
pathogens with the highest incidence of ABR (according to
WHO) are EBPs or facultative IBPs, which possess the NAD
(P)H-delivering reactions of the TCA cycle and the enzymes of
the ETC (and in most cases also NadB), that are involved in ROS
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 17
production under aerobic conditions (Tables 2, 3). These
pathogens may acquire ABR mainly by ROS/persistence-
induced mutagenesis. Obvious exceptions to this notion are S.
aureus, S. pneumoniae and H. pylori. These pathogens gain their
high incidence of ABR mainly by transformation (H. pylori and
S. pneumoniae) or by transduction (S. aureus) and less by ROS/
persistence-induced mutagenesis.

The insights reported in this review suggest that the
problem of ABR could be reduced by the suppression of
persister formation arising by antibiotic treatment. Based on
the current knowledge concerning bacterial persister
formation under different physiological stress conditions,
several anti-persister strategies have already been proposed
(Defraine et al., 2018). A promising therapy that emerges from
our discussion could involve the inhibition of the bacteria-
specific error-prone repair enzymes, especially of the Y-family
TLS polymerases, by specific inhibitors (Yamanaka et al.,
2017; Ketkar et al., 2019) to prevent mutations possibly also
leading to ABR, and - after the antibiotic treatment - the
inactivation of DnaA to prevent re-initiation of DNA
replication and cell division of the generated persisters
(Makise et al., 2002; Schenk et al., 2017; Samadpour and
Merrikh, 2018; Grimwade and Leonard, 2019).
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