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Microbiota-relevant signatures have been investigated for human papillomavirus-

related cervical cancer (CC), but lack consistency because of study- and

methodology-derived heterogeneities. Here, four publicly available 16S rRNA

datasets including 171 vaginal samples (51 CC versus 120 healthy controls) were

analyzed to characterize reproducible CC-associated microbial signatures. We

employed a recently published clustering approach called VAginaL community

state typE Nearest CentroId clAssifier to assign themetadata to 13 community state

types (CSTs) in our study. Nine subCSTs were identified. A random forest model

(RFM) classifier was constructed to identify 33 optimal genus-based and 94

species-based signatures. Confounder analysis revealed confounding effects on

both study- and hypervariable region-associated aspects. After adjusting for

confounders, multivariate analysis identified 14 significantly changed taxa in CC

versus the controls (P < 0.05). Furthermore, predicted functional analysis revealed

significantly upregulated pathways relevant to the altered vaginal microbiota in CC.

Cofactor, carrier, and vitamin biosynthesis were significantly enriched in CC,

followed by fatty acid and lipid biosynthesis, and fermentation of short-chain

fatty acids. Genus-based contributors to the differential functional abundances

were also displayed. Overall, this integrative study identified reproducible and

generalizable signatures in CC, suggesting the causal role of specific taxa in

CC pathogenesis.
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1 Introduction

Cervical cancer (CC) remains the fourth most common cancer in

women worldwide, with 604,127 new cases in 2020 and more than

341,831 deaths, accounting for nearly 8% of all female cancer-related

deaths annually (Sung et al., 2021). This common infection-related

neoplasm and its premalignant precursor are caused by high-risk

human papillomavirus (HR-HPV) infections. HR-HPV persistence is

critical for precancerous lesions and cancers.

Microbiota-relevant biomarkers have been identified and

characterized in human diseases related to the gut, liver, brain, and

lungs. Epidemiological studies have associated the overrepresentation of

vaginal non-Lactobacillus-dominant microorganisms with HPV, cervical

lesions, and CC (Mitra et al., 2015; Brusselaers et al., 2019; Norenhag

et al., 2020; Kovachev, 2020), indicating that such species may be less

protective and non-optimal in these conditions. However, little is known

about the global changes in the structure of communities colonizing the

vagina in CC. Several research groups that utilize sequence-based

techniques have found associations between CC and vaginal organisms

(Laniewski et al., 2018; Cheng et al., 2020; Xie et al., 2020; Kang et al.,

2021). Apart from bacterial vaginosis-related microorganisms, other

members such as Streptococcus, Staphylococcus, Clostridium, and

Corynebacterium may exert key tumor-promoting effects in

carcinogenesis (Łaniewski et al., 2020; Manzanares-Leal et al., 2022).

Consistent with this view, Staphylococcus, Bacteroides, and Clostridium

have been identified as signatures in CC (Fan et al., 2021). The

mechanistic underpinnings of these epidemiological relationships,

particularly the role of specific members or dysbiosis in driving

tumorigenesis, remain to be elucidated. A previous study indicated that

the L. iners metabolite lactate can activate Wnt signaling through the

lactate-Gpr81 complex, which increases the level of core fucosylation in

epidermal cells and inhibits the proliferation and migration of CC cells

(Fan et al., 2021). However, studies on different cohorts may generate

population-specific results. Further, these studies show substantial

variations in signatures, largely because of various biological effects

influencing the taxonomic profiles of vaginal microbial configuration

and inconsistent processing of sequencing data.

Despite the advances in bioinformatics approaches related to

microbiota and disease, microbiota research continues to be

hindered by methodological challenges. Meta-analysis provides a

subset of tools that are powerful and compressive in reducing the

effect of methodological and biological confounders resulting in

reproducible and rigorous yields across numerous studies (Wirbel

et al., 2019). However, informative descriptions of reliable bacterial

profiles and CC signatures in meta-analyses with large sample sizes

remain lacking. Furthermore, the vaginal microbiota is highly

dynamic and prone to physiological, host genetic, and

environmental influences (France et al., 2022); therefore,

heterogeneities between different studies are inevitable. In a seminal

work, France et al. established a VAginaL community state typE

Nearest CentroId clAssifier (VALENCIA) tool based on the nearest

centroid classification algorithm and leveraged it for assigning vaginal

microbiota to community state types (CSTs) (France et al., 2020),

which were previously introduced by Ravel et al. (2011) in 2011.

VALENCIA harbors a broad application to the vaginal microbiome,

with no specificity to disturbed cancer-related communities. This
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enables cross-study comparisons and facilitates negation of the

limitations from previous studies (sample numbers, geographic

location, or age), resulting in a global characterization of CC-related

vaginal microbiomes from multiple datasets. Overall, combining

different datasets to investigate the vaginal microbial patterns

correlated to CC based on the VALENCIA method, can

help determine the relevant mechanisms of bacterial ly

driven tumorigenesis.

In this study, we present a combined analysis of four studies,

including 16S rRNA amplicon sequencing data from 51 CC cases and

120 healthy controls, to investigate the generalizable CC-associated

microbial signatures, thus contributing to the overall understanding

and interpretation of the vaginal microbiota as a regulator of

CC pathogenesis.
2 Methods

2.1 Data acquisition and preprocessing

We collected vaginal microbiota datasets containing 16S rRNA gene

sequencing reads from women with CC and from healthy controls using

published literature and the National Center for Biotechnology

Information (NCBI) database. The inclusion criteria for the study,

were as follows: (1) studies containing publicly available 16S rRNA

gene sequences utilizing 454 or Illumina sequencing platforms up to

March 31, 2022; (2) studies using vaginal swabs as sample source; (3)

women with CC according to the results of HPV testing and histology of

cervical biopsy, compared to healthy controls (HPV-negative and

cytology-negative women) or HPV-negative women. Considering the

anatomical differences and substantial site-associated discrepancies in the

microbiome (Kim et al., 2009; Zhang et al., 2021), we restricted the

sample type to the vagina. Four cohorts with accessible raw data from

vaginal samples were selected for this study (PRJNA687644, SRP122481,

PRJNA448161, and PRJNA518153).

Sequence read archive (SRA) files of all samples were downloaded

using prefetch software. The 16S raw data were preprocessed using

quantitative insights into microbial ecology 2 (QIIME2) (Bolyen et al.,

2019). To eliminate sequencing errors, the Divisive Amplicon

Denoising Algorithm 2 (DADA2) tool was used to denoise

sequencing reads and yield amplicon sequence variants (ASVs)

(Wang et al., 2007). Next, the ASVs were aligned and classified via

the SLIVA 132 database (Quast et al., 2013) for each dataset according

to the primers used and the length of the reads; we then applied it to

classify the taxonomy for the ASVs in the dataset. Singleton,

chloroplast, and mitochondrial ASVs were filtered (Wang et al.,

2020). Phylogenetic investigation of communities by reconstruction

of unobserved states (PICRUSt2) analysis was conducted using ASVs

as the input for each sample (Douglas et al., 2020).
2.2 VALENCIA clustering analysis

We employed a novel clustering approach based on the nearest

centroid classification algorithm, termed as VALENCIA, for the

reproducible and rigorous classification of all samples. Assignments
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at the species level were based on 13 previously described sub-CSTs.

CST I (L. crispatus dominated) and III (L. iners dominated) are

divided into two sub-CSTs, denoted as CST-A and CST-B,

respectively, which are more common than CST II (L. gasseri

dominated) and CST V (L. jensenii dominated). The former

represents focal species with high relative abundance whereas the

latter represents those with lower abundance (France et al., 2020).

CST II, including non-optimal microorganisms, consists of CST IV-

A, IV-B, and IV-C. Among these, CST IV-A has high relative

abundance of Candidatus Lachnocurva vaginae (formerly known as

BVAB1) and moderate relative abundance of G. vaginalis, whereas

IV-B shows a contrasting trend. CST IV-C is divided into five sub-

CSTs as follows: CST IV-C0—an even community with a moderate

amount of Prevotella, CST IV-C1—Streptococcus dominated, CST IV-

C2—Enterococcus dominated, CST IV-C3—Bifidobacterium

dominated, and CST IV-C4—Staphylococcus dominated (France

et al., 2020). The reference centroids are available at github.com/

ravel-lab/VALENCIA. We assigned discordant samples in four

different datasets to the CSTs using VALENCIA. We then

conducted study- and sequencing target-level comparisons.
2.3 Random forest model

To assess the predictive performance of genus-based CC-related

signatures, a random forest classifier was trained on 80% of the data

and tested on the remaining 20% of our data using the random forest

package in R (Breiman, 2001; Breiman, 2002). In order to evaluate the

performance of the predictive model and get more precise curves, we

used a 10-fold cross-validation within the training set. The cross-

validational error curves (average of 10 test sets each) from five trials

of the 10-fold cross-validation were averaged. Variable importance by

mean decrease in accuracy was calculated for the random forest

models using the full set of features. The number of variables was 33 at

the genus level and 94 at the species level at the lowest cross-

validational error. Thus, the predictive model was constructed using

the 33 or 94 most important variables, which were further applied for

receiver operating characteristic curve (ROC) analysis.The

performance of the models was measured as area under curve

(AUC) when applied to the test set, and the confidence intervals for

ROC curves were calculated using the pROC R package (Robin

et al., 2011).
2.4 Multivariate analysis

First, we conducted a cofounder analysis at the genus levels using

non-metric multidimensional scaling (NMDS) and permutational

multivariate analysis of variance (PERMANOVA). We performed

an analysis of the similarity of communities according to the variables

relevant to the disease, study and hypervariable regions, and visualize

this via NMDS in vegan package (Dixon, 2003). The reference are

available at https://rdrr.io/cran/vegan/man/metaMDS.html. We

measured community differences using Bray-Curtis distance.

Next, we conducted a multivariate meta-analysis to consistently

detect differentially changed taxa in CC vs. those in the controls across

datasets, using the MetaDE software in R (Wang et al., 2012). The
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statistics (fold-change and FDR P-value) for each altered taxon were

obtained. The three selected datasets had the same sequencing targets,

further alleviating the confounding factors. Additional conservative

and biologically concordant findings were obtained using the

combined effect size (ES) method for meta-analysis.

Further, we employed PICRUSt2 for the differentially functional

profiling of vaginal microbiota from the MetaCyc database (Caspi et al.,

2016). Then, based on the predicted functional pathways, we assessed

the contribution of the top 30 genera to the distinguished pathways

using z-score normalization. The contribution was defined as the

proportion of the functional abundance of each genus to the total

functional abundance of the top 30 genera in each differential pathway.
2.5 Code availability

The codes and scripts are available at https://github.com/

yuhongfeilll/Leveraging-16S-rRNA-data-to-uncover-vaginal-

microbial-signatures-in-women-with-cervical-cancer.
3 Results

3.1 Taxonomic composition and VALENCIA
clustering

In total, of 51 CC and 120 healthy control samples were acquired

from the four 16S rRNA datasets. The demographic and clinical

features of these studies are shown in Table 1. All samples were

sequenced at a suitable depth for further analysis. The count of

sequencing reads in samples ranged from 72 to 150,051, with an

average of 23,285.

At the genus level, 242 taxa were identified in total; among these,

the top 10 taxa are displayed in Figure 1A. They were as follows:

Lactobacillus, Gardnerella, Prevotella, Streptococcus, Sneathia,

Porphyromonas, Bifidobacterium, Atopobium, Peptoniphilus and

Anaerococcus. At the species level, 183 taxa were identified in total;

among these, the top 30 taxa are displayed in Figure 1B. The ten

dominant taxa were as follows: Lactobacillus iners AB−1, uncultured

bacterium, Sneathia amnii , Chlamydia trachomatis , and

Porphyromonas sp. 2007b, Atopobium vaginae, Prevotella bivia

DSM 20514, uncultured Mycoplasmatales bacterium, Prevotella

disiens JCM 6334 = ATCC 29426 and Lactobacillus psittaci.

Next, we used VALENCIA-based clustering to assign the

metadata to the 13 sub-CSTs. In total, nine sub-CSTs were defined.

Across all samples, the most common community was CST I-A (58,

33.92%), followed by CST IV-C0 (37, 21.64%), CST IV-B (20,

11.70%), CST I-B (18, 10.53%), CST IV-C1 (17, 9.94%), CST IV-C3

(8, 4.68%), CST IV-A (6, 3.51%), CST IV-C4 (6, 3.51%), CST IV-C2

(1, 0.58%) (Figure 1B).

Furthermore, in CC, the most common community was CST IV-

C0 (23, 45.10%), followed by CST I-A (7, 13.73%), CST IV-B (5,

9.80%), CST IV-C1 (5, 9.80%), CST IV-C4 (5, 9.80%), CST IV-A (2,

3.92%), CST IV-C3 (2, 3.92%) CST I-B (1, 1.96%), CST IV-C2 (1,

1.96%) (Figure 2A).

Given the variances in both study- and hypervariable region-

related aspects, we also examined the relationships between
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B

A

FIGURE 1

The relative abundance of the top 10 genera and 30 species across all samples. (A) Bar chart showed the relative abundances of the top 10 genera
according to the disease and study. (B) Heatmap showed the relative abundances of the top 30 species across 4 studies. The proportions of samples
assigned to each CST across all samples were also presented (B).
TABLE 1 Characteristics of the 4 datasets included in this study.

Cohorts Groups
Age

(average ±
SD)

BMI
(average ±

SD)
Race HPV

statusa
Clinical
stage

Sequencing
platform Sequencing

target Accession

China-SH (Chen
et al., 2020)

Cancer: 9
Control:
68

56.11 ± 9.02
43.00 ± 8.69

23.99 ± 0.68
22.94 ± 2.74

Asian: 77

HPV16/18
+: 4
HPV
others+: 1
LR-HPV:
4

NA

Illumina MiSeq

V3 -V4 SRP122481

China-GX (Jiang
et al., 2021)

Cancer:
20
Control:
6

≤ 54: 10a

>54: 10a
NA Asian: 26

HPV16/18
+: 15
HPV52/
58/59+: 3
HPV-: 2

I B2: 1
II A2: 3
II B: 8
III B: 4
IV A: 3
V B: 1

Illumina HiSeq V3 -V4 PRJNA687644

USA1 (Tsementzi
et al., 2021)

Cancer:
12
Control:
30

NA NA

white: 23
African-
american: 14
Asia: 5

NA NA Illumina MiSeq V3 -V4 PRJNA448161

USA2 (Ilhan et al.,
2019)

Cancer:
10
Control:
18

38.90 ± 9.1
40.4 ± 7.0

27.1 ± 7.0
31.4 ± 11.5

Hispanic: 9
non-
Hispanic: 19

NA NA NA V4 PRJNA518153
F
rontiers in Cellular a
nd Infection
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acervical cancer, NA, not available.
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VALENCIA-defined CSTs and confounders. Examining the

distribution of each sub-CST among cohorts and hypervariable

regions indicated clear clustering by study and hypervariable region

(Figures 2B, C). The proportion of sub-CSTs differed among studies

and between hypervariable regions (Supplementary Table 1).
3.2 Identification of vaginal microbial
signatures for CC

To examine the predictive value of classification based on genus-

and species- levels CC-related microbial signatures, a RFM was

employed to discriminate the CC from controls. At the genus level,

our results showed that the top 33 taxa were selected as the optimal

signature sets between the 51 CC cases and 120 controls (Figure 3A).

The top 33 taxa with mean decreased accuracy of the genera are

displayed in Figure 3A. Among these, Rhodococcus was the highest-

ranking signature in this model. Additional signatures included

Finegoldia, Wolbachia, Fusobacterium, Porphyromonas and so on.

High accuracy was achieved based on these 33 signatures, as indicated

by an AUC of up to 82.06% (95% CI, 73.72%−91.48%) on the training

set when differentiating between the CC and controls with

high sensitivity and specificity (Supplementary Figure 1A).

Interestingly, a good performance was also observed on the test

set with an AUC value of 80.73% (95% CI, 64.91%− 96.55%)

(Supplementary Figure 1B).

At the species level, the top 94 taxa were selected as the optimal

signature sets. The top 30 taxa with mean decreased accuracy of the

genera are displayed in Figure 3B. High accuracy was achieved based

on these 94 signatures, as indicated by an AUC of 81.25%

(95% CI, 72.35%−90.15%) on the training set (Supplementary

Figure 1D), and 78.82% (95% CI, 62.17%−95.47%) on the test set

(Supplementary Figure 1E).
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3.3 Meta-analysis of the vaginal microbiota
in CC versus controls

As for the samples between diseases and controls, NMDS revealed

larger variance at the genus level (Adonis F = 0.605, DF = 1, R2 =

0.004, P = 0.688; Figure 4A; Supplementary Table 2). The

confounders related to both the study and sequencing target also

presented a close relation with the alteration of community

dissimilarity. Community dissimilarity based on NMDS showed

that the samples were significantly separated by study (F = 6.813,

DF = 3, R2 = 0.109, P = 0.001; Figure 4B,;Supplementary Table 2) and

hypervariable region (F = 11.133, DF = 1, R2 = 0.062, P = 0.001;

Figure 4C; Supplementary Table 2). Homogeneity of community

dispersions test indicated that the variances between different

samples from CC were higher than the samples from the controls

(Betadisper F = 1.786, P = 0.169; Supplementary Figure 2A; Table 3).

Significant differences in community variability were observed with

respect to study (F = 6.511, P = 0.001; Supplementary Figure 2B;

Table 3) and hypervariable region (F = 8.219, P = 0.006;

Supplementary Figure 2C; Table 3).

Regarding the impact of the study and sequencing target, we

conducted a multivariate analysis to adjust the study- and sequencing

target-related factors and identify distinguished taxa at the genus and

species levels. In total, 14 distinguishable changed taxa were identified in

the meta-analysis of the CC versus controls, including 13 enriched

taxa and 1 decreased taxon. At the genus level, six increased taxa

(genera Porphyromonas, Porphyromonadaceae_bacterium_C941,

Sneathia , Rikenellaceae_RC9_gut_group , Peptococcus and

Criibacterium_bergeronii) and one decreased taxon (the genus

Lactobacillus) were observed (P < 0.05, Figure 5A). At the species level,

seven increase taxa (species Porphyromonadaceae_bacterium_C941,

P o r p h y r o m o n a s _ s p . _ 2 0 0 7 b , P e p t o n i p h i l u s _ c o x i i ,

Porphyromonas_sp._HMSC077F02, Criibacterium_bergeronii,
B

C

A

FIGURE 2

The proportions of samples assigned to each CST in samples grouped by disease (A), study (B) and hypervariable regions (C).
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Sneathia_amnii and Sneathia_sanguinegens) were observed. (P <

0.05, Figure 5B).
3.4 Predicted functional profiles in CC

Regarding functional profiles, we further assessed the

microbiome-related functional profiles and the contribution of

genus-based taxa to distinguish functional pathways. In total, we
Frontiers in Cellular and Infection Microbiology 06
examined 80 differentially enriched pathways between CC and

controls, with 53 and 27 differentially enriched pathways in CC and

controls, respectively. Specifically, cofactor, carrier, and vitamin

biosynthesis were significantly elevated in CC, followed by fatty

acid and lipid biosynthesis (i.e., unsaturated fatty acid biosynthesis

and lipid IVA biosynthesis), and fermentation (i.e., fermentation to

short-chain fatty acids). Carbohydrate biosynthesis (GDP-mannose

biosynthesis), nucleoside and nucleotide biosynthesis, and secondary

metabolite biosynthesis were also significantly enriched in CC
B

C

A

FIGURE 4

Non-metric multidimensional scaling analysis for all 16S rRNA samples based on genus-level according to the variables relevant to the disease (A),
study (B) and hypervariable region (C). Adonis test indicated the explained variances with respect to cervical cancer and other variables.
BA

FIGURE 3

Identification of microbial genus- and species- based signatures of cervical cancer. (A) Thirty-three genera were selected as the optimal signatures panel
by random forest models between 51 cervical cancer and 120 controls via a ten-fold cross-validation. (B) The top 30 optimal species signatures panel
were presented.
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(Figure 6). Regarding the contribution of genera to distinguished

pathways, Prevotella was the only contributor to most functional

abundances. Other anaerobes, such as Gardnerella, Dialister, and

Megasphaera, were the main contributors to the cofactor, carrier, and

vitamin biosynthesis; Gardnerella, Megasphaera, and Lactobacillus

were the main contributors to the fermentation of short-chain fatty

acids (SCFAs); Streptococcus was the main contributor to fatty acid

and lipid biosynthesis, along with Prevotella (Figure 7).
Frontiers in Cellular and Infection Microbiology 07
4 Discussion

We combined four 16S rRNA datasets to conduct a meta-analysis,

including amplicon sequencing data from 51 CC cases and 120 controls.

We identified reproducible and generalizable CC-related microbial

signatures using a random-forest model. After adjusting for

cofounders, multivariable analysis in terms of microbial composition

and function revealed significantly altered taxa and pathways. Analysis of
FIGURE 6

Differentially functional alternations in cervical cancer and controls. Sankey diagram displayed the associations between the differential functional
pathways and metabolic reactions. Metabolic reactions were grouped by the MetaCyc pathway categories.
B

A

FIGURE 5

Significantly changed taxa in cervical cancer. The relative abundances in cervical cancer versus controls for the 6 genera (A) and 7 species (B)
significantly enriched and 1 genus decreased (A) in the meta-analysis, along with their log2 fold-changes in the 3 datasets, combined effect sizes.
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the bacterial-based contribution to altered functional abundances

elucidated the microbiota-driven regulators in CC pathogenesis.

The RFM has been widely used to identify biomarkers in the field

of microbiome research, including colorectal adenoma, CRC, lung

cancer, and hypertension (Li et al., 2017; Thomas et al., 2019; Wang

et al., 2020; Yang et al., 2021; Liu et al., 2021; Wu et al., 2021). A recent

16S rRNA meta-analysis employed RFM to distinguish colorectal

adenomas from controls with an average AUC of 0.80 and to

distinguish colorectal adenomas from controls with an average

AUC of 0.89 (Wu et al., 2021). We constructed a RFM

classification capable of discriminating CC from controls with a

good performance under AUC values of 82.6% and 80.73% on the

training and test datasets at the genus level, respectively. Similarly, at

the species level, this classifier achieved AUC values of 81.25% and

78.82%, respectively. Importantly, these impressive performances

were independent of both study- and methodology-associated

effects. Confounder analysis indicated that study- and hypervariable

region-related factors significantly affected microbial configuration.

These findings imply the existence of shared CC-associated

biomarkers that can be identified using the RFM classifier, despite

the heterogeneities. This further demonstrated that the microbial

signatures identified using the RFM were explained by disease status

rather than confounder-related aspects.

The vaginal microbial configuration varied between the CC and

control groups. The reported altered taxa in CC include BV-related

anaerobes and aerobic bacteria (Laniewski et al., 2018; Fan et al., 2021;

Wang et al., 2021; Manzanares-Leal et al., 2022). Moreover, the vaginal

microbiota in CC were found to present larger amounts of gut bacteria,

such as Streptococcus, Peptostreptococcus, Enterococcus, Escherichia-

Shigella, Staphylococcus, and Klebsiella (Zheng et al., 2019; Wang et al.,

2021), which are rare in the vagina under normal conditions, but are

common in the gut (Zheng et al., 2019). We observed that both

differential taxa and signatures for differentiating CC from controls

varied greatly. Some of the differentially elevated bacteria were
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biomarkers as well at both genus and species levels, such as the genera

Sneathia, Peptococcus, and Porphyromonas and the species

Sneathia_amnii and Porphyromonas_sp._2007b. It has been

demonstrated that Sneathia is the only bacterium overrepresented in

the initiation and progression of cervical carcinogenesis and arises as a

consequence of the disease (Laniewski et al., 2018). This genus has also

been reported as a biomarker in previous observations on cervical lesion

and CC (Laniewski et al., 2018; Chen et al., 2020; Mitra et al., 2021).

Notably, in our differential abundance analyses, Sneathia and S. amnii

showed significantly increased abundances in CC. This phenomenon

may be explained by the potential release of toxic products by adherent

Sneathia to alter the characteristics of host tissue and directly mediate the

effects on the cervical microenvironment (Gentile et al., 2020; Theis et al.,

2021). Łaniewski et al. (Laniewski and Herbst-Kralovetz, 2021)

demonstrated that S. amnii showed the high proinflammatory

potential through induction of cytokines, iNOS, and oxidative stress-

associated compounds. It is plausible to postulate that this species may

contribute to a milieu that favors cervical carcinogenesis by achieving a

proinflammatory environment as a regular. The role of this species in CC

pathogenesis thus warrants further investigation.

The role of cancer-related microorganisms has been widely discussed

in cancer microbiome research, as they provide differential markers for

cancer (i.e., diagnosis, causality, and treatment) (Sholl et al., 2022); for

instance, two Korean studies identified specific biomarkers to predict the

severity of cervical diseases using a RFM (Lee et al., 2020; Kang et al.,

2021). Regarding the causal links between CC and vaginal microbiota, it

is plausible to postulate that the vaginal microbiota may act as a cancer

regulator during cervical tumorigenesis. Functional analysis can provide

new insights into the potential bacteria-driven mechanisms and

strengthen the interpretation of vaginal microbiota-based

carcinogenesis. In particular, evidence has indicated that fatty acids

contribute to gynecological carcinogenesis (Mozihim et al., 2022). Fatty

acid and lipid alterations in cervicovaginal lavages and blood samples are

reported to be closely related to CC (Ilhan et al., 2019; Nam et al., 2021).
FIGURE 7

The contributions of the top 30 genera to the differential functional pathways. Heatmap showed the differential functional abundances in cervical cancer
and controls (P<0.05), and the contributions of the top 30 genera to the pathway abundances. The z-score of each genus to each pathway was
indicated in the heatmap. A positive z-score means that the pathway by the genus contributes to its relative increase in cervical cancer, whereas a
negative z-score means the pathway by the genus contributes to its decrease in cervical cancer.
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Lipids that distinguish CC from healthy controls show a strong positive

correlation with genital inflammation (Ilhan et al., 2019). A dysbiotic

microbiota dominated by aerobic microbes is a potential contributor to

an inflammatory microenvironment (Manzanares-Leal et al., 2022). It

can also drive pathology by promoting immune evasion that favors

tumor cell survival. The genera Prevotella and Streptococcus were the

main contributors to fatty acid and lipid biosynthesis and were also

identified as potential microbial signatures in CC. In vitro studies have

shown that Prevotella induces higher concentrations of cytokines

compared with L. crispatus (Dabee et al., 2021). P. bivia is thought to

be the major contributor to lipopolysaccharide (LPS) concentrations in

vaginal secretions (Dabee et al., 2021). Consistent with this hypothesis,

Prevotella was found to contribute the most to the biosynthesis of lipid

IVA, a key intermediate in LPS biosynthesis (Kovach et al., 1990). LPS

activates nuclear factor-kappa B (NF-kB) signaling by binding to Toll-

like receptor (TLR) 4 and CD14 on genital epithelial cells, monocytes,

and macrophages (Nasu and Narahara, 2010). Streptococcus, another

contributor, may exert pro-inflammatory effects by producing specific

metabolites. Vaccenate discriminated between CC and control cases

(Ilhan et al., 2019). In our study, unsaturated fatty acid and lipid

biosynthesis (i.e., oleate/vaccenate and gondoate) were significantly

upregulated in CC, which is consistent with previous findings. In vitro

studies have shown that oleic acid can promote the growth of CC cells by

upregulating the Src/ERK pathway (Yang et al., 2018). Species from the

genus Streptococcus (Group B Streptococcus) have been reported to be

involved in oleic acid biosynthesis during aerobic growth and contribute

to virulence (Yamamoto et al., 2006). This suggests that increased

Streptococcus may be involved in the disease-promoting effects of

oleate/vaccenate, thus enhancing genital inflammation and promoting

cervical carcinogenesis.

This study has several limitations. First, we conducted a meta-

analysis of 16S rRNA data based on a relatively moderate sample size

with no identification of taxonomic and metabolic microbial marker

genes, thus necessitating comparisons across studies via combined

metagenomic analysis. The reasons driving the relatively small sample

size are multifactorial. For example, we performed a combined

analysis of the vaginal microbiome based on knowledge of

anatomic potential and substantial site-linked differences in the

microbiome (Kim et al., 2009; Zhang et al., 2021). Further, some

authors were reluctant to share raw sequences, and several studies

lacked complete raw sequences or metadata. Second, despite

examining potential confounders such as study and hypervariable

regions, demographic-related confounding effects such as age, HPV

genotyping, and clinical state of the cancer, were not included in this

study. The intricate relationship between the microbial findings and

these clinical features was also not observed due to limited raw data.

In summary, our study aggregated and integrated microbial

vaginal samples in a consistent pattern from multiple datasets,

identified community structures designated using VALENCIA

clustering, and characterized bacterial signatures that were

uniformly over-represented in CC versus controls among cohorts.

The altered microbial taxa and functions established in this meta-

analysis could pave the way for further bacteria-driven causal studies

on CC. Considering disease- and individual-correlated confounders

using multi-omics approaches is thus of great importance. Definitive

causality for the key players of unique taxa in CC pathogenesis will

emerge from more molecular-relevant epidemiological relationships
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on a larger scale, as well as clarification of the mechanisms involved in

both clinical studies and experimental animal studies.
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