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Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers in the world.
Changes in the composition and abundance of oral microbiota are associated with the
development and metastasis of OSCC. To elucidate the exact roles of the oral microbiota
in OSCC, it is essential to reveal the evolutionary relationships between the dysregulated
genes in OSCC progression and the oral microbiota. Thus, we interrogated the microarray
and high-throughput sequencing datasets to obtain the transcriptional landscape of
OSCC. After identifying differentially expressed genes (DEGs) with three different methods,
pathway and functional analyses were also performed. A total of 127 genes were identified
as common DEGs, which were enriched in extracellular matrix organization and cytokine
related pathways. Furthermore, we established a predictive pipeline for detecting the
coevolutionary of dysregulated host genes and microbial proteomes based on the
homology method, and this pipeline was employed to analyze the evolutionary relations
between the seven most dysregulated genes (MMP13, MMP7, MMP1, CXCL13,
CRISPO3, CYP3A4, and CRNN) and microbiota obtained from the eHOMD database.
We found that cytochrome P450 3A4 (CYP3A4), a member of the cytochrome P450
family of oxidizing enzymes, was associated with 45 microbes from the eHOMD database
and involved in the oral habitat of Comamonas testosteroni and Arachnia rubra. The
peptidase M10 family of matrix metalloproteinases (MMP13, MMP7, and MMP1) was
associated with Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus,
Streptococcus salivarius, Tannerella sp._HMT_286, and Streptococcus infantis in the
oral cavity. Overall, this study revealed the dysregulated genes in OSCC and explored their
evolutionary relationship with oral microbiota, which provides new insight for exploring the
microbiota–host interactions in diseases.

Keywords: OSCC, oral microbiota, evolutionary relationships, matrix metalloproteinases, DEGs1
Abbreviations: DEGs, differentially expressed genes; MMPs, peptidase M10 family of matrix metalloproteinases; OSCC, oral
squamous cell carcinoma; GEO, Gene Expression Omnibus; GO, The Gene Ontology; MF, Molecular Function; CC, Cellular
Component; BP, Biological Process; FDR, adjusted P-value; FC: fold change; KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the
seventh most common malignancy in the world, accounting
for more than 90% of head and neck malignancies (Mody et al.,
2021). HNSCC originates from the squamous epithelium of the
upper respiratory tract and digestive tract of the oral cavity,
pharynx, and larynx, among which pharyngeal squamous cell
carcinoma, laryngeal squamous cell carcinoma, and OSCC are
the most common. OSCC often has a great impact on patients’
chewing, swallowing, language, breathing, and other functions
and even threatens their lives (Johnson et al., 2020). In recent
years, the incidence of OSCC has been on the rise, becoming a
world public health problem with high morbidity and mortality
(Ferlay et al., 2019). Studies have shown that, in addition to
major risk factors such as tobacco and alcohol abuse, exposure to
environmental pollutants and viruses, specific oral bacteria, or
oral microbial communities may play an important role in the
occurrence and progression of OSCC (Fitzsimonds et al., 2020;
Irfan et al., 2020). The human microbiome coevolved and
coexisted, and OSCC that also grows in the oral cavity may
themselves be the hosts of oral microbiota. The oral cavity
harbors over 700 microbial species and both pathogenic and
commensal strains are involved in the development of OSCC.
Evidence has indicated a correlation of some specific species with
OSCC, including Porphyromonas gingivalis, Fusobacterium
nucleatum, Treponema denticola, Streptococcus gordonii, and
human papilloma virus 16 (Fitzsimonds et al., 2020).

The current strategies to investigate the role of the oral
microbiota in OSCC have predominantly focused on detecting
oral microbial communities present or populational shifts in
OSCC samples and studying the effect and mechanism of specific
oral microbial challenges on biological processes (BPs) related to
OSCC occurrences, such as cell proliferation, cell apoptosis, and
the epithelial to mesenchymal transition. Perspective studies
should focus on exploring the oral microbiota potentially
related to OSCC. However, oral microbes are abundant and
approximately 30% of them cannot be cultured. Thus,
determining oral microbial–host interactions between species
experimentally is a challenging task (Fritz et al., 2013).
Computational approaches are an ideal approach to aid in
screening for microbial–host interactions, with time-saving and
economic advantages (Dix et al., 2016; Fitzsimonds et al., 2020).
From an evolutionary perspective, if there is significant similarity
between two protein sequences, they may originate from a
common ancestor and have the same or similar functions
(Pearson, 2013). Therefore, the most common method to
explore protein function is pair-wise protein sequence
comparison to “transfer” or prediction of function based on
sequence similarity between proteins of known and unknown
function (Rost, 1999; Bork, 2000; Devos and Valencia, 2000).
And BLAST is a classic pairwise approach that can search protein
sequence similarities all against all (Camacho et al., 2009). Based
on this principle, several approaches have been established to
determine pathogen–host protein–protein interactions (PHIs),
including protein homology prediction, structural domain–
based methods, and machine learning–based methods (English
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and Albersheim, 1969; Wojcik and Schächter, 2001; Pagel et al.,
2004; Qi et al., 2010; Dyer et al., 2011).

Increasing evidence has shown that shared evolutionary
history matters to both microbiota and hosts (Davenport et al.,
2017). Microorganisms include bacteria, viruses, fungi, and some
small protists. These organisms typically have smaller
proteomes, based on which they can be analyzed for
community heterogeneity, activity, and function. If the entire
proteome of a microorganism is regarded as a protein that is
evolutionarily conserved, the entire microbiome is a living
organism composed of a large number of such proteins. Based
on the principle of protein–protein interaction (PPI), the
interaction relationship between the entire proteome of
microorganisms and the host can be predicted. Oral
microbiota colonize the oral mucosa, and they have a
coevolutionary relationship; therefore, based on the principle
of coevolutionary association inferring functional interactions,
this study established a predictive pipeline for the evolutionarily
interconnected evolution of dysregulated host genes and
microbial proteomes (Devos and Valencia, 2000). We
identified dysregulated genes in OSCC tissues by analyzing
gene expression datasets from the GEO database and explored
their evolutionary relations with oral microbiota with this
pipeline. The results are expected to provide new insights into
the interactions between oral microbiota and OSCC.
MATERIALS AND METHODS

Data Collection
The Gene Expression Omnibus (GEO) database contains a large
number of gene expression profiling (high-throughput
sequencing and microarray datasets) and RNA methylation
profiles that are submitted by different research laboratories in
the world (Edgar et al., 2002). We retrieved the related gene
expression datasets by OSCC and oral keywords. The criteria for
the retrieved datasets must contain different sequencing
platforms. Finally, the microarray datasets (GSE138206) and
high-throughput sequencing datasets (GSE140707) were
downloaded from the GEO database. The GSE138206 dataset
contains six OSCC tissues (Ca), tissues adjacent to cancer (P),
and contralateral normal tissues (N), and the GSE140707
contains three tumorous and adjacent tissues from
OSCC sufferers.

DEGs Identification
All analyses of differentially expressed genes (DEGs) were
performed by R language. The GEO query package (Sean and
Meltzer, 2007) was used to obtain collected datasets from the
GEO database. For microarray datasets, the statistically
significant DEGs were acquired by utilizing the limma package
(Ritchie et al., 2015) with adjusted P-value (FDR) < 0.05 and
|log2 (fold change (FC))| > 1. The Deseq2 (Love et al., 2014) and
EdgeR (Robinson et al., 2010) packages were utilized to analyze
RNA sequencing data and filter significant DEGs between OSCC
and adjacent normal tissues.
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Enrichment Analyses
The Gene Ontology (GO) describes our knowledge of the
biological function in three aspects: molecular function (MF),
cellular component (CC), and BP (The Gene Ontology,
Consortium 2019). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway is a database utilized for genomic
and biological pathway and other omics studies (Kanehisa and
Goto, 2000). We used the ClusterProfile package (Yu et al., 2012)
to identify the potential functions of the significant DEGs with
the GO and KEGG databases, and the results were displayed by
the ggplot2 package (Wickham, 2011) with a cutoff of p < 0.05.

Evolutionary Relation With the Oral
Microbiome
The microbe data (1,903 microbiome genomes with 4,665,857
proteins) were downloaded from the expanded Human Oral
Microbiome Database (eHOMD) (Escapa et al., 2018). The
eHOMD provides comprehensive curated information on
bacteria in the human mouth and aerodigestive tract, including
the pharynx, nasal passages, sinuses, and esophagus. The DEG
homologous proteins were searched by BLAST+ software
(Camacho et al., 2009) with an e-value < 0.001. We used the
MEGA11 software to identify the evolutionary relationship
between DEGs and oral microbiomes by MEGA11 software
(Tamura et al., 2021). Multiple sequence alignment was
performed by MUSCLE (Edgar, 2004) (Gap Open:-2.9,
Hydrophobicity Multiplier:1.2, Max Iterations:16, Min Diag
Length:24), using the maximum likelihood method (JTT model
and NNI ML heuristic method) to reconstruct the phylogenetic
tree. The iTOL is used to illustrate the phylogenetic tree (Letunic
and Bork, 2006).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
RESULTS

Transcriptional Landscapes of OSCC
This study was performed according to the workflow
(Figure 1A). A total of 280 DEGs in microarray dataset
GSE138206 were identified by the limma package with 162
upregulated genes and 118 downregulated genes (Figure 1C,
Table S1). Analysis of the high-throughput sequencing datasets
GSE140707 by Deseq2 packages obtained 1,699 DEGs of OSCC,
and, of these, 652 genes and 1,047 genes were upregulated and
downregulated, respectively (Figure 1D, Table S2). In addition,
1,215 DEGs were identified by EdgeR with 666 upregulated genes
and 549 downregulated genes (Table S3). Taking the intersection
of three different package analyses of two OSCC datasets and
plotting the Venn diagram, 127 common DEGs were obtained
(Figure 1B, Table S4). Additionally, there were five significant
DEGs (MMP10, MUCL1, TGM3, WIF1, and TMPRSSS11B) that
were identified only in GSE138206 (Figure 1C). In addition to
the intersection, seven high fold change expression genes (CST1,
IGHV1-3, IGHV1-18, MAGEA6, HMGCS2, KRT84, and
KRTAP13-2) were identified in GSE140707 (Figure 1D).

Dysregulation of Genes Related to
Extracellular Matrixes and Cytokines
in OSCC
Seven genes belonged to the intersection of DEGs identified by
three different methods were dysregulated genes in OSCC.
Among them, MMP13, MMP7, MMP1, and CXCL13 genes
were upregulated in OSCC tissues, and CRISP3, CYP3A4, and
CRNN genes were downregulated (Figure 2A). To gain insight
into the pathways and function of common DEGs of OSCC, the
A
B

DC

FIGURE 1 | The identified of DEGs. (A) The flowchart of research design. (B) The two datasets showed an overlap of 127 differentially expressed genes (DEGs)
which were identified by three different methods. (C) The volcano map of microarray dataset GSE138206. (D) The volcano map of high-throughput sequencing
dataset GSE140707. The DEGs are marked in light blue; the 127 common DEGs are labeled with black, and red labels are DEGs in each dataset.
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GO enrichment analysis and KEGG enrichment analysis were
performed. It was observed that DEGs were enriched in
categories associated with extracellular matrix (ECM)
organization, collagen metabolic process, metallopeptidase
activity, glycosaminoglycan binding, and cytokine activity
(Figure 2B). KEGG analysis showed that the 127 DEGs were
significantly enriched in 10 pathways, such as cytokine-cytokine
receptor interaction, IL-17 signaling pathway, viral protein
interaction with cytokine and cytokine receptor, and protein
digestion and absorption. Notably, COL4A1, COL4A2, COL4A6,
FN1, and LAMC2 genes were also enriched in the ECM receptor
interaction pathway (Figure 2C).

Evolutionary Relationship Between the
Dysregulated Genes and Oral Microbiota
To explore the evolutionary relationships of the seven DEGs and
oral microbiota. We used the BLAST method to align 1,903
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
microbiome genomes (total 4,665,857 proteins) in human
microbiome which retrieved from the eHOMD database. We
set the BLAST cutoff with e-value < 10−3 against the microbiome
genome search for the homologous proteins (Table 1). We
searched 350 homologous proteins within 45 species of
microorganisms with the CYP3A4 gene by BLAST software.
Among these microorganisms, Comamonas testosteroni KF-1,
Comamonas testosteroni CNB-2, Comamonas testosteroni S44,
and Arachnia rubra DSMZ 10012 inhabit in the oral cavity
(Table S5). Oral colonizers with an evolutionary relationship to
MMP1 include Streptococcus infantis ATCC 700779,
Streptococcus infantis SPAR10, and Tannerella sp._HMT_286
W11667 (Table S6). Interestingly, Tannerella sp._HMT_286
W11667 and MMP5 as well as MM13 also have a
coevolutionary relationship (Tables S7, S8). In addition,
MMP13 also has a coevolutionary relationship with
Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and
TABLE 1 | The homologous proteins searched of seven DEGs.

Gene name Gene annotation Species Strain Oral Uassigned Protein Species name

CRISP3 cysteine-rich secretory protein (CRISP) family 1 1 0 1 1 NA
CYP3A4 cytochrome P450 superfamily of enzymes 45 119 2 43 350 Comamonas testosteroni, rubra
MMP1 peptidase M10 family of matrix metalloproteinases 7 39 4 3 40 Lacticaseibacillus rhamnosus, Lacticaseibacillus

paracasei,
Streptococcus salivarius, Tannerella
sp._HMT_286

MMP7 peptidase M10 family of matrix metalloproteinases 9 16 1 8 16 Tannerella sp._HMT_286
MMP13 peptidase M10 family of matrix metalloproteinases 5 11 2 3 13 Streptococcus infantis,

Tannerella sp._HMT_286
CXCL13 C-X-C Motif Chemokine Ligand 13 0 0 0 0 0 NA
CRNN The "fused gene" family of proteins 0 0 0 0 0 eNA
A

B C

FIGURE 2 | The top DEGs and common DEGs enrichment analysis results. (A) The expression of seven DEGs in microarray dataset GSE138206. Ca, cancer; N,
Normal. (B) The enrichment analysis results of GO database with BP, CC and MF. (C) The enrichment analysis results of KEGG Pathway. Adjusted P-value < 0.05
was considered significant.
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Streptococcus salivarius, which live in the oral cavity (Table S8).
Figure 3A shows the evolutionary relations among the MMP13,
MMP7, and MMP1 genes of oral genomes. As can be seen from
the results of the analysis of the evolutionary relationship, three
upregulated genes have homologs with the phyla of
Bacteroidetes, Firmicutes, and Proteobacteria. The most
significant aspect of this relationship is Proteobacteria, which
contains 8 oral species and 10 proteins. The evolutionary
relations of CYP3A4 genes are shown in Figure 3B.
DISCUSSION

OSCC is the most common malignancy, accounting for 80%–
90% of oral malignancies. Oral microbiota is a major risk factor
for OSCC. Associated interactions between oral microorganisms
and host can promote the progression of OSCC (Bai et al., 2022).
In this study, we identified 652 upregulated and 1,047
downregulated genes in the OSCC tissues based on the
GSE140707 dataset, as well as 162 upregulated and 118
downregulated genes in the GSE138216 dataset. The unique
significance of 127 DEGs by three methods was based on the
analyzed metadata. DEGs were identified in both datasets
associated with the IL-17 signaling pathway, viral protein
interaction with cytokines and cytokine receptors, and protein
digestion and absorption. Seven significant dysregulated genes in
OSCC tissues were further identified, including four upregulated
genes MMP13, MMP7, MMP1, and CXCL13 and three
downregulated genes CRSP3, CYP3A4, and CRNN. In the
present study, we established a predictive pipeline for
exploring the evolutionary relationship between the oral
microbiota in the eHOMD database and the dysregulated
genes in OSCC based on the principle of coevolution.

Matrix metalloproteinases (MMPs) are involved in normal
physiological processes of decomposing ECM, such as tissue
remodeling, embryonic development, and reproduction, as well
as in disease processes of arthritis and metastasis (Snoek-van
Beurden and Von den Hoff, 2005). The MMP13, MMP7, and
MMP1 genes encode members of the peptidase M10 family of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
MMPs. Consistent with our findings, previous studies
have reported the dysregulated expression of them in OSCC
progression. For instance, overexpression of both transcriptional
and translational levels of MMP13 was found in OSCC tissues
(Johansson et al., 1997; Culhaci et al., 2004; Luukkaa et al., 2006).
Highly expressed MMP13 protein also showed a significant
correlation with tumor staging and lymph node metastasis
(Vincent-Chong et al., 2014). The expression of MMP7 and
MMP1 was also upregulated in OSCC tissues. The expression of
MMP7 and MMP1 were also upregulated in OSCC tissues. The
MMP1 gene was activated in aggressive OSCC (Impola et al.,
2004; Jordan et al., 2004; Chuang et al., 2008; Makinen
et al., 2014).

Moreover, the MMP1 gene might be used as a potential target
to improve diagnosis and as an oral cancer marker for OSCC
(Hashimoto et al., 2004; Yen et al., 2009; Yang et al., 2020).
Functional enrichment analysis revealed that MMP13, MMP7,
and MMP1 were related to ECM organization, ECM
disassembly, extracellular structure organization, and
endoderm development. Tumors can utilize ECM remodeling
to create a microenvironment that promotes tumorigenesis and
metastasis. Therefore, we speculate that the overexpression of
MMP13, MMP7, and MMP1 might involve invasiveness and
metastasis of OSCC by modulating ECM remodeling.

The homology search method identified an evolutionary
relationship with the oral microbiota for the MMP13, MMP7,
and MMP1 genes. We chose MMP family genes to explore their
evolutionary relationship with microbial species because MMP
family differential expression was significant when differentially
expressed genes were analyzed. The Lacticaseibacillus paracasei,
Lactobacillus rhamnosus, Streptococcus salivarius, Tannerella sp.
HMT 286, and Streptococcus infantis five species were hit
homologous. In the previous study, Pushalkar et al. assessed the
microbial diversity in OSCC tissues and non-tumor tissues. The
results showed that the microbial load of Lacticaseibacillus
paracasei has a significant variation (Pushalkar et al., 2012). It
has been reported that the administration of Lactobacillus
rhamnosus was able to increase the effect of anticancer molecules
tested on human OSCC (Cheng et al., 2017). These results
A B

FIGURE 3 | The evolutionary relation analysis of Top DEGs. (A) The evolutionary relation between MMP13, MMP7, and MMP1 with the microbiome. (B) The evolutionary
relation between CYP3A4 with the microbiome.
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demonstrated the potential of Lactobacillus rhamnosus as a
beneficial effect adjuvant treatment for OSCC. In OSCC patients
undergoing tumor resection, the percentage of saliva-reactive
cytotoxic T cells was positively correlated with recurrence-free
survival (Wang et al., 2018). Another study (Pavlova et al., 2013)
showed that Streptococcus salivarius is involved in alcohol
metabolism to acetaldehyde, which has a carcinogenic potential
(Vogelmann and Amieva, 2007; Marttila et al., 2013). Consistent
with our findings, evidence has also shown a significant difference
of Streptococcus infantis between OSCC patients and healthy
individuals (Hsiao et al., 2018). These all support the reliability of
our predictive pipeline for exploring the interaction between
dysregulated genes in OSCC and oral microbiota.

The CYP3A4 gene encodes a member of the cytochrome P450
superfamily of enzymes and is involved in the metabolism of
sterols, steroid hormones, retinoids, and fatty acids (Chen et al.,
2000; Marill et al., 2000; Badawi et al., 2001). Cytoscape software
by the Matthews correlation coefficient (MCC) algorithm was
used to predict CYP3A4 at the core position in the network and
highlight the first 10 types of OSCC DEGs (Li et al., 2022). It is
worth noting that there found 350 homologous proteins
including 45 microbes were found by evolutionary analysis in
this study. Among them, Comamonas testosteroni and Arachnia
rubra can inhabit in the oral cavity. Up to 348 microorganisms
were unassigned information on their location in the human
body. Extracts of Arachnia rubra are associated with human
OSCC production and modulation of tumor-specificity values
(Suzuki et al., 2014). However, we noticed that the two previously
reported bacteria associated with OSCC, Porphyromonas
gingivalis and Clostridium perfringens, were not found when
using this method to explore the relationship between
dysregulated genes and oral microbiota. We speculate that the
possible reason is that, although these bacteria play an important
role in OSCC, there is no homologous evolutionary relationship
with the genes that we screened. CXCL13, CRISPO3, and CRNN
have newly identified dysregulated genes by this study, and their
effects on the OSCC need to be further investigated for
experimental validation.

Microorganisms, including bacteria, viruses, and archaea,
inhabit a wide range of hosts in different ecological niches and
ecosystems (Braga et al., 2016). Deciphering microbial–host
interactions can provide new therapeutic strategies for
maintaining health or improving disease states. However,
determining microbial–host interactions between species
experimentally is a challenging task due to many other
limitations related to the size, scope, feasibility of studies, and
sample availability of microbial populations (Fritz et al., 2013).
Computational approaches can overcome some of these
limitations and thus enhance our understanding of microbial–
host interactions (Dix et al., 2016). Molecular ecological
networks are used to study the interactions between molecules
(from different species or even kingdoms) in a larger ecosystem
(Yang et al., 2017; Meyer et al., 2020). From a mechanistic
perspective, the most widely studied types of interactions
among species interactions include microbial networks,
PPIs, and RNA-mediated interactions. Therefore, many
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
computational methods developed to study microbe–host
interactions have focused on the three types of interactions
mentioned above. However, all of these inference methods
have the feature of studying microbe–host interactions based
on the characteristics of the sequence structure. In this study, we
propose the use of coevolutionary principles to infer microbial–
host interactions based on sequence structure. The use of the
coevolutionary principle better reflects the conserved protein
structure of the species than the direct use of sequence structure.
Therefore, we established a predictive pipeline to study the
interaction between DEGs and oral microbiota in OSCC based
on sequence-structure conservativeness and coevolutionary
principles. Of course, the method has its shortcomings, that is,
the method is based on the inference that species have the same
protein conserved modules during the evolutionary process, and
if the studied DEGs and microbial proteins do not have the same
evolutionary conserved modules, they cannot be studied by this
method. However, this method provides a novelty way and new
ideas for exploring the relationship between host genes and host
symbiotic microorganism.
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