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for the detection of
Mycobacterium bovis infection
in African lions (Panthera leo)
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Michele A. Miller1*† and Tanya J. Kerr1†

1DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for
Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Tygerberg, South Africa, 2Afrivet Business
Management, Newmark Estate Office Park, Pretoria, South Africa, 3Veterinary Wildlife Services,
Kruger National Park, Skukuza, South Africa
Mycobacterium bovis (M. bovis) infection has been identified in both domestic

and wild animals and may threaten the conservation of vulnerable species

including African lions (Panthera leo). There is a need to develop accurate ante-

mortem tools for detection of M. bovis infection in African big cat populations

for wildlife management and disease surveillance. The aim of this study was to

compare the performances of two immunological assays, the QuantiFERON®-

TB Gold Plus (QFT) Mabtech Cat interferon gamma release assay (IGRA) and

QFT CXCL9 gene expression assay (GEA), which have both shown diagnostic

potential for M. bovis detection in African lions. Lion whole blood (n=47),

stimulated using the QFT platform, was used for measuring antigen-specific

CXCL9 expression and IFN-g production and to assignM. bovis infection status.

A subset (n=12) of mycobacterial culture-confirmed M. bovis infected and

uninfected African lions was used to compare the agreement between the

immunological diagnostic assays. There was no statistical difference between

the proportions of test positive African lions tested by the QFT Mabtech Cat

IGRA compared to the QFT CXCL9GEA. There was also a moderate association

between immunological diagnostic assays when numerical results were

compared. The majority of lions had the same diagnostic outcome using the

paired assays. Although the QFT Mabtech Cat IGRA provides a more

standardized, commercially available, and cost-effective test compared to
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QFT CXCL9 GEA, using both assays to categorize M. bovis infection status in

lions will increase confidence in results.
KEYWORDS

African lion, CXCL9, gene expression assay, IFN-g, interferon gamma release assay,
Mycobacterium bovis
Introduction

Bovine tuberculosis (bTB) is a chronic infectious disease of

animals caused by Mycobacterium bovis (M. bovis) and

constitutes a zoonotic risk especially in developing countries

(Ayele et al., 2004; Müller et al., 2013). Mycobacterium bovis

infection has been identified in domestic animals, as well as a

wide range of captive and free-ranging wildlife and may threaten

the conservation of vulnerable species like the African lion

(Panthera leo) (Lécu and Ball, 2011; Bernitz et al., 2021;

O’Halloran et al., 2021). Lions, which are classified either as

maintenance or spill over hosts, are frequently exposed to M.

bovis in endemic areas because of predation on infected prey

such as African buffaloes (Syncerus caffer) (de Lisle et al., 2002;

Miller et al., 2015; Viljoen et al., 2015).

Because of the slow progression of disease, there are

significant challenges in early detection of bTB in free-ranging

wildlife, since most infected animals can shed viable

mycobacteria before manifestation of visible clinical signs

(Michel et al., 2006; Meiring et al., 2021). Therefore, to

prevent the risk of introducing disease into new populations,

movement of animals from endemic areas is restricted, unless

there are accurate tests that can be used for screening. One of the

greatest challenges for wildlife management is the lack of

available diagnostic tools. The tuberculin skin test (TST),

which measures the delayed-type hypersensitivity reaction to

injected M. bovis purified protein derivative (PPD), is the only

widely available ante-mortem test for large felids, but it requires

capture and immobilization twice within three days, which

increases mortality associated risks to both animals and staff

(Keet et al., 2010; Miller et al., 2019).

Blood-based tests that only require a single capture are

appealing for use in free-ranging wildlife. Frequently in vitro

tests measuring cell-mediated immune (CMI) responses may

detect infected animals before the onset of delayed-type

hypersensitivity skin response (Pollock and Neill, 2002;

Pollock et al., 2006). Although serological tests have been

explored and shown diagnostic potential in lions, results

suggest that antibody responses cannot regularly be detected

during an early infection but only later after development of

disease (Miller et al., 2012; Miller et al., 2019). Therefore, there
02
has been a focus on CMI responses to mycobacterial antigens in

African lions. Assays based on measuring interferon gamma

(IFN-g) concentrations in QuantiFERON®-TB Gold Plus (QFT)

plasma and changes in chemokine (C-X-C motif ligand 9;

CXCL9) gene expression have recently shown diagnostic

potential as screening tests for M. bovis infection in African

lions (Olivier et al., 2015; Gumbo et al., 2022). The aim of this

study was to (a) screen African lions fromM. bovis endemic and

exposed populations for M. bovis infection using currently

available previously validated assays (QFT Mabtech Cat IGRA

and QFT CXCL9 GEA) to identify immune sensitized

individuals and (b) compare the agreement between GEA and

IGRA results for detection of M. bovis sensitization in

African lions.
Methods

Animal sampling and blood stimulation

Ante-mortem blood (n=47) and post-mortem tissue (n=12)

samples for this study were selected from a larger cohort of

opportunistically acquired free-ranging African lion samples

which originated from known M. bovis-endemic (Kruger

National Park and Hluhluwe-Imfolozi Park) and exposed

(private game reserves) lion populations in South Africa.

Wildlife populations were classified as exposed or endemic for

M. bovis, based on previous history of M. bovis infection in any

wildlife species in the area (Bernitz et al., 2021). Whole blood

from each lion was collected in BD Vacutainer® lithium heparin

tubes (Becton, Dickinson and Company, Sparks, MD 21152,

USA) after which 1 ml aliquots of heparinized whole blood from

each animal was transferred to a set of QuantiFERON®-TB Gold

Plus (QFT) tubes (Qiagen, Hilden, 40724, Germany), which

included QFT nil tube (negative control), QFT TB2 specific

antigen tube, and QFT mitogen tube (positive control).

Pokeweed mitogen (PWM; 10 mg/ml final concentration in

phosphate buffered saline (PBS); Sigma-Aldrich, St. Louis, MO

63103, USA) was added to the QFT mitogen tube to ensure

adequate stimulation. Tubes were incubated at 37°C for 24

hours, after which blood was transferred to a new 2 ml
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microcentrifuge tube and centrifuged at 2000 x g for 15 minutes.

Plasma supernatant was harvested and frozen at -80°C, while the

remaining cell pellet was stabilised in 1.3 ml of RNALater®

(Ambion, Austin, TX 78744, USA) and stored at -80°C for

downstream analyses. TheM. bovis infection status of the subset

of euthanized lions was confirmed using mycobacterial culture

of post-mortem tissues (Kerr et al., 2022) followed by speciation of

positive cultures using genomic regions of difference (RD)

polymerase chain reaction (PCR) (Warren et al., 2006) and

spoligotyping (Kamerbeek et al., 1997)

Immobilization of animals, blood collection, euthanasia, and

tissue sampling were done by South African Veterinary

Council–registered wildlife veterinarians for procedures

unrelated to this study. Ethical approval for this study was

granted by the Stellenbosch University Animal Care and Use

Research Ethics Committee (Protocol SU-ACU-2017-1489) and

the Stellenbosch University Biological and Environmental Safety

(REC: BES) Research Ethics Committee (Protocol SU-BEE-

2021-22561). Section 20 approval was granted by the South

African Department of Agriculture, Land Reform and Rural

Development (12/11/1/7/2A-1143NC, 12/11/1/7/2A-1181NC,

12/11/1/7/2A-1182C).
QFT CXCL9 gene expression assay

Tubes containing the cell pellet stabilized in RNALater®

were centrifuged at 15000 x g for 1 minute and the

supernatant discarded, after which RNA extraction was

performed using the RiboPure™-Blood Kit (Ambion),

according to manufacturer’s instructions. The concentration

(ng/µl) and quality (A260/A280 and A260/A230 ratios) of

extracted RNA were measured using a Nanodrop 1000

spectrophotometer (ThermoFisher Scientific, Wilmington, NC

28401, USA). Using the QuantiTect® Reverse Transcription Kit

(Qiagen), cDNA was synthesized from extracted RNA,

according to manufacturer’s instructions. An Applied

Biosystems Veriti™ Thermal Cycler (ThermoFisher Scientific)

was used for incubation during reverse transcription.

Using the cDNA, produced from QFT nil, TB2 antigen, and

mitogen whole blood samples, real-time quantitative PCR (real-

time qPCR) assays were performed in triplicate as described by

Olivier et al. (2015). This assay has been previously optimized

and validated for use in African lions (Olivier et al., 2015). For

each animal, the abundance of CXCL9 mRNA, measured in

relation to reference gene tyrosine 3-monooxygenase/

tryptophan 5-monooxygenase activation protein, zeta

polypeptide (YWHAZ) for normalization, was calculated to

determine immune activation (using QFT mitogen and nil

samples) and immune sensitization (QFT TB2 antigen and nil

samples) using the 2-DDCq method as previously described by

Olivier et al. (2015). Presence or absence of M. bovis immune
Frontiers in Cellular and Infection Microbiology 03
sensitization in each lion was assigned using an assay cut-off

value of ≥ 5-fold change (Olivier et al., 2015).
QFT Mabtech Cat IGRA

Plasma (QFT nil, TB2, and mitogen) samples for all African

lions that were used in this study were screened in duplicate

wells using the Mabtech Cat IFN-g ELISA Basic kit (catalogue no.

3122-1H-20; Mabtech AB, Nacka Strand, SE-131 28, Sweden).

The enzyme-linked immunosorbent assay (ELISA) protocol was

performed following manufacturer’s instructions, using a 1:4

plasma dilution in ELISA diluent (PBS, 0.05% Tween®20, 0.1%

bovine serum albumin). The mycobacterial antigen-specific

IFN-g concentrations were determined as described by Gumbo

et al. (2022). TheM. bovis sensitization status was assigned using

an assay cut-off value of 33 pg/ml (Gumbo et al., 2022).
Data analysis

For each animal, the relative abundance of target gene

CXCL9 mRNA was measured by first averaging the raw

triplicate Cq values of nil, TB2 antigen, and mitogen

samples for target and reference genes. The average nil Cq

values were subtracted from either the average TB2 antigen or

the average mitogen Cq values (DCq) before subtracting the

reference DCq value from the target DCq value to obtain the

DDCq. Lastly, the assay result, which measures the relative

fold change in abundance of the target gene (2-DDCq), was

calculated as described by Livak and Schmittgen (2001). To

measure IFN-g concentrations, for each lion, the true optical

density (OD) results of a sample assayed in duplicate, was

calculated by subtracting the mean OD of the negative control

(background control) from the mean OD of samples for QFT

nil, TB2, and mitogen prior to interpolating IFN-g
concentrations (pg/ml) using a cat recombinant IFN-g
standard curve. The proportions of positive and negative

results, using assay-specific lion cut-off values, from paired

samples tested using the QFT Mabtech Cat IGRA and QFT

CXCL9 GEA were compared using McNemar ’s test

(McNemar, 1947) with Yates correction (Yates, 1934)

(https://www.graphpad.com/quickcalcs/mcNemar1/) .

Cohen’s kappa analysis was also used as another measure of

agreement (McHugh, 2012) (https://www.graphpad.com/

quickcalcs/kappa1/). The strength of the association

between paired IGRA and GEA results was determined by

the Spearman correlation coefficient (Schober et al., 2018)

calculated using GraphPad Prism 7 for Windows (version

7.04, GraphPad Software, Inc., San Diego, CA 92108, USA;

www.graphpad.com). Results of analyses were considered

statistically significant if p-value < 0.05.
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Results

Table 1 shows the QFT CXCL9 GEA and QFT Mabtech Cat

IGRA results for all euthanized lions (n=12) in this study whose

M. bovis infection status was confirmed using mycobacterial

culture. The QFT CXCL9 GEA was able to correctly identify all

mycobacterial culture-confirmed infected and uninfected

animals (Table 1). While the QFT Mabtech Cat IGRA was

able to correctly recognize all mycobacterial culture-negative

animals, it incorrectly classified oneM. bovis infected lion (KNP

21/632) as uninfected (Table 1). Using the assay specific cut-off

values to categorize lions as test positive or negative, the paired

test results from a larger cohort of African lions were determined

and are presented in Table 2. This larger cohort included the 12

mycobacterial culture-confirmed M. bovis infected and

uninfected lions as well as 35 lions with unknown infection

status. There was no statistical difference between the

proportions of test positive African lions determined by the

QFT Mabtech Cat IGRA as compared to the QFT CXCL9 GEA

(p = 0.15). There was also a moderate association when

numerical results from the QFT Mabtech Cat IGRA and QFT

CXCL9 GEA were compared (r = 0.59; p < 0.0001; Figure 1) (k =

0.50; 95% confidence interval (CI): 0.26 - 0.73).
Discussion

Although the development of specific immunological tests

for diagnosis of bovine TB in wild felids has so far been relatively

limited, measurement of mycobacterial antigen-specific IFN-g
production and expression of antigen-specific CXCL9 mRNA
Frontiers in Cellular and Infection Microbiology 04
have shown diagnostic potential for detecting M. bovis infection

in African lions (Olivier et al., 2015; Gumbo et al., 2022). In this

study, the performance of these two previously optimized assays

for African lions were compared in order to improve detecting

M. bovis sensitized individuals. The results of this study indicate

that there was no significant difference in the probability of

obtaining the same diagnostic result for M. bovis immune

sensitization status when using either QFT Mabtech Cat IGRA

or QFT CXCL9 GEA with assay-specific lion cut-off values. This

was supported by the moderate association values when

numerical results were compared. Therefore, it appears that

both assays are appropriate for ante-mortem detection of M.

bovis infected lions.

Cytokine assays are widely used for TB diagnosis (Pollock

et al., 2013; Bernitz et al., 2021). Antigen-specific IFN-g is the

most widely recognized biomarker of M. bovis infection in

veterinary studies (Smith et al., 2021b) as well as for M.

tuberculosis infection in people (Klautau et al., 2018; Goletti

et al., 2022). Studies in humans and cattle have also shown that

CXCL9, also known as monokine induced by gamma interferon

(MIG), has potential value as a biomarker for TB diagnosis and

monitoring (Chung et al., 2015; Kumar et al., 2019; Palmer et al.,

2020). A previous study has also shown that in lions, there was

greater upregulation of CXCL9 than either IFN-g or CXCL10

(Olivier et al., 2015). During M. bovis infection, IFN-g promotes

cell-mediated immune responses by activating macrophages and

granuloma formation (Silva Miranda et al., 2012; Palmer et al.,

2022). Additionally, IFN-g, which is essential for the expression

of CXCL9 and CXCL10 by macrophages and several cell types

during the recruitment of T-cells at the site of infection, is

produced to enhance host protection (Algood et al., 2003;
TABLE 1 Results of mycobacterial culture confirmed Mycobacterium bovis infected and uninfected African lions using the QuantiFERON®-TB
Gold Plus (QFT) Mabtech Cat interferon gamma release assay (IGRA) and QFT CXCL9 gene expression assay (GEA). Test results were categorized
as positive if the QFT CXCL9 GEA value was ≥ 5-fold change and the QFT Mabtech Cat IGRA value was ≥ 33 pg/ml.

Lion ID Mycobacterium bovis
culture status

QFT CXCL9 GEA QFT Mabtech Cat IGRA

TB antigen specific fold
change (2-DDcq)

Test
Result

TB antigen specific IFN-g
concentration (pg/ml)

Test
Result

PPGR-Ple.1 Neg 0.39 Neg 0 Neg

PPGR-Ple.2 Neg 0.77 Neg 0 Neg

PPGR-Ple.3 Pos 17.15 Pos 538 Pos

PPGR-Ple.4 Pos 7.66 Pos 1075 Pos

PPGR-Ple.5 Neg 4.99 Neg 0 Neg

PPGR-Ple.11 Neg 1.49 Neg 0 Neg

ZRR-Ple.1 Pos 481.04 Pos 101 Pos

ZRR-Ple.2 Pos 136.55 Pos 359 Pos

KNP 17/612 Pos 68.91 Pos 474 Pos

KNP 19/372 Pos 7687.68 Pos 380 Pos

KNP 20/20 Pos 704.28 Pos 37 Pos

KNP 21/632 Pos 30.13 Pos 9 Neg
fron
ID – lion identification number; QFT – QuantiFERON®-TB Gold Plus; GEA – gene expression assay; IFN-g – interferon gamma concentration; CXCL9 – chemokine (C-X-C motif) ligand
9; IGRA – interferon gamma release assay; Neg – negative; Pos – positive.
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Cooper et al., 2011). The genes CXCL9 and CXCL10 code for

monokine-induced by gamma interferon (MIG) and IFNg-
induced protein 10 (IP-10), respectively, which have shown

diagnostic potential for TB in both humans and animals

(Smith et al., 2021b). Therefore, it is not surprising that

CXCL9 expression correlates with enhanced T-cell IFN-g
production induced by TB-specific antigens ESAT-6/CFP-10

in this study. The study by Olivier et al. (2015) highlighted the

increase in mean Cq values between TB antigen-stimulated

samples and unstimulated samples, which were 8.8 for CXCL9,

5.6 for CXCL10, and 1.0 for IFN-g. Although CXCL10 was

upregulated, CXCL9 had the greatest upregulation of the three

genes evaluated (CXCL9, CXCL10, IFN-g) in M. bovis infected

African lions, showing its potential as a diagnostic marker. A

mean Cq difference of 1 is not sufficient to differentiate between

unstimulated and stimulated sample, hence IFN-g GEA was not

suitable, although an antigen-specific IGRA has been shown to

be useful for the detection of M. bovis in African lions (Gumbo
Frontiers in Cellular and Infection Microbiology 05
et al., 2022). Although the CXCL9 GEA and IGRA results were

associated in the current study, there was a single discordant

result (lion KNP 21/632) for a culture-confirmed positive lion.

Since both assays have the same reported imperfect sensitivity

(87.5%) with high specificity (100%) (Olivier et al., 2015; Gumbo

et al., 2022), this was not unexpected. Therefore, findings from

this study support use of either IGRA or CXCL9 GEA for

detection of M. bovis infection in lions.

Since both assays require blood samples, use of QFT IGRA

or CXCL9 GEA provides an advantage over the TST, which

necessitates immobilization of lions twice in a 72-hour period

(Keet et al., 2010; Miller et al., 2019), while the blood-based

assays can be completed within 36-48 hours of blood collection.

In addition, blood-based assays have a significantly reduced

turnaround time compared to mycobacterial culture which can

take weeks for results (Hines et al., 2006). These assays also

employ mycobacteria-specific peptides for stimulation

compared to PPDs used in the TST, which would decrease the
TABLE 2 Paired results of African lions tested using QuantiFERON®-TB Gold Plus (QFT) Mabtech Cat interferon gamma release assay (IGRA) and
QFT CXCL9 gene expression assay (GEA), based on species-specific assay cut-off values (33 pg/ml, ≥ 5-fold change, respectively) were compared
using McNemar’s test (p = 0.15) and Cohen’s kappa analysis (k = 0.50; 95% confidence interval (CI): 0.26 - 0.73).

IGRA positive IGRA negative TOTAL

CXCL9 GEA positive 19 9 28

CXCL9 GEA negative 3 16 19

TOTAL 22 25 47
fron
IGRA, interferon gamma release assay; GEA, gene expression assay; CXCL9, chemokine (C-X-C motif) ligand 9.
FIGURE 1

Paired numerical results of QuantiFERON®-TB Gold Plus (QFT) CXCL9 gene expression assay (GEA) and QFT Mabtech Cat interferon gamma
release assay (IGRA) for a cohort of Mycobacterium bovis exposed African lions. Spearman rank correlation showed a statistically significant
moderate positive association between the results obtained using GEA and IGRA (r = 0.59, p < 0.0001).
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likelihood of false positive results due to cross-reactivity to

nontuberculous mycobacteria (Keet et al., 2010; Viljoen et al.,

2019). In addition to the convenience of using a blood-based

assay, the QFT stimulation platform allows generation of

samples that can be tested in both immunological assays.

Archived samples then provide material for repeated testing,

retrospective studies, or the development of new assays

(Chileshe et al., 2019; Smith et al., 2021a). Therefore, the QFT

stimulation platform offers a valuable addition to the toolbox for

evaluating antigen-specific immunological responses in

African lions.

The majority of lions had the same diagnostic outcome using

the paired assays, although only a moderate association in

numerical results was detected. This could be explained by the

influence of IFN-g as a key cytokine in cell-mediated immune

responses in TB, and more specifically, its role in promoting

expression of CXCL9 (Lande et al., 2003; Metzemaekers et al.,

2018). An explanation for the moderate association is that this

study compared cytokine protein production versus gene

expression assays. Complex protein formation and post-

transcriptional splicing, and translational regulation might

result in a lag in detecting cytokine proteins compared to

mRNA (Guo et al., 2008). Hence the 24-hour incubation

period may not have been optimal for both assays

simultaneously, therefore, future studies should consider

exploring QFT incubation times appropriate for African lions.

Discordant results might also result from technical errors or

differences in sample handling of the cell pellet and plasma (Guo

et al., 2008).

Although cytokine mRNA expression and protein production

are important and complementary TB diagnostic tools in veterinary

and human studies, choosing a single approach for testing wild

felids is challenging. One limitation of cytokine GEA is that it can be

laborious in terms of RNA isolation and reverse transcription. In

addition, it requires greater technical skill, specialized laboratory

equipment, and more expensive reagents, which may not be

available, especially if testing wildlife. The QFT Mabtech Cat

IGRA uses commercially available antibodies, making it

technically easier, more standardized, and cost-effective

(approximately $64/animal) than the QFT CXCL9 GEA

(approximately $158/animal), especially when screening large

numbers of African lions. However, when feasible, the use of

both assays may increase confidence in categorizing the M. bovis

infection status in lions (Sivakumaran et al., 2021). Overall, more

research is needed to focus on screening and investigating

additional TB biomarkers, such as MIG, in felids by extrapolating

from humans and other species. Recommendations for future

studies include evaluation of additional cytokine release assays

such as interferon gamma-induced protein 10 (IP-10), MIG,

tumour necrosis factor alpha (TNF-a), interleukin-2 (IL-2) used

in biosignatures in human TB, as well as circulating serum

biomarkers that could be incorporated into a diagnostic

algorithm for felids using a convenient set of samples (Yong
Frontiers in Cellular and Infection Microbiology 06
et al., 2019; Morris et al., 2021). The current study was able to

utilize a single antigen-stimulated blood sample for both the IGRA

and CXCL9GEA, which facilitates analyses, especially when using a

convenient stimulation platform such as the QFT. Assays for TB

detection in wildlife require that samples be easily collected,

processed and transported from remote field conditions.

Therefore, this study highlights how novel application of tools for

disease screening can be used in conservation programmes for wild

felids in southern Africa, as well as managed populations globally.
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