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Evidence supportive of a
bacterial component in the
etiology for Alzheimer’s disease
and for a temporal-spatial
development of a pathogenic
microbiome in the brain

Yves Moné, Joshua P. Earl , Jarosław E. Król , Azad Ahmed,
Bhaswati Sen, Garth D. Ehrlich* and Jeffrey R. Lapides*

Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced
Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
Background: Over the last few decades, a growing body of evidence has

suggested a role for various infectious agents in Alzheimer’s disease (AD)

pathogenesis. Despite diverse pathogens (virus, bacteria, fungi) being detected

in AD subjects’ brains, research has focused on individual pathogens and only a

few studies investigated the hypothesis of a bacterial brain microbiome. We

profiled the bacterial communities present in non-demented controls and AD

subjects’ brains.

Results: We obtained postmortem samples from the brains of 32 individual

subjects, comprising 16 AD and 16 control age-matched subjects with a total of

130 samples from the frontal and temporal lobes and the entorhinal cortex. We

used full-length 16S rRNA gene amplification with Pacific Biosciences

sequencing technology to identify bacteria. We detected bacteria in the brains

of both cohorts with the principal bacteria comprising Cutibacterium acnes

(formerly Propionibacterium acnes) and two species each of Acinetobacter and

Comamonas genera. We used a hierarchical Bayesian method to detect

differences in relative abundance among AD and control groups. Because of

large abundance variances, we also employed a new analysis approach based on

the Latent Dirichlet Allocation algorithm, used in computational linguistics. This

allowed us to identify five sample classes, each revealing a different microbiota.

Assuming that samples represented infections that began at different times, we

ordered these classes in time, finding that the last class exclusively explained the

existence or non-existence of AD.

Conclusions: The AD-related pathogenicity of the brain microbiome seems to

be based on a complex polymicrobial dynamic. The time ordering revealed a rise

and fall of the abundance of C. acnes with pathogenicity occurring for an off-

peak abundance level in association with at least one other bacterium from a set

of genera that included Methylobacterium, Bacillus, Caulobacter, Delftia, and

Variovorax. C. acnes may also be involved with outcompeting the Comamonas
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1123228/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1123228/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1123228/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1123228/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1123228/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1123228/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1123228&domain=pdf&date_stamp=2023-09-13
mailto:ge33@drexel.edu
mailto:jrl374@drexel.edu
mailto:jeffrey@jlapides.com
https://doi.org/10.3389/fcimb.2023.1123228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1123228
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Abbreviations: AD, Alzheimer’s disease; AMC, age-m

circular consensus sequence; Clr, centered log rat

multinomial model; LDA, Latent Dirichlet Allocation; M

Dirichlet Allocation; MCSMRT, Microbiome Classifier

Real-time Sequencing; OUT, operational taxonomic

Biosciences; PCA, principal component analysis.
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species, which were strongly associated with non-demented brain microbiota,

whose early destruction could be the first stage of disease. Our results are also

consistent with a leaky blood–brain barrier or lymphatic network that allows

bacteria, viruses, fungi, or other pathogens to enter the brain.
KEYWORDS

Alzheimer’s disease, 16s sequencing, latent dirichlet allocation, Bayesian, microbiome,
Cutibacterium, blood brain barrier, glymphatic network
Introduction

More than a century ago, Oskar Fischer (Fischer, 1907; Fischer,

1910) and then Alois Alzheimer (Alzheimer, 1907) independently

described the two histopathological hallmarks of the

neurodegenerative disorder which is now called Alzheimer’s

disease: amyloid-b (Ab) plaques and neurofibrillary tangles (NFT)

(Goedert, 2009). Alzheimer’s disease (AD) is the most common

form of dementia in the elderly, accounting for an estimated 60 to

80% of cases of dementia. Worldwide, an estimated 55 million

people are living with dementia and this number is expected to

reach near 80 million in 2030 and 140 million in 2050. In 2019, the

World Health Organization (WHO) estimated the global cost of

dementia to be 1.3 trillion US$ and it is projected that by 2030 this

cost will increase to almost 2.8 trillion US$ (World Health

Organization, 2021). AD patients are affected by memory loss and

a progressive decline of cognitive abilities (thinking, language,

behavior changes) (2020 Alzheimer’s disease facts and figures,

2020). The majority of AD cases are sporadic, late-onset forms of

the disease occurring after the age of 65 years, and only a small

percentage of cases (around 5%), mostly familial, presenting earlier

(Mendez, 2017).

AD is characterized by neuroinflammation, extracellular

deposition of Ab peptides into plaques in the brain parenchyma,

and intraneuronal NFT, composed of hyperphosphorylated tau

(ptau), which ultimately lead to a loss of synapses and neurons.

Ab deposition has been considered as the main cause of the disease

leading to the “amyloid cascade hypothesis” as a model of AD

pathogenesis (Hardy and Allsop, 1991; Hardy and Selkoe, 2002;

Selkoe and Hardy, 2016). Ab peptides are produced through the

abnormal processing of the Ab precursor protein (APP) by the

sequential action of b- and g-secretases. This amyloidogenic

processing produces Ab peptides differing in length, including the

highly pathogenic and aggregation-prone Ab42 (42 amino acids)

and the less neurotoxic Ab40 (40 amino acids) (Gu and Guo, 2013;

Bolduc et al., 2016; Terrill-Usery et al., 2016; Dunys et al., 2018). Ab
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peptides aggregate into oligomers, fibrils, and plaques in the

extracellular space. Ab is also involved in the formation of NFT

by induction of hyperphosphorylation of the tau protein (a

microtubule‐ associated protein) via the kinase Fyn (Larson et al.,

2012; Li and Götz, 2017; Nisbet and Götz, 2018; Vergara

et al., 2019).

For the last several decades, the amyloid cascade hypothesis has

guided much of AD research. However, multiple observations

challenge this model. First, the amyloid cascade hypothesis is

based on the study of the genetic mutations observed in the rare

early onset forms of AD, and clinical trials targeting Ab
accumulation have not resulted broadly accepted treatment (Kim

et al., 2022). Moreover, the quantitative level of Ab does not

correlate with the amount of cognitive decline and a substantial

proportion of healthy elderly subjects (10%–30%) show significant

amyloid deposition (Cohen et al., 2012; Higashi et al., 2018; Osorio

et al., 2019) (see Selkoe and Hardy (Selkoe and Hardy, 2016) for

counter arguments). Although Ab and ptau pathologies remain

essential markers of the disease, the aforementioned observations

suggest that the amyloid cascade hypothesis does not address

satisfactorily the causality of AD and urge to investigate

alternative explanatory models (Lathe et al., 2023).

In recent years, a growing body of evidence has suggested a role

for various microorganisms (virus, bacteria, fungi) as well as the

innate immune system and neuroinflammatory pathways in AD

pathogenesis, leading to the emergence of alternative models

variously called the “pathogen hypothesis” (or “infectious

hypothesis”) and “antimicrobial protection hypothesis” (Itzhaki

et al., 2016; Sochocka et al., 2017; Moir et al., 2018; Fülöp et al.,

2020; Itzhaki et al., 2020). Diverse pathogens have been detected in

the brains of AD patients. Viruses, particularly from the

Herpesviridae family, have long been suspected to play a role in

AD (Terrill-Usery et al., 2016; Itzhaki, 2018). Herpes simplex virus

type 1 (HSV1) has been found to be active in brains from non-

demented elderly as well as in AD patients and to be localized

within amyloid plaques (Wozniak et al., 2009). A retrospective

cohort study from Taiwan showed that subjects with HSV

infections may have a 2.56-fold increased risk of developing

dementia and that anti-herpetic treatment of HSV infections was

associated with a decreased risk of dementia (Tzeng et al., 2018).

Recent findings suggest that Herpesviridae infections could

contribute directly to amyloid deposition (Eimer et al., 2018;

Ezzat et al., 2019), and it has been suggested that multiple prion-
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like domains found in the HSV1 proteins could trigger protein

misfolding in AD (Tetz and Tetz, 2018). Nonetheless, the potential

role of Human Herpesvirus 6 and 7 in AD pathogenesis (Readhead

et al., 2018) remains controversial (Jeong and Liu, 2019; Readhead

et al., 2019; Allnutt et al., 2020; Chorlton, 2020; Rizzo, 2020).

Another body of work has associated bacteria with an

etiological role in AD pathogenesis. Although the brain is

protected by a highly selective barrier called the blood–brain

barrier (BBB), which regulates the exchange between blood and

brain compartments, some bacteria are able to invade the brain. The

bacteria could reach the central nervous system through the

olfactory tract or the trigeminal nerve or as a result of a

weakened BBB (Doty, 2008; Dando et al., 2014; Chacko et al.,

2022; Vojtechova et al., 2022). The presence of spirochetes

including the Lyme disease agent, Borrelia burgdorferi, and the

periodontal Treponema spp. pathogens has been repeatedly

identified in postmortem AD brains. Moreover, tertiary syphilis

produces a dementia, general paresis, with a neurohistopathology

complete with Ab, NFT, and associated behavioral changes

essentially identical to AD (Miklossy, 2011; Miklossy, 2016).

Other bacterial species including Chlamydia pneumoniae,

Porphyromonas gingivalis, and Cutibacterium acnes (formerly

Propionibacterium acnes) have also been linked with AD (Little

et al., 2004; Carter, 2017; Chen et al., 2017; Emery et al., 2017;

Alonso et al., 2018; Al-Atrache et al., 2019; Dominy et al., 2019;

Haditsch et al., 2020; Woods et al., 2020; Emery et al., 2022). C.

pneumoniae is an intracellular respiratory bacterial pathogen that

was proposed to cause sporadic late-onset AD (Woods et al., 2020).

In vitro studies have shown that C. pneumoniae is able to infect

human astrocytes and to promote amyloidogenic APP processing

(Al-Atrache et al., 2019) and murine models of C. pneumoniae CNS

infection have recapitulated the cardinal features of AD (Little et al.,

2004). Epidemiological studies suggest a relationship between

periodontitis and AD (Chen et al., 2017; Emery et al., 2021).

Among the periodontitis-related pathogens, P. gingivalis is a

keystone pathogen for both chronic periodontitis and systemic

sequelae. Dominy et al. have detected P. gingivalis DNA and

gingipains (arginine- or lysine-specific cysteine proteases and

major virulence factors in P. gingivalis) in postmortem AD brains

and in the cerebrospinal fluid (CSF) of living AD patients (Dominy

et al., 2019). Moreover, a recent in vitro study by Haditsch et al. has

shown the neurotoxicity of the gingipains and that P. gingivalis can

invade and persist in neurons. The infected neurons display AD-like

neuropathology including an increase in tau phosphorylation ratio

(Haditsch et al., 2020). In addition, other bacterial factors have been

sugges ted to be invo lved in AD pathology such as

lipopolysaccharides (LPS) from Gram-negative bacteria, which

can induce a neuroinflammation (Zhan et al., 2018), bacterial

extracellular DNA which may promote Ab and tau aggregation

(Tetz et al., 2020; Tetz and Tetz, 2021), or microbial amyloid

proteins, which could trigger the propagation of misfolded

endogenous proteins in a prion-like manner and enhance the

inflammatory response (Chen et al., 2016; Friedland and

Chapman, 2017).

The vast majority of such microbial survey studies in AD have

relied on molecular diagnostics in which the bacterial DNA is
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directly detected, by either a PCR-based method (Balin et al., 1998;

Dominy et al., 2019) or in situ hybridization (FISH) (Miklossy,

2016)—as opposed to cultural methods owing to the demonstrated

difficulty in culturing bacteria associated with chronic infections

and biofilms (Post et al., 1995; Costerton et al., 2003; Ehrlich et al.,

2005; Ehrlich et al., 2010; Stoodley et al., 2011; Ehrlich et al., 2012)

and the greatly improved sensitivity and specificity of nucleic acid-

based methods (Post et al., 1996; Aul et al., 1998; Dingman et al.,

1998). Most recently, species-specific, pan-domain molecular

diagnostics have become available for bacteria (Tuttle et al., 2011;

Nickel et al., 2015; Nickel et al., 2016; Earl et al., 2018; Socarras et al.,

2021). These assays provide for unbiased surveys without the need

for investigators to a priori decide what taxa to survey. Preliminary

microbiome studies using next-generation sequencing of the

variable regions of 16S ribosomal rRNA gene (V3, V4) have also

identified several bacterial species in both AD brains and non-

demented controls (Emery et al., 2017; Westfall et al., 2020). Emery

et al. have found higher bacterial loads in AD brains with a higher

proportion of Actinobacteria, especially C. acnes (Emery et al., 2017;

Emery et al., 2022), whereas the study of Westfall et al. showed no

difference in bacterial populations between AD and control subjects

but variations in microbial composition between hippocampal and

cerebellum regions in AD subjects’ brains (Westfall et al., 2020).

Microbiome studies have also detected several fungal genera as

being more prevalent in AD brains (Alternaria spp., Botrytis spp.,

Candida spp., and Malassezia spp.) (Alonso et al., 2018).

The potential involvement of microbes as etiological agents of

AD has been strengthened by the evidence that the Ab peptide has

potent antimicrobial properties. Soscia et al. demonstrated in vitro

that the Ab peptide possessed antimicrobial properties (Soscia et al.,

2010). The antimicrobial activity of Ab is comparable to the well-

known human antimicrobial peptide (AMP) LL-37. The protective

effect of Ab against bacterial infection has been shown in a murine

model where it was demonstrated to mediate entrapment of

microbes by oligomerization and fibrillization of Ab (Kumar

et al., 2016). The demonstration that Ab is an AMP has led to the

antimicrobial protection hypothesis. In this model, Ab deposition is

a defensive mechanism against infection and AD pathology results

from a chronic innate immune inflammatory response to a

recalcitrant bacterial biofilm leading to the accumulation of Ab
deposits and ultimately mediating neurodegeneration.

In this study, we take advantage of the Pacific Biosciences

(PacBio) long-read DNA sequencing technology to sequence the

full-length bacterial 16S rRNA gene (Earl et al., 2018; Greathouse

et al., 2018; Socarras et al., 2021) and to profile the bacterial

communities to the species level in AD-affected and non-

demented age-matched brains.
Materials and methods

Biological material and sequencing

Brain tissue samples
Frozen postmortem human brain samples were obtained from

the University of Arkansas for Medical Sciences (UAMS). All the
frontiersin.org
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samples were neuropathologically evaluated by the provider. All

Alzheimer’s disease cases were given Braak stages IV–VI. The

control cases designated as age-matched controls (controls) were

described as non-demented. The average postmortem interval was

8 h. The data contained 130 samples from 32 individual subjects

about half of whom had Alzheimer’s disease (“AD”). For most

subjects, we had at least one sample from the entorhinal cortex and

the frontal and temporal lobes. We had no underlying histological

information from the sample sites with regard to AD diagnoses.

To minimize any risk of environmental contamination of the

brain autopsy specimens, all specimens upon receipt were opened in

a BSL2+ laminar flow hood with proper personal protective

equipment (lab coat, mask, gloves, and protective eyewear). Then,

a cortical piece of each specimen was dissected using sterile

techniques such that none of the specimen used for DNA

extraction had ever been in touch with a non-sterile surface. The

control of contamination was also addressed analytically in the

downstream statistical analyses (see below).

DNA extraction
Total DNA was isolated from frozen brain biopsies using the

DNeasy Blood and Tissue Kit (Qiagen) according to the

manufacturer’s recommendations with slight modifications. The

biopsy material was incubated overnight at 56°C with 570 ml ATL
tissue lysis buffer with 30 ml Proteinase K in a Lysing Matrix E tube

(MP Biomedicals LLC), homogenized by SPEX 1600 MiniG (SPEX

SamplePrep) for 10 min at 1500 Hz, and centrifuged for 1 min at

13,000 rpm. DNA was eluted with a 200-ml AE elution buffer. DNA

quality and quantity were analyzed by agarose gel electrophoresis

and using a NanoDrop 2000 spectrophotometer (Thermo Fisher

Scientific), respectively.

Full-length 16S rRNA gene amplification
The taxonomic composition of bacterial communities in the

postmortem human brain tissues were analyzed using the Pacific

Biosciences (PacBio) single-molecule real-time (SMRT) sequencing

technology (Pacific Biosciences, Menlo Park, CA, USA) to obtain

the full-length 16S ribosomal RNA (rRNA) gene sequences as

previously described (Earl et al., 2018; Greathouse et al., 2018;

Socarras et al., 2021). Briefly, the full-length 16S rRNA gene was

amplified using the universal 16S rRNA bacterial primers 27 F (5′-
GRAGAGTTTGATYMTGGCTCA) and 1492 R (5 ′ -
TACGGYTACCTTGTTACGACTT). Both the forward and

reverse 16S primers were tailed with the universal sequences (5′-
GCAGTCGAACATGTAGCTGACTCAGGTCAC and 5 ′-
TGGATCACTTGTGCAAGCATCACATCGTAG, respectively) to

allow for multiplexed sequencing, and a 5′ block (5′NH2-C6) was

added according to the recommendations of Pacific Biosciences.

The primers were synthesized and HPLC purified by Integrated

DNA Technologies.

Barcoded 16S rRNA amplicons were obtained via a two-step

PCR. All the PCR reactions were performed in 96-well plates. The

first PCR round was performed using 10 ml of total DNA

(approximately 1–2 µg of DNA) as template, the universal 16S

rRNA bacterial primers 27F and 1492R described above (0.2 µM
Frontiers in Cellular and Infection Microbiology 04
each), and 1× Hot Start GoTaq DNA Polymerase Master Mix

(Promega) in a 50-µl final volume. Cycling conditions were 94°C,

3 min; then 35 cycles of 94°C 30 s, 54°C 30 s, 72°C 2 min, and a final

extension step at 72°C for 5 min. The amplified products were then

analyzed by agarose gel electrophoresis to check the quality and size

of the amplicons. The second PCR round was performed in a 50-µl

reaction volume containing 2 µl of a unique primer pair of Barcoded

Universal F/R Primers (Pacific Biosciences, 100-466-100), 10 µl of

16S rRNA amplicons from each sample, and 1× Hot Start GoTaq

DNA Polymerase Master Mix (Promega). Cycling conditions were

94°C, 3 min; then 20 cycles of 94°C 15 s, 64°C 15 s, 72°C 2 min, and

a final extension step at 72°C for 5 min. PCR products were cleaned

with AxyPrep MAG PCR (Axygen) according to the manufacturer’s

protocol with a volume ratio (bead suspension to PCR product) of

2:1 and eluted in 50 ml of water. Cleaned barcoded 16S rRNA

amplicons were quantified using AccuClear Ultra High Sensitivity

dsDNA Quantitation Kit (Biotium) on BioTek™ FLx800™

Microplate Fluorescence Reader. Based on quantification results,

barcoded amplicons were then pooled in equimolar concentration

into multiplexed sets of 2 to 18 samples per pool.

Pacific Biosciences Sequel System sequencing
Sequencing libraries were constructed from each pool of

barcoded amplicons using the SMRTbell Express Template Prep

1.0 kit (Pacific Biosciences, 100-259-100) according to the

manufacturer’s instructions (Amplification of Full-Length 16S

Gene with Barcoded Primers for Multiplexed SMRTbell®).

Multiple SMRTbell libraries were then multiplex sequenced in a

single SMRT Cell 1M on a Pacific Biosciences Sequel System.

Generation of demultiplexed CCS reads
The raw subreads generated by the sequel sequencing run were

converted into circular consensus (CCS) reads and demultiplexed

using the command-line version of the Pacific Biosciences’

workflow engine pbsmrtpipe (v1.3.3) or pbcromwell (1.2.5)

within the SMRT Link v7 or SMRT Link v9 software,

respectively. CCS reads were generated using the following

parameters: minimum number of passes = 3, minimum predicted

accuracy = 0.99, minimum subread length = 1,000. CCS reads were

then demultiplexed by their barcode into FASTQ files.

OTU clustering and taxonomic classification
Full-length 16S (FL16S) sequences were then clustered into

Operational Taxonomic Units (OTUs) and assigned to species

taxonomic level using the Microbiome Classification by the Single

Molecule Real-time Sequencing (MCSMRT) pipeline designed by

Earl et al. (Earl et al., 2018). Briefly, the MCSMRT pipeline was

specifically built to (i) process PacBio CCS reads (hereafter reads),

(ii) construct a set of OTU representative sequences using a 3%

centroid-based divergence level, (iii) assign taxonomy and

confidence values at each taxonomic level to OTUs, and (iv)

quantify the abundance of each OTU in each sample by counting

the number of reads that aligned to each representative “centroid”

OTU sequence. In other words, each read is assigned to a centroid

OTU with a maximum of 3% divergence for a hit to be counted.
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Compositional structure of microbiome data
Microbiome sequencing data are count data, i.e., the number of

DNA sequence reads of each OTU detected in each sample. However,

the total number counts is not informative per se because it is

constrained by the capacity of the sequencing instrument, which

can only sequence a fixed number of DNA fragments. Consequently,

(i) the read counts cannot be related to the absolute number of

molecules in the input sample and (ii) read counts only carry a

relative information reflecting the underlying proportions of the

OTUs in the sample. That is why microbiome sequencing data are

referred to as compositional data: the total number of reads are

constrained to a biologically irrelevant constant sum, only providing

information on the relative abundance of OTUs, and any variation

(increase or decrease) in the read count of one OTU led to a change in

the relative abundance of other OTUs in the sample (Fernandes et al.,

2014; Gloor and Reid, 2016; Gloor et al., 2017).
Analytical methodologies

Introductory comments
Analysis models

Our focus for the data analyses was to find one or more of the

following patterns in the data: (1) individual microbes which were

either correlated or anti-correlated with AD, or (2) combinations of

microbes that were correlated or anti-correlated with AD, given the

number of bacteria observed. In other words, we were not interested

in not only whether a bacterium was intrinsically pathogenic but

also whether pathogenicity derived from a polymicrobial

interaction acting within or between ecosystems.

We took different analytical approaches to address these types

of patterns. Despite their differences, any similar findings between

the two methods can provide mutual support for their respective

findings and serve as strong evidence that the findings were

inherently reproducible.

To find relationships between individual bacterial species and

AD, we first investigated the differences in relative abundance of

individual taxa between AD and control groups. We used a

hierarchical Bayesian modeling approach based on a Dirichlet-

multinomial model (DMM) (Harrison et al., 2020). This

procedure was supervised as it used information about whether

or not the samples came from AD subjects. Its results showed which

individual bacteria are associated with AD.

To find relationships between combinations of bacterial species

and AD that could be utilized as evidence supportive of a bacterial

component in AD etiology, we used an approach, called Latent

Dirichlet Allocation (LDA) (Blei et al., 2003; Griffiths and Steyvers,

2004), that first found relationships among the bacteria without

using information about the disease state of the subject at all, i.e., it

was unsupervised. This approach enabled us to group the bacteria

and their abundances into different subsets of bacteria and their

abundances, called classes, and then relate the classes to AD.

Statistical properties of the data

The brain microbiome data are characterized by sample

heterogeneity, huge variance in counts (overdispersion),
Frontiers in Cellular and Infection Microbiology 05
sparseness, and compositionality (see Supplement Figure SF1).

These characteristics are often observed in microbiome data

(Weiss et al., 2017; Lutz et al., 2022) and are very challenging for

the statistical analysis, which explain our choice of particular

analytical approaches. Table 1 shows the top 30 genera ordered

by their abundances in the data set. The list contains both species

and genera where we have broken out species for several high

abundance genera. In this paper, we will often refer to

Cutibacterium, Acinetobacter, and Comamonas as the principal

bacteria mainly because of their overall abundance and

prevalence, but in the case of Comamonas, because of its

abundance and prevalence within a single class not associated

with AD.

High-abundance resolution view

We show a couple of comparisons of the abundance

distributions for two of these in AD and control samples in

Figure SF1. While there is a hint of difference in the average

abundances between the AD samples and the controls, the wide

variances apparent in the figure render the differences statistically

insignificant. This pattern is similar for all of the bacterial species

that occur frequently in the samples.

Another typical characteristic that we observed was the

sparseness of the data, meaning that most of the observed

bacteria do not occur in most of the samples and if they do, they

do not have the same abundance. This could mean that the bacteria

have little to do with AD or that behavioral redundancies across

bacteria must be discovered to reveal bacterial pathogenicity.

A number of bacteria have high abundances only in a few

samples, e.g., Methylobacterium. Using standard arguments, we

could have chosen to filter these out because of their low
TABLE 1 Top 30 genera/species by prevalence in order top to bottom,
left to right.

Cutibacterium acnes Achromobacter

Acinetobacter junii Sphingomonas

Acinetobacter tjernbergiae Anabaena

Comamonas jiangduensis Variovorax

Comamonas testosteroni Bacillus

Nitrosospira Streptococcus

Acidovorax Gemella

Delftia Bosea

Sediminibacterium Stenotrophomonas

Cloacibacterium Ferrovibrio

Bradyrhizobium Bacteroides

Pseudomonas Janthinobacterium

Methylobacterium Brevundimonas

Kocuria Corynebacterium

Moraxella Massilia
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occurrence, but it is hard to dismiss these bacteria because they have

high abundance and, generally speaking, high abundance is more

likely causal than low abundance. We considered that these were

contaminants but eventually found that together they exhibited

patterns that could be a critical factor in the etiology of AD.

Low-abundance resolution discrete view

In order to get a better sense for the data and potential

biologically meaningful patterns it harbored, we decided to

generate a view of the data with greatly reduced abundance

resolution. Mindful of the possibility that some bacteria of low

abundance may have a disproportionate effect on pathogenicity, we

chose to logarithmically bin the data abundances. Moreover, it

provided a simple way to compare differences between the cohorts

within an abundance range.

Specifically, we defined a set of contiguous abundance bins in

the 0.0% to 100.0% range and labeled them with integers. The bin

sizes which we chose are shown in Table 2. We then mapped the

abundance data into descriptive discrete objects formed by

appending the numerical bin label to the microbe name, e.g.,

Cutibacterium acnes-14. The result of the binning was to

transform a row of abundance data from a table whose rows

correspond to samples and whose columns correspond to

microbe name into a list of microbial objects. We will sometimes

refer to these objects as measurements or measurement objects.

In Table 3, we compare the occurrence of these objects in the

AD and control cohorts. Note the correlations with AD among

certain objects, in particular Cutibacterium acnes-13, Acinetobacter

junii-13, and Acinetobacter tjernbergiae-13. It is important to note

that these are not the maximum abundances nor close to 100%

abundance, indicating the presence of other microbes in the sample

and potential microscopic dynamics at play. Standard statistics do
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not usually look at parts of distributions. They look at averages and

variances of the entire distribution, so we found this intriguing.

Comamonas jiangduensis presents a curious situation in that its

objects are associated with the no-AD disease state of the controls.

Last, while the statistics are weak, there is little indication that low-

abundance microbial objects are correlated with disease state.

The statistics quoted in the previous paragraph and in Table 3

show how often the object came from a subject who had or did not

have AD. When an object occurs more often in AD subjects, this

does not necessarily mean that the bacterium and abundance it

represents are pathogenic. We will show below that many of these

are likely not pathogenic.

These simple observations suggested to us why crude analyses

fail and that a completely different way of analyzing the data

is needed.

Differences in individual bacterial abundances
between AD and control subjects
Data filtering and contaminant removal

As samples vary in total read number, low-yield samples could

introduce substantial noise, so the samples with less than 100 total

reads were removed from the dataset. Four blank extraction

controls (composed of all reagents used during sample processing

but without sample input) were processed in the same way as the

true biological samples to allow identification of any contamination

from reagents or during sample processing. Potential contaminant

OTUs were detected based on their occurrence in biological samples

vs. negative controls using a prevalence-based method

(IsNotContaminant function) from the R package Decontam

(Davis et al., 2018). To qualify as contaminant, an OTU had to

have a score ≥0.5 or a higher mean relative abundance in the

negative controls than the biological samples (Supplementary Table

S1). Contaminant OTUs were then removed from the dataset. The

phyloseq R package (McMurdie and Holmes, 2013) was used for

handling OTU counts, taxonomy, and sample metadata.

Exploratory data analyses

Exploratory data analysis has been done using compositional

data analysis (CoDA) methods which are based on log-ratio

transformation of the data (Gloor et al., 2017). OTU counts were

normalized using the centered log-ratio (clr) transformation by

taking the log of the ratio of each OTU counts to the geometric

mean of all OTUs in a sample. A pseudocount of 1 was applied to

zero entries in the OTU count table before taking the log to the base

2. A positive clr value for a given OTU indicates a relatively higher

amount than the overall composition mean, and a negative value

indicates a relatively lower amount. Clr-transformed data were used

to produce a heatmap with the pheatmap R package and to perform

a principal component analysis (PCA) using the prcomp function

from the R Stats package (R Core Team, 2018).

Differences in relative abundances

To test for differences in the relative abundances of individual

OTUs between AD and control sampling groups, the OTU count

data were analyzed using a hierarchical Bayesian model that relies

on the Dirichlet and multinomial distributions as described in
TABLE 2 Abundance bins in percent.

Bin Normalized abundance

1 0.00E+00 – 3.16E−05

2 3.16E−05 – 1.00E−04

3 1.00E−04 – 3.16E−04

4 3.16E−04 – 1.00E−03

5 1.00E−03 – 3.16E−03

6 3.16E−03 – 0.010

7 0.010 – 0.0316

8 0.0316 – 0.100

9 0.100 – 0.316

10 0.316 – 1.00

11 1.00 – 3.16

12 3.16 – 10.00

13 10.00 – 31.62

14 31.62 – 100.0
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Harrison et al. (2020). Briefly, these two distributions are used to

construct a hierarchical model which estimates relative abundances

among samples and sampling groups and enables the detection of

differences in relative abundances for each OTU between AD and

control groups (see Supplementary Methods for a full description of

the model). The Dirichlet-multinomial model (DMM) is relevant

for the compositional structure of microbiome data because

analyses are performed on proportions and there is an

interdependency between parameters of the Dirichlet and the

multinomial distributions, permitting identification of differences

not easily found with the frequentist methods. Moreover, DMM

quantifies and propagates the uncertainty associated with the OTU

abundances in the parameter estimates, which make multiple
Frontiers in Cellular and Infection Microbiology 07
comparison corrections unnecessary (Fordyce et al., 2011; Holmes

et al., 2012; Harrison et al., 2020).

Method for analyzing combinations of bacteria
The algorithm we chose to adapt, Latent Dirichlet Allocation

(LDA), is used frequently in computational linguistics, to find

patterns in documents. It groups words into topics, easily

discernible by human readers, and summarizes the documents in

terms of these meaningful topics (Blei et al., 2003; Griffiths and

Steyvers, 2004). Here, we used LDA to find patterns in bacterial

abundances in an analogous way.

Below, we describe how to set up the abundance data for use in

the algorithm, and then, at a high level, we describe how the
TABLE 3 Object statistics, comparison of samples from Alzheimer’s and controls subjects.

MICROBIAL OBJECT Alzheimer’s Controls MICROBIAL OBJECT Alzheimer’s Controls

Cutibacterium acnes-14 20 23 Acidovorax-8 4 3

Cutibacterium acnes-13 17 6 Acinetobacter junii-10 2 5

Acinetobacter junii-13 14 8 Comamonas jiangduensis-14 0 7

Acinetobacter tjernbergiae-13 11 6 Sediminibacterium-13 4 2

Acinetobacter junii-14 4 13 Pseudomonas-9 4 2

Cloacibacterium-12 9 6 Comamonas testosteroni-11 4 2

Cutibacterium acnes-12 9 4 Sediminibacterium-11 3 3

Acidovorax-13 8 4 Streptococcus-12 2 4

Acinetobacter tjernbergiae-10 1 10 Nitrosospira-13 4 1

Cloacibacterium-11 3 7 Moraxella-10 4 1

Acidovorax-11 3 7 Delftia-14 4 1

Cutibacterium acnes-11 6 3 Acinetobacter junii-11 4 1

Acinetobacter tjernbergiae-12 6 3 Acidovorax-14 4 1

Acinetobacter tjernbergiae-14 5 4 Sediminibacterium-10 3 2

Streptococcus-11 4 5 Nitrosospira-14 3 2

Sediminibacterium-12 6 2 Bacillus-10 3 2

Corynebacterium-11 6 2 Acidovorax-12 3 2

Comamonas testosteroni-10 6 2 Streptococcus-10 2 3

Delftia-11 5 3 Stenotrophomonas-10 2 3

Moraxella-11 3 5 Cutibacterium acnes-10 2 3

Corynebacterium-10 3 5 Kocuria-10 2 3

Bradyrhizobium-10 3 5 Streptococcus-9 1 4

Acinetobacter junii-12 3 5 Pseudomonas-8 1 4

Pseudomonas-12 2 6 Pseudomonas-11 1 4

Cloacibacterium-10 2 6 Nitrosospira-11 1 4

Novosphingobium-9 5 2 Lactobacillus-10 1 4

Moraxella-12 5 2 Anaerococcus-8 1 4

Moraxella-9 4 3 Comamonas jiangduensis-13 0 5
fro
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algorithm works and the mathematical form of its results. Because

of the challenges of understanding and interpreting LDA’s results,

we also present a graph theoretic methodology for doing so. The

details of the algorithm and our computations are described in the

Supplementary Methods. LDA is the core of the methodology that

will enable us to uncover relationships relating bacteria at different

times to AD and to describe microscopic arrangements of possibly

pathogenic sets of bacteria and their large-scale macroscopic

distribution in the brain.

Transforming abundance data for LDA

Like the original implementation of LDA which used words as

the data, we needed a discrete form of the data to work with. The

microbial objects that combined microbial name and abundance

bin, described above, sufficed, but with a few changes.

For many of the lower-occurring and lower-abundance objects,

we surmised that we needed even less abundance resolution, so we

reduced the resolution to two bins instead of 14. A number of very

low-occurring objects were also merged together under a general

name instead of the individual bacterial names. Some taxa were

grouped to species and some to genus levels. We did not group

more by going further up the phylogenetic tree because we did not

wish to lose behavioral information. We did not know a priori

that this would work but had prior experience analyzing the

gut microbiomes of ~7,000 subjects. This merging was performed

with well-defined rules, primarily based on abundance resolution

or occurrence, to maintain objectivity. We review the heuristic

optimization procedures we used in the Supplementary Methods.

These changes to the data binning improved the similarity

between pairs of samples that was limited by the sparsity of

microbial measurements and large width of the microbial

abundance distributions. For example, if two samples both had a

high but different abundance of a particular species, they now both

contained the same object, “bacteria-name-hi”. Overall, this scheme

reduced the sparsity and allowed the algorithm to perform better.

Summary of Latent Dirichlet Allocation (LDA)

In order to gain a sense for how the LDA algorithm works and

how its results are expressed, we first describe its use for documents

and then its adaptation to microbiome data.

The LDA (Blei et al., 2003; Griffiths and Steyvers, 2004) algorithm

works by classifying words, i.e., assigning classes (topics in the literature)

to each word. It does not directly classify a document. Documents are

“classified” by statistically summarizing the fraction of their words

assigned to each class. Similarly, unique words are “classified” by

summarizing the fraction of times they are assigned to each class over

the entire set of documents. This word classification summary is how

LDA reveals that a particular word may have more than one meaning.

Classes (topics) are summarized by the fraction of times each word in

the set of documents is assigned to a class. Class summaries are also how

LDA reveals how a set of words has a common meaning forming a

topic. LDA works by locating word co-occurrence within a document.

Another way of saying this is that LDA finds the context of words.

It will become clear shortly why it is important to stress that

document classifications, word classifications, and class summaries

are not words. They are statistical summaries of word classifications.
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Our implementation of LDA’s words, microbial objects, carry

information about both microbial behavior (i.e., its identified name)

and an abundance which is the result of underlying microscopic

ecosystems summed over the sample. We thought that if we used

the LDA algorithm to classify these objects, biological meaning

could be revealed by a relationship between class and the occurrence

of AD.

These microbial objects are assigned one of a preset number of

classes using the LDA algorithm. A cartoon version of the algorithm

is described at a high level in Figure 1 and described in detail in the

Supplementary Methods.

The LDA results data are tabulated in two tables. The sample

distribution table has a row for each sample, and its columns are

labeled by class. Its entries are the number of times the sample’s

objects were classified with a particular class. The rows can be

normalized to show the fraction of objects classified in a class. The

object distribution table has a row for each unique object with

columns labeled by class. One microbe may have multiple rows

corresponding to different abundance bins. The entries are the

number of times objects were classified with a particular

class for the entire data set. The object class distribution is

computed by normalizing across the rows to show the fraction

of times each object is assigned to a class. In either representation,

the rows should be thought of as vector-valued classifications. In

other words, samples and objects have multi-valued classifications.

If the object table were normalized by column instead, the

composition of each class is revealed by microbial object. In other

words, the normalized column is the computed microbiome. Its

elements are the fractional number of times each object is classified

into a particular class and what we call the rigorous microbiome.

The existence of a class structure within a data set provides an

opportunity to uncover patterns that can be missed by methods that

ignore class. In fact, ignoring class structure implicitly averages out

the very evidence that is sought.

In order to make analysis and discussion easier, we label the

components of the classifications with colors. From this, we

define the color of a sample or object to be the color of its

largest component. For example, a red sample’s largest

component is the red component. We also use the concept of

color to approximate or describe microbiomes. In this example, it

can be thought of as the set of microbial objects that occur in

samples of a given color.

Because the number of classes is much less than the number of

objects or the number of bacterial species, LDA results in a

dimensionality reduction of the data. The number of classes is

determined by an optimization process discussed in the

Supplementary Methods. This should not be confused with the

dimensionality reduction achieved by PCA. Typically, PCA

evidences sample clustering by plotting two different linear

combinations of abundances for each sample, the principal

components, in two dimensions. These clusters are not the same

as LDA’s. Other dimensionality reduction schemes, e.g., t-SNE and

UMAP (van der Maaten and Hinton, 2008; McInnes et al., 2018),

work in a different way, and it is not clear that they can easily

allow objects (or measurements) to have multiple meanings

although the common objects within the samples of a sample
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cluster in low dimensions could represent common meaning the

way a class does in LDA. More information is provided in the

Supplementary Methods, but a detailed discussion is beyond the

scope of this work.

We emphasize that LDA’s results are not abundances

themselves or even linear combinations of abundances. Rather,

they are statistical summaries of microbial object classifications,

which are measures of the co-occurrence or context of multiple

objects that are described by their class composition.

Our adaptation of LDA to small microbiome data sets also

involved several other procedures, which are discussed in detail in

the Supplementary Methods. From here on, we will refer to our

implementation as modified LDA or MLDA.

Higher-order statistics

The next step in the methodology is to construct statistics of the

MLDA results to infer information about microbial spatial

distributions at the microscopic cellular and macroscopic brain

levels, how they change over time, and what their relationship is

with AD.

Since we know the sample spatial positions, we can look at how

class varies with position. This is not the same as looking at how a

particular microbe’s abundance varies with position because the

same microbial object may have significant components in more

than one class and their spatial positions could be different. For

example, we determine in which lobes possible pathogenic classes

predominate. Other statistics derived from the occurrence of class

by subject can be determined whether the spatial distribution of

classes is random or regionally clustered, suggesting where it is

located with respect to the brain’s physiological structures and the

paths taken to the brain.
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Second, we can look at how abundance occurrence is distributed

within class for particular bacteria, especially the principals. The

width of this distribution is associated with the microscopic

ecosystem spatial arrangements. Narrower distribution suggests

more microscopic homogeneity within the sample, and wider

distributions are associated with more heterogeneity, both of

which suggest how far apart different principal bacteria are from

one another.

Similarities among the classes of samples and the assumption

that health precedes disease suggests how to order them in time.

Finally, relationships between sample classes with subject suggests

possible pathogenic microbiomes. In other words, the higher-order

statistics permits identification of the temporal-spatial aspects of

relationships that could be evidence for a bacterial component in

the etiology of Alzheimer’s disease.

Graphs

The patterns found by MLDA are sometimes difficult to

understand so we developed graphical visualization techniques to

assist us. Additional details can be found in the Supplementary

Methods (Also see Results) section).

Type I graphs

This type of graph, where the nodes are samples, was designed

to display classification results, sample similarity, metadata values,

and metadata statistics. A glance enables you to get a sense of the

quality of the classification and see the presence of statistical

fluctuations in the classification, which are the nodes outside the

clusters. The graph helps to reveal gross features of the

classification, which may relate to the emergent features of the

microscopic ecosystem biology. The graphs were drawn using
FIGURE 1

Cartoon of the LDA algorithm.
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Wolfram Mathematica (Wolfram Research Inc, 2010; Wolfram

Research Inc, 2021). It is possible to define a Type II graph that

uses objects as nodes.

Nodes

Each node represents a sample.

Color

Each node is colored with the sample’s color. The MLDA

computations result in each sample being described by C

components, where C is the preset number of classes used by the

MLDA algorithm. The color of a node should not be confused with

an exclusive classification of the node. While each node is, in fact,

described by a mixture of C components, the ubiquitous existence

of color clusters in the graph suggests that the exclusive

classification suggested by the colors is an approximation that

is justified.

Node size. Nodes are enlarged (other graphs below) if a sample

contained one or more specific microbial objects of interest. This

visualization is used frequently to explore the class location of

objects of the same microbe but differing abundance bin.

Node shape

The shape of the node displays the subject metadata value—

diamonds for AD, circles for controls. Typically, we may note the

diamond fraction statistic next to a color cluster. This AD statistic is

the number of diamonds in the cluster divided by the total number

of nodes in the color cluster. In our data, we have roughly 50% of

the samples from AD subjects and 50% from controls. Thus, if the

class means something for AD, the diamond statistic should be way

over 50% if there is a correlation with AD or way less than 50% if

the class is anti-correlated with AD. The fact that this is not the case

is something we address.

Edge

Edges were defined by node pair similarity. In general, many

types of similarities can be used but we used a coarse measure, the

dot product. In this case, the similarity is the product of each pair of

components, summed together. This is further discussed in the

Supplementary Methods.

Node position

The features above define the topology of the graph—how the

nodes were connected (Wolfram Research Inc, 2010). An

embedding algorithm is used to position the nodes in 2D or 3D

space. The algorithm finds the equilibrium position of the nodes

when the nodes and edges are given physical properties that both

repel and attract the nodes. The repulsion is computed by assuming

that each node possesses the same electrical charge, and the

attraction derives from representing each edge as a spring. This

algorithm is known as spring-electrical embedding (Wolfram

Research Inc, 2021), and the resultant graphs are called force-

directed graphs. Because nodes that are the most similar are

connected by springs, samples that are the most similar are pulled

together in clusters. Nodes that are similar are found near one
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another, and nodes that are not similar are located far away from

each other.
Results

Individual bacteria

After data filtering (low-yield samples and contaminant

removal), 548 OTUs and 108 samples remained. Infrequent

OTUs (present in less than 20% of the samples) and low

abundance OTUs (relative abundance ≤0.005%) were grouped

into a composite feature named “OTU others”. After this step, the

dataset contained 108 samples and 247 OTUs (including “OTU

others”). OTUs were assigned to 229 species; although most of the

species correspond to a single OTU, 14 species were assigned up to

3 OTUs.

At the phylum level, the major components (i.e., those with

higher average relative abundance) were Proteobacteria (control =

47.35%, AD = 46.35%), Actinobacteria (control = 35.65%, AD =

30.62%), Firmicutes (control = 10.80%, AD = 15.17%), and

Bacteroidetes (control = 5.44%, AD = 6.11%). Three OTUs

showed a broad prevalence across samples and were present in

more than 50% of samples. They were assigned to the species

Cutibacterium acnes (control = 82.69%, AD = 91.07%),

Acinetobacter junii (control = 67.31%, AD = 55.36%), and

Staphylococcus epidermidis (control = 55.77%, AD = 60.71%).

There were 23 OTUs present in more than 10% of the samples,

and 93 OTUs were observed in only one sample.

The PCA on the clr-transformed OTU counts did not reveal any

notable clusters of samples related to the disease status or biopsy

sites (Figure 2), except for 14 control samples from 6 subjects that

clustered together at the bottom of the PCA space. Only 32% of the

variance was explained by the two first components.

The heatmap of the top 80 most variable OTUs, where the

OTUs and the samples were grouped by hierarchical clustering,

shows that most of the samples were dominated by the same OTUs

but did not evidence any pattern related to AD or control

groups (Figure 3).

Difference in relative abundance between AD and
controls

Using DMM and assuming sample non-independence due to

multiple samples coming from a single subject in the model, we

found 12 OTUs that shift in relative abundance between AD and

control groups (Figure 4). Six OTUs are more abundant in the

control group: Acinetobacter junii, Comamonas jiangduensis,

Cloacibacterium normanense, Pseudomonas putida, Pseudomonas

thermotolerans, and Diaphorobacter nitroreducens. C. jiangduensis,

C. normanense, D. nitroreducens, and P. putida have low species-

level confidence values (Table S2). The most important shift is in A.

junii. Seven OTUs are more abundant in the AD group

(Cutibacterium acnes, Staphylococcus epidermidis, Acidovorax

ebreus, Acinetobacter tjernbergiae , Acidovorax temperans,

Noviherbaspirillum soli, and Methylobacterium goesingense).
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A. ebreus, A. tjernbergiae, and N. soli show very low species-

confidence values (0.2112, 0.1169, and 0.0076, respectively). The

most important change was in C. acnes. When the non-

independence of the samples is ignored, the same results are

obtained for A. junii, C. jiangduensis, C. normanense, A.

temperans, A. tjernbergiae, A. ebreus, S. epidermidis, and C. acnes,

whereas no shift in relative abundance has been detected for P.

putida, P. thermotolerans, N. soli, and M. goesingense (Figure S1).
Combinations of bacteria

Introduction
Overall, we organized the results according to four themes: (1) the

color classes, their microbiomes, and their principal bacteria as revealed

by the MLDA classification and graph methods; (2) microbe object

abundance statistics that were used to infer the spatial distributions of

underlying cellular-scale ecosystems and the macroscopic distribution

of ecosystemmixtures by class; (3) the relationships between the classes

that will be used to determine the temporal order of the classes

assuming each class represents different stages of underlying

ecosystem evolution; and (4) the occurrence of the classes within

each subject that suggests the pathogenicity of the ecosystems within

each class. In this section, we focus on the mathematical results without

detailed discussion of the ecosystem biology, which will come in the

discussion section.

Theme 1—color classes and their microbiomes
Microbiome description

We used MLDA to compute five distinct color classes of

samples. The results of our computations are summarized in a
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graph shown in Figure 5, which is the sum offive different stochastic

runs. We chose five classes as the optimum for our computation

with the methods described previously.

The set of microbial objects resulting from a statistical summary

of microbial objects from the samples in each color cluster will be

called the class microbiome in the following paragraphs, which

approximates the rigorous microbiome. The observed microbial

objects derive from the summation of one or more ecosystems at the

cellular scale during the physical sampling process. We will show

how to characterize these ecosystems and how they determine the

sample measurements in the discussion section.

In the graph (see Figure 5) of these five homogeneously colored

clusters, two are very distinct, the green and orange, whereas the

other three are merged together: blue, red, and magenta. This means

the green and orange microbiomes are both different from one

another and different from the blue, red, and magenta supercluster

microbiomes. On the other hand, the latter are more related to one

another since they are closer to one another. Each cluster represents

a different underlying microbiome with a different set of microbial

objects statistics. The green and orange sets must therefore have

very different objects whereas the blue, red, and magenta have

objects in common, specifically blue with red and red with magenta

although not blue with magenta. As we have pointed out before,

common objects between classes could be suggestive of multiple

biological meanings of an object. This is one of the peculiarities and

benefits of MLDA, that identical measurements mean different

things in different contexts.

The statistical results shown in Table S3, Table S4, and Table S5

show these microbiome summaries for each of the color classes for

objects with abundance bin ≥10 (0.3% abundance) and counts ≥5 in

Table S3 and ≥2 in Table S4 and Table S5. Different tables show
BA

FIGURE 2

PCA was performed on clr-transformed composition. (A) Scree plot for the PCA ordination. Each bar corresponds to one axis of the PCA; the height
is proportional to the amount of variance explained by that axis. (B) PCA ordination plot. Each colored point represents a sample. Points are colored
by diagnosis and shaped by biopsy location (EC: entorhinal cortex, F: frontal lobe and T: temporal lobe).
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different abundance combinations for particular microbes to show

the importance of various microbes. Table S7 shows the same

information in a different form. Each object is shown with their

approximate microbiome computed from the occurrence count of

the object in the sample color class.

For each color class, we also show the fraction of samples that

come from AD subjects. Diamond-shaped nodes are from AD

subjects and circles from the controls. It does not necessarily

follow that this number is an estimate of the pathogenicity of the

underlying microbiome, which will be explained in Theme 4 below.

A few graph anomalies

Note that several nodes fall outside the clusters. This occurs

because MLDA uses a stochastic algorithm which creates statistical
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fluctuations in class assignments. When the two largest class

components are close, sometimes one ends up a little bigger and

sometimes the other. The sample will be pulled from the cluster if

one of these ends up being too large.

Principal microbes and microbial objects

In the Figure 6 graphs, we show the samples in which the most

abundant species are found, combining their objects in abundance

ranges 12–14. The samples that contain these objects are shown by

enlarging the sample/nodes containing these microbial objects. C.

acnes is most prevalent in the blue–red–magenta supercluster with

some in the orange. The blue is dominated by the 14 abundance

range, the red has a combination of 14 and 13 abundance ranges,

and the magenta has a combination of 13, 12, and 11 abundance
FIGURE 3

Heatmap that represents the clr-transformed OTU counts within each sample of the 80 most variable OTUs (higher relative abundance corresponds
to darker colors). Unsupervised grouping of samples with similar OTU composition (columns) and OTUs with similar abundance across samples
(vertical) into clusters was achieved by hierarchical clustering using the Euclidean distance between clr-transformed compositions. The sample’s
subjects, biopsy brain locations and diagnosis are indicated by the vertical colored strips. AD, Alzheimer’s disease; C, controls; EC, entorhinal cortex;
F, frontal lobe; T, temporal lobe.
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ranges. Acinetobacter junii is mainly found in the green and orange

classes and Comamonas jiangduensis is found almost exclusively in

the green class. These underlying details can be found in Table S3,

Table S4, Table S5, Table S7, and Table 4.

Low-count microbial objects

To understand the low-count microbial objects, it is best to look

at high-abundance and low-abundance objects separately. Because

we are spreading low-count objects over five classes, it is difficult to

find statistically significant patterns among them. In fact, we were

unable to find any statistically sound patterns among the low-count

and low-abundance objects. We did, however, find a fundamentally

important pattern for high-abundance low-count objects that

occurs mainly in the magenta and red classes, although signs of it

can be traced to the other classes too; see Table 4. Specifically, we

noticed that samples with C. acnes with abundances 11–13 in the

red and magenta classes correlated with a set of low-count bacteria

with abundance level 14. In most cases, there was only one that

occurred per sample. In Figure 7, we show two different ways of

defining this set.

In Figure 7, we illustrate this point in a few different ways. Graphs

a–c show low-count high-abundance objects in the sample with
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various occurrence rates. The right shows C. acnes-(11-13) objects

to demonstrate that they co-occur in many samples with the low-

count high-abundance objects. From here on, we will refer to the

abundance 14 objects of (c), occurring in the red and magenta classes,

as the M+ set because the most prevalent member of the set is

Methylobacterium. In fact, of the 28 samples where these C. acnes

objects occur, 22 contain M+ objects. The nine M+ objects that occur

two or more times are Bacillus, Bradyrhizobium, Caulobacter, Delftia,

Kocuria, Methylobacterium, Nitrosospira, Sediminibacterium, and

Variovorax. Their objects can also be found in Table S4.

Robustness of color clusters

Three of the color classes have a heterogeneous mix of AD and

control samples (orange, blue, and red). The other two, green and

magenta, are nearly homogeneous in the disease state, comprising

almost entirely samples from either AD or control subjects. We

initially thought that we should observe clusters whose disease state

was nearly homogeneous, meaning that either a microbiome was

pathogenic or not. The reason for the heterogeneity will become

clear with the results of Theme 4 below.

We thought that these statistics suggested that there may be

within-class differences in the microbiomes of the AD and control
FIGURE 4

Differences in relative abundance between the Alzheimer’s disease (AD) group and the age-matched control group. The relative abundances were
estimated for each OTU from each group through Dirichlet-multinomial modelling. The vertical axis shows the estimated differences in the relative
abundance of each OTU between the AD and control groups. Points are the means of the posterior probability distribution of differences (PPD) and
the whiskers show the 95% equal tail probability intervals of PPD (see Materials and Methods and Supplement).
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samples that could split the orange, blue, and red classes into

homogeneous color clusters with the right input and object

merging parameters. Indeed, there were within-class differences

between the cohorts, but when we tried to split the clusters by using

a larger number of input classes with these adjustments, the clusters

would not split. The object differences between samples were just

not large enough to support entirely new color classes.

Correspondence with results of method I

We will look at three aspects of these results in light of the

MLDA results. First, we will compare the PCA method’s capability

of identifying microbiome clusters; second, we will look at the

bacteria that were identified as being correlated or anti-correlated

with AD; and last, we will look at a contamination issue.

In Figure 8, we show the same chart as Figure 2 except that the

nodes are colored by the class colors of the MLDA results. The

green and orange samples are distinctly clustered whereas the blue,

red, and magenta are mixed together. While the orange are

clustered, there is not an obvious way to distinguish the colors.

The MLDA plus graph does show the blue, red, and magenta

samples in a super cluster; however, these color clusters are distinct

and defined by the maximum class component whereas they are

interspersed in the PCA results. A complete reconciliation of the

PCA and MLDA results is beyond the scope of this paper.

For the following, see Table S3, Table S4, and Table S5. The

DMM method reveals Cutibacterium acnes as associated with AD.

DMM has no class structure, so the method essentially averages

over it. As we discuss both in this section and the next, this

association is likely due to the prevalence of C. acnes in

abundance levels 11–13 in the red and magenta clusters being
Frontiers in Cellular and Infection Microbiology 14
high enough not to be washed out by its presence elsewhere where it

is frequently found in the controls.

The method also found Comamonas jiangduensis to be

correlated with the controls, which is also found with the MLDA

method. Regarding Acinetobacter, one species A. junii was found to

be anti-correlated with AD and another A. tjernbergiae was

correlated with AD. A. junii objects are found in both the green

and orange classes, with green not being associated with AD and

orange somewhat associated with AD. A. tjernbergiae objects are

mainly found in the orange class. Overall, since DMM is essentially

averaging over the classes, these results appear to be consistent with

the MLDA results.

Last , but importantly , the Sediminibacterium and

Methylobacterium species identified by DMM as associated with

AD is consistent with the MLDA findings. These two are among the

M+ bacterial set that is found in the red and magenta classes.

Methylobacterium is mainly found in the samples of the magenta

class, which is most associated with AD. Other findings of DMM

can be reconciled with MLDA by referring to Table S3, Table S4,

and Table S5. Overall, correlation of the results with AD is more

complicated than this discussion and requires an understanding of

the subject level results.

The first method found that Staphylococcus epidermidis was

associated with AD. The main OTUs in this species were, however,

removed in the background removal process for the second method

because all of the OTUs present in the negative controls were

removed even if there was only a small amount as was the case for

this OTU. A post-MLDA analysis found that S. epidermidis was

present in 45 samples ≥ abundance level 11 and in 39 samples ≥

abundance level 12. In this analysis, we were able to estimate the
FIGURE 5

Type I graph. Results from summation of five runs. Nodes are samples. Colors are maximum classes. Principal bacterial genera and abundance levels
indicated for each color. The inset contains the percentage of samples that come from AD subjects by class, called AD statistics.
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class distribution of S. epidermis objects and found that their class

distributions were fairly flat, which is consistent with a

contaminant. Furthermore, its objects with abundances ≥12 come

from AD samples 59% of the time partially accounting for the

DMM result.

In summary, the results of the DMM analysis are what happens

when class is not considered in an analysis. As it is a confounding

variable, ignoring it can sometimes skew results, although

not always.

Theme 2—microscopic structure and
macroscopic spatial distribution

There are two sets of results that provide information about the

macroscopic spatial distribution of ecosystem mixtures and

microscopic spatial distribution of individual ecosystems within

the samples. We describe the results here and review their detailed

relationship to ecosystems in the discussion section.

Graph clustering and macroscopic structure

A fundamental result of the graph visualization of the MLDA

results is the appearance of homogeneously colored clusters. This

occurs because the value of the maximum MLDA component

(color) of the node classification vector is ⪆0.4, showing that a

particular class dominates in each sample. Furthermore, each color

cluster contains samples from many subjects suggesting similarities

in microbiome across subjects. Even though each subject has been

undersampled (two to five samples/brain), the class structure

suggests picturing the physical sampling process as coming from

two virtual brains, one with AD and one without AD, each with

about 60 samples/brain. This grouping can inform the large-scale

macroscopic distribution of the individual microbiome classes.

Abundance distributions of principal bacteria and
microscopic structure

By examining the actual underlying objects in each color class,

we can learn even more. In Table 4, we present the abundance

statistics of each of the principal objects in each class, specifically C.

acnes, A. junii, C. jianduensis, and M+. See the Supplementary

Methods for a detailed description of this table. The principal C.

acnes, A. junii, C. jianduensis, and M+ object abundance averages

and distributions within a class provide information about the

microscopic ecosystem structure, specifically their density and
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their spatial homogeneity on sample scales. In other words, these

statistics provide information regarding the structure within the

sample from which we can infer a microscopic structure.

We show the occurrence of each object in each class and then

characterize the width of the abundance distribution over bins. The

average abundance is related to the density of underlying

ecosystems, and the width of the abundance is related to the

spatial homogeneity of ecosystems within a sample. More details

of this interpretation are provided in the discussion. Generally,

when the abundance average is ~14, we call it high; between 13 and

14, we call medium; and everything else is called low. Also, when the

distribution is concentrated in one or two bins, we call it narrow,

mainly two or three bins with some peaking, medium, and greater

than or equal to three bins, we call wide. We will explain in the

discussion how to predict the spatial distribution of underlying

ecosystemmixtures from these results, which is not obvious because

it depends on the ecosystem model. The sample data are presented

in Table S6.

In presenting the results in this manner, we also need to call

attention to an important equivalence principle that we use to

understand these results. Furthermore, we emphasize that we are

assuming that the microbial objects used in the computations result

from summing over physically sampled mixtures of ecosystems, but

we do not know much about the ecosystems yet. Therefore, we are

assuming that each class microbiome results from a different

mixture of ecosystems. The principle is as follows.

The sum of the virtual sampling of ecosystemmixtures equals

the physical sampling of the sum of the ecosystem mixtures

In other words, we can treat the results of Table 4 as what we

would obtain had we been able to individually sample a single

ecosystem class mixture. We can then use these results to derive

something about the nature of the individual class ecosystem

mixtures. This is done in the discussion section.

Theme 3—temporal order of the classes
Temporally ordering the classes requires finding relationships

between pairs of classes and then determining their temporal order.

Below, we describe statistical methods that relate class pairs where it

can be argued that the method is finding classes where the

underlying ecosystems could evolve from one class to the other.

Using these pairs, together with arguments about temporal order,

we construct a time-ordered network of the classes.
FIGURE 6

Graphs showing samples with abundances levels 12–14 with enlarged nodes for three main microbes.
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Moné et al. 10.3389/fcimb.2023.1123228
Note: There are many interesting correlations and anomalies

found in the data, most of which can be accounted for by our

methods. Some involve spurious time correlations, and others

involve competitive interactions. We have not included these here

but mention them to emphasize the usefulness of these methods to

explain far more than we present.

Microbial abundance dynamics

A strong statistical relationship between pairs of color clusters,

which might indicate a temporal relationship, should involve

samples that contain principal microbial objects whose

abundances are the same or differ by one. These are situations

where it is likely that one microbe is just beginning to outcompete

others or the reverse.

To visualize this, we constructed graphs where the samples of class

pairs that meet these criteria are enlarged. In Figure 9, we show results

for the highly occurring species of the Cutibacterium, Acinetobacter,
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and Comamonas genera as well as the low-count high-abundance

objects referred to as M+. Refer to Table 4 for more details. For less

frequently occurring objects, the prevalences are too low to be useful.

This analysis found that the green–orange, orange–blue, green–

blue, blue–red, and red–magenta pairs showed the strongest

relationships utilizing the above evaluation standards. Refer to the

Supplementary Methods for detailed discussion of the comparisons.

Time ordering of classes

Now that we have established relationships between pairs of

classes, it is straightforward to order them in time. To do this, we

need a beginning and an end which is provided by AD statistics and

the reasonable assumption that health precedes disease. Earlier, we

cautioned about the use of these statistics because it does not

necessarily follow that the bacteria in all of the samples of an AD

subject are necessarily responsible for the disease. This is most likely

not the case, however, for the green and magenta classes.
TABLE 4 Principal bacteria abundance distributions. Note that the M+ rows are different because they show the occurrence of any of 21 different
genera in the M+ set.

Microbe/Abundance Bin 7 8 9 10 11 12 13 14 tot/tot-class Abundance Width Avg SD Sum

G
re
en

C. acnes 1 1 0 1 3 0 1 1 8/16 low wide 10.6 2.3 8.0

A. junii 0 0 0 1 0 2 5 5 13/16 med narrow 13.0 1.2 13.0

C. jianduensis 0 0 0 0 1 2 5 7 15/16 med narrow 13.2 0.94 15

M+ n≥2 0 4 1 4 3 1 1 1 8/16 low wide 10.2 1.9 15

M+ 2 7 6 6 6 2 1 1 15/16 low wide 9.7 1.7 31

O
ra
n
g
e

C. acnes 2 1 3 3 2 3 7 2 23/27 med med 11.1 2.2 23

A. junii 0 0 0 0 1 0 12 11 24/27 high narrow 13.4 0.71 24

C. jianduensis 2 0 1 2 3 0 0 0 8/27 low wide 9.5 1.7 8.0

M+ n≥2 1 4 4 5 5 5 1 0 15/27 low wide 10.1 1.6 25.0

M+ 1 7 8 8 7 6 2 1 20/27 low wide 10.1 1.7 40.0

B
lu
e

C. acnes 0 0 0 0 0 0 0 27 27/29 high narrow 14.0 0 27

A. junii 0 0 3 5 2 3 3 0 16/29 low wide 10.9 1.5 16

C. jianduensis 0 0 0 0 0 0 0 0 0/29 none none 0.0 N/A 0

M+ n≥2 0 5 3 11 5 5 1 1 18/29 low med 10.3 1.5 31

M+ 0 5 6 16 10 9 4 3 24/29 low med 10.7 1.6 53

R
ed

C. acnes 0 0 0 0 1 2 6 14 23/26 high narrow 13.4 0.84 23

A. junii 0 0 0 1 2 0 1 0 4/26 low wide 11.3 1.3 4

C. jianduensis 0 0 0 0 0 0 0 0 0/26 none none 0.0 N/A 0

M+ n≥2 0 1 1 4 9 10 9 7 25/26 med med 12.0 1.5 41

M+ 0 1 1 4 9 12 11 10 25/26 med med 12.1 1.5 48

M
a
g
en
ta

C. acnes 0 0 0 1 3 7 9 0 20/24 med narrow 12.2 0.89 20

A. junii 0 0 0 0 0 3 1 1 5/24 med narrow 12.6 0.89 5

C. jianduensis 0 0 0 0 0 0 0 0 0/24 none none 0.0 N/A 0

M+ n≥2 0 0 2 5 2 5 6 12 21/24 med med 12.4 1.7 32

M+ 1 1 2 7 6 9 8 19 24/24 med med 12.2 1.8 53
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When the class AD statistic is either close to 0% or close to

100%, we are looking at situations where the population either

never came from a diseased subject (green) or almost always came

from a diseased subject (magenta). In these cases, the former would

most likely not be pathogenic, or the subject would have AD. As the

latter is almost always associated with disease, it is a reasonable

hypothesis that it is pathogenic. Given that all the other sample

colors are associated with both AD and controls, unless the physical

sampling of the subject brains somehow missed a part of the brain

that contained other pathogenic ecosystems not in any of our data,

the magenta class most likely contains pathogenic ecosystems.

Refer to Figure 10. The only strong relationship to green is

orange although there might be a minor link to blue. At the other

end, the only relationship to magenta is red. The only one we are left

with is blue to red which must go in between the former two. Now

we have a time-ordered class network. Another way of saying this is

that we have derived a temporal variable where class color is

the variable.

Microbial dynamics and C. acnes anti-correlation

At this point, we observe that the network essentially reveals

temporal dynamics for all of the principal bacteria, but most

importantly, it has revealed the dynamics of C. acnes. It begins in

the green class with a low average abundance and a broad

distribution. It evolves in the orange to a medium average

abundance that is still quite broad. In the blue class, it reaches a

high narrow peak. In the red class, the abundance begins to fall and

broaden. It falls further in the magenta class to a medium level with

an even broader distribution.

In the green class, A. junii displays a medium average and

narrow width. It stays roughly the same in the orange class. It then

rapidly diminishes in blue and continues its decline to low

abundance for red and magenta. The C. jiangduensis dynamic is

more pronounced. It begins with a medium average abundance and

width in green and then drops precipitously and broadens in

orange. It is essentially not present in blue, red, or magenta.

On closer inspection, there seems to be another inter-object

dynamic, an anti-correlation with C. acnes as seen in Table 4. In the

green, C. acnes is either non-existent, as seen in half the samples or
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at very low abundances. Conversely, this is the class where the

Comamonas and Acinetobacter species have the highest abundances

and are the most prevalent. The orange class has the next lowest

level of C. acnes where it is present in almost all of the samples but

with only a small peak in abundance (at 13) observed with seven

samples and displaying a very wide distribution ranging from 7 to

14. Curiously, there is virtually no Comamonas, but Acinetobacter

persists at high levels.

In the blue class, the levels of C. acnes are the highest among all

of the classes. There is virtually no Comamonas, and A. junii levels

are low; the latter occurring in only about half the samples with a

very wide abundance distribution from 9 to 13. In the red class,

there is a high level of C. acnes but A. junii is further diminished

being present in less than a quarter of the samples over a wide

abundance distribution of 10–13. Even with somewhat lower levels

of C. acnes in magenta compared with red, A. junii is still only

present in fewer than a quarter of the samples over a distribution

from 12 to 14.

Thus overall, it appears that when C. acnes is not present or is

present only at low levels, we observe both Comamonas spp. and

Acinetobacter spp. However, as the abundance of C. acnes increases,

first the Comamonas spp. is lost and then the Acinetobacter spp. As

the C. acnes abundance decreases from the red class to the magenta

class, a new non-specific dynamic enters the mix. The high-

abundance low-count microbes, M+, appear mainly in the upper

red and magenta classes. They increase in the magenta class as the

C. acnes abundance falls, resulting in an antiparallel dynamic. There

is something very curious here that we will take up again in

discussion of the ecosystems and the biology. The C. acnes

distributions in the magenta class look similar to those in the

orange class, but there are major differences between the classes

otherwise. This is an example of objects with multiple meanings

described in the Methods section that MLDA can identify. The

orange has a lot of Acinetobacter spp. whereas magenta does not,

and the magenta has a lot of M+ whereas the orange class does not.

Clearly, the ecosystem evolution that goes along with C. acnes’ rise

and fall is neither the same nor reversible. Time could provide the

explanation. Some of the more prevalent M+ are present at low

abundances and prevalence in the earliest stages, orange and green
A B DC

FIGURE 7

Several definitions of M+ compared to C. acnes (11–13). (A) Objects with level 14 that occur two or more times in any class, (B) objects of level 14
that occur two or more times in magenta or red, (C) objects of level 14 that occur two or more times and their corresponding objects of level 13 in
magenta or red, and (D) C. acnes (11-13).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1123228
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
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(see Table 4). Curiously, there is only one instance of

Methylobacterium in orange and two in upper red. Given long

enough, however, many seem to be able to take over, even if C. acnes

is present, either by increasing from earlier lower levels, or coming

onto the scene later, like Methylobacterium.

Overall, these findings will constrain the underlying ecosystem

structure that is presented in the discussion section.
Theme 4—pathogenicity of classes
Disease state statistics

The disease state statistics of each class, which summarize the

fraction of samples from AD subjects, provide the first clues about

whether a particular microbiome is pathogenic or not, and we have

used these clues to set the temporal order of classes. However, as we

pointed out earlier, these numbers are not estimates of the actual

pathogenicities of the classes for every class. These statistics

summarize the fraction of samples from a class that come from a

subject who has AD.

If it were assumed that class AD statistics were an estimate of

class pathogenicity, this would be tantamount to assuming a

stochastic pathogenicity mechanism where sometimes a

microbiome is responsible for AD and sometimes not. It might be

reasonable if we were observing AD-control mixes of 80–20 or even

70–30 where we might be able to speculate that they derived from

individual differences such as immune system capability. The AD

statistics for blue, orange, and red were, however, just too close to

50–50 for comfort. Furthermore, since we were unable to split the

color clusters through parameter adjustment, we were confident in

their robustness and therefore their microbiomes. Therefore, we

needed to find a more parsimonious explanation than accepting

stochastic pathogenicity. We found one in the subject color class
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statistics. It is important to remember that the class results emerge

from an analysis of bacterial data only. The disease statistics from

the inset of Figure 5 are a statement of results only, i.e., which

samples in each class came from AD or control brains and are not

computed by fitting an a priori hypothesis.

Subject color class statistics

Because the disease state variable is an attribute of a subject, not

a sample, it was necessary to relate the subjects’ sample color class

distributions to disease state in order to find a relationship between

class and AD. In Figure 11, we display the color class of each sample

for all the subjects.

A glance at this figure indicates that the occurrence of a single

magenta sample accounts for a subject’s AD in almost all cases

This suggests that the ecosystems underlying the other classes

are not pathogenic even though many of their samples come

from subjects who have AD. In order to do a more rigorous

computation, we defined a subject-level classification as the

normalized sum of the classifications of each of its samples.

The sum was unweighted as we had no a priori way to assign

weights. Using the resultant mixture vectors as independent

variables in a logit regression with a cutoff of 0.5 (Wolfram

Research Inc, 2008), we were able to obtain a high accuracy

prediction (about 88%) of AD or lack of AD. True Positive, False

Positive, True Negative, and False Negative rates were found to be

88%, 13%, 87%, and 13%, respectively. See the Supplementary

Methods for additional details.

Location

There are insufficient data to say anything definitive

about location, but we offer one set of results. There is a hint that
FIGURE 8

This is the same as Figure 2, but the nodes are colored by the class colors.
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when a magenta infection occurs in an AD subject, it is likely to

be found at least in the frontal lobe. Out of 13 AD subjects

with magenta infections, nine have at least one frontal lobe

magenta sample whereas only two have temporal lobe magenta

samples without a frontal lobe magenta sample. Of these 13 AD

subjects, five have temporal lobe magenta samples that also have

magenta frontal lobe infections. For the three subjects that had

samples in the entorhinal cortex, only one had samples in the

temporal or frontal cortex and, in this case, it was both. The other

two had neither.

Thus, at least with this small set of data, there is a suggestion

that subjects with the magenta class in their frontal lobe are more

likely to have the diminished cognitive abilities that result in

AD diagnoses.
Discussion

The existence of a human brain microbiome has been

suggested recently (Branton et al., 2016; Emery et al., 2017; Link,

2021), and a dysbiotic brain microbiome could contribute to AD

pathogenesis. The use of long-read sequencing of full-length

16S rRNA genes allowed us to profile the bacterial composition

of human brain tissue samples from AD and non-demented

control subjects as well as to evidence potential complex

polymicrobial interactions.
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Spatiotemporal and pathogenic
relationships as evidence supportive
of a possible bacterial etiology of AD

The DMM and MLDA computations provide us with a rich set

of results that allow us to extract multiple patterns relating to AD.

DMM succeeded in finding what was not revealed by using the

usual frequentist tests. By properly treating the compositional

nature of the data, it rigorously revealed those taxa that are the

most important in the two cohorts and thus requiring further

investigations in terms of space and time. The interpretation of

the MLDA computations has led us to surmise how Alzheimer’s

disease may develop because of dynamic bacterial ecosystems in the

brain, although other microbial or non-microbial factors may also

be simultaneously involved (Hu et al., 2022). We discuss how these

ecosystems are arranged microscopically and how they are spatially

distributed over the brain, using the color classes as surrogates for

time or phase of disease development to reveal spatial and temporal

microbiome patterns related to AD.

The patterns and relationships obtained from our analyses

constitute evidence supportive of a possible bacterial role in the

etiology of AD. Even so, considerably more work will be required to

establish proof of such a role. In particular, we do not yet know

where these bacteria are located with respect to the brain’s

physiological architecture, whether other non-bacterial microbes

are involved, or whether they are causing damage or are only
A B
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FIGURE 9

Color pair relationships. (A) Green-Orange: A_j -(13-14), (B) Orange-Blue and Green-Blue: A_j,-(9-13), (C) Blue- Red: Cu_a-14, (D) Blue-Red: Cu_a-
(13-14), (E) Red-Magenta: Cu_a-(11-13), (F) Red- Magenta: M+ -(13-14).
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markers for physiological changes that they did not cause. Even so,

while there are no standard statistical tests for all of what we have

found, it seems unlikely that these patterns occurred by chance.

Role of Cutibacterium acnes
C. acnes occurs at some level in 83% of the samples, both the AD

and controls, and in all classes. It occurs in over 88% of the samples

not including the green class. These observations suggest that it may

be interacting with all the ecosystems in each class and through

these interactions plays a primary role in defining class by

determining which microbes ultimately predominate. If the

temporal order of classes we have argued is correct, C. acnes

begins at low abundance as seen in the green class, which then

increases in abundance in the orange class, peaking in the blue class

and falling in abundance throughout the red and magenta classes as

disease emerges. The fact that orange and magenta have similar

average abundances strongly suggests that, as time passes,

something changes, perhaps physiologically, to allow the M+

species complex to dominate in the magenta rather than the

ecosystems evolving back to orange as C. acnes’ abundance falls.

Perhaps the brain’s immune protection is diminished or a failing

blood–brain barrier gradually increases the microbes it lets in over

time. This may be an example of multiple meanings of one object

mentioned earlier where the same C. acnes objects in the orange and

magenta classes are involved in different processes.

C. acnes’ ubiquity may correlate with another well-known

observation, the ubiquity of plaques and NFTs in the brain tissue

of both AD and non-AD patients. We do not have Braak stage data

for the age-matched controls to test this hypothesis. We suggest that

the ubiquity of both is not happenstance and perhaps the plaques

and tangles are some type of response to the C. acnes.

We emphasize that our results suggest that the presence of C.

acnes alone is not evidence of damaged tissue that results in the

observed cognitive impairment of the subjects. In other words, we

are suggesting that the presence of C. acnes could cause plaques and
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NFTs but not AD. Even so, the evolution of the microscopic

structure of C. acnes ecosystems (see below for discussion of

microscopic structure) suggests that it is a driving factor in the

emergence of AD, even if it does not directly cause it. While the C.

acnes ecosystems are a little closer together in the orange than in the

green, it is enough to eliminate the ability of C. jiangduensis to

survive. As the concentration of C. acnes in ecosystems increases,

the ability of A. junii to survive diminishes, suggesting its lack of a

role in pathogenesis. Clearly, in the magenta class, something

dramatic changes as the microscopic homogeneity of C. acnes

declines along with its abundance.

Contamination
We did have a concern about contamination by C. acnes and

Acinetobacter given their prevalence on the human body and in the

environment, respectively. We do not believe there to be a problem

for three reasons. First, we presented findings in Data Filtering

above that they were not. Second, they did not appear in the

negative controls. Third, if objects are from contaminants, they

should affect all classes the same and have a class distribution with

roughly equal components. This is far from the case with these

bacteria whose objects had components with high values in

some classes.

Pathogenicity
We have argued that the only class that has a strong relationship

to pathogenicity is the magenta class. Given that there are many M+

bacteria from many species and genera, it is hard to argue that these

are all pathogens. Their presence in the magenta class and their

pairing with C. acnes-(11-13) in individual samples suggest that the

presence of both is related to pathogenicity, although it is possible

that the M+ are pathogenic alone and occupy spatially distinct

niches, with their presence driving down the Cu abundance. From a

biological point of view, this pairing suggests some type of

interaction between the C. acnes and M+. It is not outlandish to
FIGURE 10

Temporal network of classes.
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presume that the M+ share how they communicate or compete even

though they are demonstrably different species (Prindle et al., 2015;

Andrew et al., 2021). Thus, it may be that the biochemical mode of

communication or other interaction between M+ and C. acnes

directly causes AD. Alternatively, there may be something

physiological that changes to allow the M+ and C. acnes to

coexist. The microscopic ecosystem structure that we present

below allows us to further characterize this interaction. Those

computations suggest that the C. acnes and the M+ are part of

separate polymicrobial clusters so these clusters are involved in

whatever interactions that may exist.

Microbiology of principal bacteria
As we stated at the beginning of the paper, it is difficult to

ascertain the behavioral properties of all the bacteria observed

including the principal ones. We will nonetheless try to point out

how some of these properties may be consistent with what our

results show. We will focus on their motility and preferred pH. We

will not comment on the M+ set. We understand that microbes

other than bacteria could be involved but did not attempt to observe

fungi, viruses, or other microorganisms. That will be the subject of

future work.

C. acnes is not motile (Vorobjeva, 1999; Mayslich et al., 2021),

while A. junii has twitching motility (Bitrian et al., 2013; Jung and

Park, 2015) and C. jiangduensis is motile (Steinberg and Burd,

2015). C. acnes’ lack of motility suggests that there must be a

mechanism for its ubiquity other than the ability to move. Perhaps

it gains access through the capillaries of the blood–brain barrier or

another system like the glymphatic system. A. junii has limited

motility, suggesting a somewhat similar mechanism.

C. jiangduensis’ association with control subjects suggests that it

might be part of a healthy microbiome or at least the microbiome of

elderly subjects without AD. As it is motile, perhaps it functions
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efficiently in the intercellular medium as a waste processor. While it

is not a major gut bacterium, its biofilms proliferate in human

wastewater treatment facilities (Wu et al., 2015; Wu et al., 2018)

suggesting it may prefer the pH found there of 7–9. C. acnes’ ability

to emit propionic and acetic acids (Mayslich et al., 2021) may make

it difficult for C. jiangduensis to thrive or live. This type of

mechanism provides for a long-range mechanism to reduce C.

jiangduensis if the C. acnes and C. jiangduensis ecosystems are not

close. Furthermore, if C. jiangduensis has a waste treatment

function, its elimination could result in pathologies. A. junii also

prefers a pH of 7–9, again suggesting a mechanism for anti-

correlation with C. acnes (Jung and Park, 2015).

It is not clear if the lower levels of C. acnes in the magenta class

are due to competition with M+, an increase of M+ in niches not

occupied by C. acnes, or other factors.

Last, given our suggestion that C. acnes, A. junii, C.

jiangduensis, and M+ may occupy distinct spatial niches, the

question arises as to where these niches are. One group imaged

brain tissue from ALS patients and found inter- and intracellular

bacteria as well as fungi, which is consistent with our prediction of

distinct spatial niches (Alonso et al., 2019). Most importantly, this

group observed bacterial abundance profiles in these subjects that

had key similarities to the magenta microbiome. Specifically, many

samples had levels of Methylobacterium that were several times

higher than the Cutibacterium they found. This, of course, suggests

a multi-disease effect for bacterial infection, although the common

theme reported among degenerative brain diseases is buildup of

toxic protein breakdown products.

Points of entry—blood–brain barrier
Much has been written about the possibility of AD being a

vascular disease involving the failure of the blood–brain barrier

(BBB) (Sweeney et al., 2018). While less is known, other distribution
FIGURE 11

Color class of samples by subject (F: frontal lobe, T: temporal lobe, E: entorhinal cortex).
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systems like the glymphatic system could also be candidates (Iliff

et al., 2012) as well as nervous networks.

The major reason why fluidic distribution systems could be

behind our results is that there needs to be a mechanism for the

random microscopic distribution of ecosystems and macroscopic

distribution of class mixtures that we detail below (BBB will be used

to refer to all networks from here on). The BBB could provide such

a mechanism because it could deliver bacteria anywhere in the brain

—if and as it fails. This process could be essentially a pseudo-

random scattering of bacteria into the capillaries and across them

into cells and beyond. On the other hand, if the BBB fails in only

some localized places, we would need a spreading mechanism inside

the brain to distribute the bacteria. Spreading, however, is more

likely to cause a regional structure of ecosystems, which is

contradicted by our computations below. While we suggested that

the orange class could have a regional structure, this appears to

occur early and is not associated directly with the illness. There are

reports, however, that it happens (Stopschinski et al., 2021). It may

be though that it is the failure of the BBB that spreads spatially,

masquerading as a spreading infection (Pritchard et al., 2022).

The hints at class diversity between lobes that we have

mentioned where the frontal lobe seems more associated with AD

than the temporal lobe further suggest that we are observing a

gradual failure of the BBB by lobe. A worsening of the failure could

also account for both the rise and fall of C. acnes abundances.

Perhaps, on the ascendant side of the C. acnes abundance curve, the

BBB is not in as bad shape and lets through the C. acnes and A. junii

ecosystems without cognitive symptoms. As the pathology worsens,

maybe the BBB allows more of the M+ set in and they can either

outcompete the C. acnes or occupy a different niche outside of C.

acnes influence where they can increase in abundance and do the

damage associated with AD cognitive symptoms. If large-scale BBB

failure happens in AD, bacterial introduction to the brain through a

failure in the BBB could be at the root of other neurological diseases

but involve failure in other parts of the brain.

There is also an alternative to this bacterio-centric picture, or at

least another pathogenic mechanism that might coexist with it.

Bacteria may just be markers for the progressive failure of the BBB

that is allowing another pathogenic microbe such as a virus or

fungus or some other molecule to enter the brain concurrent with

the development of the magenta stage. The latter would indicate

that the complex dynamics that we report are actually temporal

markers for the gradual failure of a brain blood or lymph

distribution system. This certainly is always worth keeping in

mind, especially with the increasing evidence of the presence of

fungi and viruses in the brain (Itzhaki et al., 2020; Li et al., 2021).

Even so, it is quite hard to conclude that all of the bacterial patterns

are unrelated to the cause of AD. Further research could illuminate

which possible mechanisms exist and whether the location and type

of infection explains other neurological diseases.

Ecosystem mixtures—from microscopic to
macroscopic

Since the sampling process sums and averages the bacterial load

over the sample volume, the sum does not tell us about microscopic
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structure within a single sample directly. It comprises a bulk

macroscopic measurement. There could be ecosystems inside

human cells, between the cells, within capillaries, etc., each with

different bacterial abundances. The same bacteria may be in more

than one ecosystem. In other words, there are lots of possibilities,

but the sampling process just sums them all giving us a set of total

abundances for each sample. In other words, a class microbiome

comes from a sum of the sample’s ecosystem mixtures.

While we did not observe the bacterial ecosystems like a

microscope, the MLDA results give us enough to identify

important features. We will use the differences among samples

within a class to infer spatial features of the underlying ecosystems.

Specifically, we will use the abundance distributions of the principal

bacteria and their occurrence within each class to reveal the

microscopic structure. Since the results already tell us that the

magenta class is associated with AD and its lack mainly not

associated with AD, the underlying structure of this class should

provide additional information with regard to how its bacterial

ecosystems could be causing AD.

At the other end of the spatial scale, we wish to understand how

the classes of ecosystem mixtures are spatially distributed in the

brain. We will compare the large-scale spatial distribution of sample

color classes to simulated spatial distributions of ecosystem mixture

classes to look for such patterns.
Cellular-scale microscopic structure

Spatial sampling—simplifying assumption
The classes are dominated by three genera: Cutibacterium (P),

Acinetobacter (A), and Comamonas (C) and, in particular, three

species, C. acnes, A. junii, and C. jiangduensis, which have both high

abundance within a sample and a high prevalence among the

samples of a class. We will assume that classes represent different

mixtures of ecosystems that the MLDA algorithm separates and

that it is reasonable to apply the virtual sampling principle of

Theme 2 in the Results (not to be confused with the virtual brain). A

physical sample is the weighted sum of these class mixtures where

the weights are the class components. The principle allows us to

model a single physical sample as if it were the separate sampling of

each ecosystem mixture class (see for example Table S3, Table S4,

Table S5, and Table S7). Given that the maximum class components

in most samples are high (see Results—Theme 2), it is reasonable to

approximate the sample as if it contained a single component

defined by its color (maximum component).

Idealized microscopic model of ecosystems
There are several models that could account for the measured

data. We present the following one as it is sufficiently general to

encompass many and is parsimonious. It is an interleaving model

that assumes that there are distinct polymicrobial ecosystems that

exist at the human cellular scale, each being dominated by one of

the principal/dominant bacteria. Refer to Figure 12. One can

visualize them as pixels that aggregate to a sample. Each pixel

represents a Cutibacterium, Acinetobacter, M+ or a Comamonas-
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dominated ecosystem. Each class has its own unique arrangement

of these ecosystems that can manifest different densities and

homogeneities within the brain. In some cases, one pixel may be

spread over the sample area with a random scattering of one or two

of the others. In other cases, there may be two with similar densities

and a scattering of the third. The scattering densities vary by class.

In general, low densities imply a larger average distance between

ecosystems and high densities imply a smaller distance (Figure 13).

Add up the number of ecosystem pixels within a black circled

sample as an estimate of the measured abundance of the raw data in

a particular class. Densities and homogeneities of each ecosystem

pixel will determine the abundance averages and distributions

within the class upon repeated samplings by randomly moving

the black circle around the displayed region. Lower-density pixels

will tend to be less homogeneous and have wider abundance

distributions than higher-density pixels. Note our use of “density”

to describe actual biological distributions as opposed to

“abundance,” which we use to describe the measured fractional

amount of a bacterium within a macroscopic sample.

Given that the sample to human cell size ratio is on the order of

50–100×, it is possible to qualitatively reproduce the class raw data,

by experimenting with different densities and homogeneities of the

pixel distributions. While we know that these pixels representing

ecosystems are small, we are not able to compute a precise size or

shape with the information we have. Closer physical sampling

would help, but direct microscopic observation is needed to

confirm actual sizes and densities. Even so, if we can infer a

particular arrangement of the principal bacterial ecosystems, we

will obtain a sense for their relative distances.
Idealized microscopic model of ecosystems—
class details

These descriptions show how small discrete polymicrobial

clusters or ecosystems can explain the bulk data for each class.

The less abundant and less prevalent microbes are assumed to be
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part of the ecosystems because the MLDA results depended on

them although we discuss them in terms of their dominant microbe.

In Figure 13, each large circular area is an idealized area of the

brain representing a pure ecosystem mixture class. Each smaller

black circle is a physical sample. Each dot or pixel is a polymicrobial

ecosystem with a particular dominating microbe: blue for C. acnes,

orange for A. junii, green for C. jiangduensis, and magenta for M+.

The number of dots within a sample is a qualitative way of

estimating the abundance of the principal microbe. By showing

gaps in some of the spatial distributions, we are trying to create a

visualization of inhomogeneity. Below, we describe how particular

ecosystem structures could produce the results from Table 4. For

each class (a), we first characterize the distributions from Table 4

and then (b) describe a polymicrobial ecosystem arrangement

(pictured in Figure 13) that could produce these distributions

upon repeated samplings described above.

Green. (a) The green class has C. jiangduensis and A. junii as its

dominant microbes. There is a lot of C. jiangduensis in the green

class. Green presents with a narrow C. jiangduensis distribution of

14s and 13s. A. junii has a narrow distribution of 13s and 14s. C.

acnes, on the other hand, has a wider distribution peaking at 11 with

a width of several abundance units and is only present in half of the

samples at levels ≥7. (b) These results suggest an ecosystem

structure where C. jiangduensis and Acinetobacter spp. are

interleaved with one another at high density with a random

scattering of C. acnes at lower density than either C. jiangduensis

or A. junii. This density should be low enough so that there is a high

probability that some samples from a green region will not contain

C. acnes as observed.

Orange. (a) The orange class has a narrow distribution of A.

junii in 13s and 14s that it shares with green. In comparison with

green, the C. acnes distribution is narrower with a pronounced peak

at 13 and a presence in nearly all samples. C. jiangduensis has a wide

distribution but is present in less than one-third of the samples in

this class and has no samples with abundances at 13 or 14.

Compared with the green class, it has largely disappeared. (b)
FIGURE 12

This figure shows possible ecosystem structure at the microscopic scale. The arrows roughly indicate the human cellular scale. Scenario 1 suggests
ecosystems dominated by one principal bacterium predominate around a particular cell, whereas scenario 3 suggests that ecosystems composed of
multiple principal bacteria predominate around a particular cell. A physical sample would comprise all or large fractions of the above arrays.
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These results suggest a high-density distribution dominated by A.

junii with a significant density of C. acnes but with C. jiangduensis

present only at a very low density. The fact that the C. acnes

distribution has a width >2 and its abundance level is not the

highest suggests some inhomogeneity in its spatial distribution.

Blue. (a) The blue class has a very narrow distribution of C.

acnes with a high average abundance at 14 that is representative of

almost every sample of the class. A. junii has a wide distribution,

peaking at 10, suggesting a competition where C. acnes has become

dominant. C. jiangduensis is not present at all in abundances ≥7. (b)

Because of the narrowness of the C. acnes distribution and high

abundance, its spatial distribution should be homogeneous with

high density with a light random scattering of A. junii.

Red. (a) The red class has a somewhat wider C. acnes

distribution than the blue class with some 13s in addition to 14s.

There is again no C. jiangduensis. (b) The larger width of the C.

acnes distribution compared with the blue class indicates that the

underlying spatial distribution of its ecosystems is not as

homogeneous nor as dense as in the blue class. The A. junii

distribution is wide, but it does not occur in most of the samples

suggesting it is widely spaced with significantly lower densities than

in the A. junii-predominant green and orange classes.

Magenta. (a) The magenta class has a wider C. acnes

distribution compared with blue with a mix of 13s, 12s, and a few

11s leading to lower average abundances of this species. Again, there

is no C. jiangduensis ≥level 7 abundance. As mentioned in the

results, the M+ microbes appear along with the C. acnes within

individual samples, but at far higher abundances. Looking back at

the M+ microbes in earlier classes, we see that they have been

present, however, at far lower abundances with wider distributions,

roughly in the 8–12 range. Importantly, in the red and magenta
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classes, they jump up into the 13–14 range where in most samples

they overtake the C. acnes abundances. (b) The C. acnes ecosystems

are therefore not homogeneously distributed due to the 11–13 range

abundances. A distinct C. acnes ecosystem assumption has worked

in the previous four classes, so we will continue to assume this

here and now also assume that the M+ are also distinct. In future

work, however, it should be considered that C. acnes and M+ are

part of the same ecosystem. In other words, in overtaking C. acnes

in the magenta class, the M+ microbes could either have increased

their abundances in microscopic niches where C. acnes was not

located, or they may have outcompeted C. acnes in their own

microscopic niches within a single ecosystem. Using the former

assumption leads to a homogeneous high-density M+ arrangement

interleaved with an inhomogeneous C. acnes arrangement at

lower density.

Microscopic structure summary
The analysis above suggests a structure much smaller than the

sample size that explains the MLDA results, showing how to

qualitatively reproduce their abundances and their variances with

a sampling process. We cannot determine the size of these

interleaved ecosystems at this point, but the model suggests that

they are spatially distinct with different dominant microbes and

relative distances that are class dependent. Given that the brain’s

tissue architecture is roughly the same from sample to sample, their

spatial arrangement is likely driven by different biological niches;

the architecture of the brain’s vascular, lymphatic, or nervous

networks; and processes that randomize their location. Last,

because a particular spatial arrangement is associated with a

color, the arrangement is related to a particular stage in the

development of Alzheimer’s disease.
FIGURE 13

Idealized depiction of distribution of ecosystems. Each dot is an ecosystem dominated by a particular species: blue for C. acnes, orange for A. junii,
green for C. jiangduensis, and magenta for M+. The large circles are class mixtures also labeled by colors. The small black circles depict samples.
Green is dominated by C. jiangduensis; blue is dominated by C. acnes; orange by A. junii, and magenta by the M+ set.
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Large-scale macroscopic structure

We explored how the ecosystem mixture classes were

distributed spatially, as this might suggest how the bacteria

travelled to their measured locations. Our metadata includes

anatomical brain locations (e.g., lobe), which is not the same

thing as a geometric location. We therefore took a statistical

approach to location, using the concept of the virtual brain.

Recall that the virtual brain idea is to assume that the samples

came from two subjects, one for each cohort, increasing the

sampling density from ~4/subject to about ~60/subject. This is

different than just compiling averages over each cohort because we

are assuming that the samples actually sampled only two brains and

that measurement variances are due purely to spatial distributions.

The following analysis is distinct from our earlier finding that the

magenta class samples of AD subjects are mainly found in the

frontal lobe. There, we simply reported counts by lobe of sample

color class occurrence. In the following analysis, we are trying to

determine how different simulated spatial arrangements of color

classes can reproduce the data at the subject level.

We constructed statistics from the actual class results summed

over subject to create a virtual brain. We interpreted these statistics

by comparing them with the same statistics of simulated spatial

distributions. We used two simulated scenarios detailed below. For

the actual results statistics, we constructed distributions of the

number of class occurrences by subject for each class. In other

words, we counted the number of subjects that have one occurrence

of a class, the number of subjects that have two, etc. See the bottom

inset of Figure 14. In all colors and disease states but one, orange, we

see a skewing toward the occurrence of one class. In the orange case,

both the AD and control distributions are skewed toward a flatter

broader distribution that does not include 1s.

The first comparison scenario used random class mixtures in a

plane with magenta having the highest probability of occurring

(LHS of Figure 14), to be consistent with its occurrence in the AD

subjects (see Figure 11). The second scenario clumped the magenta

over a large region (RHS of Figure 14). We repeatedly randomly

undersampled each like we did with the real brain experiments,

sampling four at a time, and constructed the same statistic as for the

real results above.

The random scenario produced results skewed toward one

occurrence among four colors. The regional structure, once it is

large enough, produces a flatter distribution that is missing 1s and

distributed over 2s, 3s and 4s. Our results, except for orange, are

therefore consistent with the lack of a regional structure. Given the

amount of data, it is hard to say much more than the orange data

suggests more of a regional structure, but it is, nonetheless, different.

Macroscopic structure summary
Therefore, given the high occurrence of magenta in the AD

subjects, we can say that there is a high random density of small

areas in these subjects that contain the magenta microbiome

interspersed with the others. We do not have sufficient data to

determine their actual size. In addition, if our comment about

orange is right, some of the subjects might have large regions that

are orange with scatterings of the other colored microbiomes.
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Overall, there is a high degree of randomness that we infer

throughout our results. Different classes of ecosystem mixtures

are randomly distributed over the brain with magenta having a

higher probability in the AD brain. Since class is associated with

time and disease stage, some areas are at an earlier stage and others

at later stages.
Conclusions

We were able to ascertain abundance differences of specific

bacteria comparing AD and control cohorts. Using a separate

methodology, we were also able to distinguish multiple

microbiomes in both cohorts, defined by sets of bacteria within

specific abundance ranges. While these methodologies were

different, they were consistent.

We described spatiotemporal changes in these microbiomes

from microscopic to macroscopic spatial scales. Specifically, we

uncovered an evolving microbiome in the human brain that begins,

perhaps as a healthy microbiome, and then gradually changes until

it is unquestionably associated with Alzheimer’s disease. These

patterns can be interpreted as evidence for a bacterial etiology of

AD, although proof of their role will require further investigation,

especially an examination of the role of other microbes.

The earliest of these microbiomes, found in the control cohort,

is dominated by Comamonas spp. and could be part of the healthy

microbiome. The latest of these microbiomes is characterized by

two microbes, Cutibacterium acnes and another bacterium most

often Methylobacterium spp. Their co-occurrence in the brains of

the AD cohort, primarily in the frontal lobe, suggests possible

pathogenicity. The identification of a very similar microbiome in

ALS patients (Alonso et al., 2019) raises the idea of common

pathogenic factors in the diseases.

C. acnes is ubiquitous in the samples and found in both cohorts.

It begins at a low abundance, rises, peaks, and falls off when it is

joined byMethylobacterium in the possibly pathogenic microbiome.

This dynamic and its ubiquity suggests that the formation of

plaques and NFTs could be a reaction to its presence in both

non-demented and AD-demented individuals. The co-occurrence

of C. acnes and Methylobacterium from the AD-correlated

microbiome suggests that pathogenicity may be related to an

interactive process of some kind.

The large-scale spatial distribution of most of these

microbiomes appears to be random without large regional

clustering of microbiomes. The randomness extends to the

microscopic scale where there is evidence that the most abundant

bacteria arrange to form separate polymicrobial clusters. The

randomness could be explained by microbial transport to the end

of the brain’s vascular, lymphatic, or nervous networks, and the

dynamics of the failure of one or more of them could be involved

with the evolution of the pathogenic microbiome and the onset of

Alzheimer’s disease.

There is an alternative to this bacterio-centric picture, or at least

another pathogenic mechanism that might coexist with it. This

mechanism may involve other pathogenic microbes such as viruses

or fungi or some other molecule that enters the brain concurrent
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with the development of the C. acnes and Methylobacterium

microbiome. The latter would indicate that the dynamics that we

found are actually temporal markers for the gradual failure of the

brain’s networks. Further research could illuminate the type of

failure and whether the location and infection characteristics

explains other neurological diseases.

This bulk microbiome dynamic, however, calls out for

explanation in more fundamental terms. It is a complex dynamic

that likely involves the time dependence of multiple interacting

systems: including the microbial ecosystems, a changing immune

reaction with genetic constraints, and dynamic delivery networks

driven by external factors that could have happened once or are

ongoing. This investigation has only begun to uncover how this

works. Understanding AD apparently will involve a program of

examining these fundamental components, how they affect each

other, and ultimately how they affect the function of the mind.
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FIGURE 14

Each array represents a large area of the brain. Each element is a single class mixture like the ones from Figure 13. The size of the element could be
from centimeters to several centimeters. The left-hand side produces statistics like the inset below (except orange). The right side produces flatter
statistics without 1s, like orange. The inset contains the number of class occurrences by subjects for each class for comparison with simulation of
macroscopic distribution scenarios.
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Sochocka, M., Zwolińska, K., and Leszek, J. (2017). The infectious etiology of alzheimer’s
disease. Curr. Neuropharmacol 15, 996–1009. doi: 10.2174/1570159x15666170313122937

Soscia, S. J., Kirby, J. E., Washicosky, K. J., Tucker, S. M., Ingelsson, M., Hyman, B.,
et al. (2010). The Alzheimer’s disease-associated amyloid b-protein is an antimicrobial
peptide. PloS One 5, e9505. doi: 10.1371/journal.pone.0009505

Steinberg, J. P., and Burd, E. M. (2015). “Other Gram-Negative and Gram-Variable
Bacilli,” inMandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases
(Philadelphia, PA: Elsevier), 2667–2683.e4. doi: 10.1016/B978-1-4557-4801-3.00238-1

Stoodley, P., Ehrlich, G. D., Sedghizadeh, P. P., Hall-Stoodley, L., Baratz, M. E.,
Altman, D. T., et al. (2011). Orthopaedic biofilm infections. Curr. Orthop. Pract. 22,
558–563. doi: 10.1097/BCO.0b013e318230efcf

Stopschinski, B. E., Del Tredici, K., Estill-Terpack, S. J., Ghebremdehin, E., Yu, F. F.,
Braak, H., et al. (2021). Anatomic survey of seeding in Alzheimer’s disease brains
reveals unexpected patterns. Acta Neuropathol Commun. 9, 164. doi: 10.1186/s40478-
021-01255-x

Sweeney, M. D., Sagare, A. P., and Zlokovic, B. V. (2018). Blood–brain barrier
breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev.
Neurol. 14, 133–150. doi: 10.1038/nrneurol.2017.188

Terrill-Usery, S. E., Colvin, B. A., Davenport, R. E., and Nichols, M. R. (2016). Ab40
has a subtle effect on Ab42 protofibril formation, but to a lesser degree than Ab42
concentration, in Ab42/Ab40 mixtures. Arch. Biochem. Biophys. 597, 1–11.
doi: 10.1016/j.abb.2016.03.017

Tetz, G., Pinho, M., Pritzkow, S., Mendez, N., Soto, C., and Tetz, V. (2020). Bacterial
DNA promotes Tau aggregation. Sci. Rep. 102369. doi: 10.1038/s41598-020-59364-x

Tetz, G., and Tetz, V. (2018). Prion-like domains in eukaryotic viruses. Sci. Rep. 8.
doi: 10.1038/s41598-018-27256-w

Tetz, G., and Tetz, V. (2021). Bacterial extracellular DNA promotes b-amyloid
aggregation. Microorganisms 91301. doi: 10.3390/microorganisms9061301

Tuttle, M. S., Mostow, E., Mukherjee, P., Hu, F. Z., Melton-Kreft, R., Ehrlich, G. D.,
et al. (2011). Characterization of bacterial communities in venous insufficiency wounds
by use of conventional culture and molecular diagnostic methods. J. Clin. Microbiol. 49,
3812–3819. doi: 10.1128/JCM.00847-11
frontiersin.org

https://doi.org/10.1007/s12149-018-1236-1
https://doi.org/10.1007/s12149-018-1236-1
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1186/s12866-022-02671-2
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.3389/fnagi.2018.00324
https://doi.org/10.1038/s41582-020-0323-9
https://doi.org/10.3233/JAD-160152
https://doi.org/10.3233/JAD-160152
https://doi.org/10.1016/j.neuron.2019.11.009
https://doi.org/10.1007/s00253-015-6439-y
https://doi.org/10.3233/JAD-215699
https://doi.org/10.1126/scitranslmed.aaf1059
https://doi.org/10.1523/JNEUROSCI.1858-12.2012
https://doi.org/10.1523/JNEUROSCI.1858-12.2012
https://doi.org/10.21203/rs.3.rs-2617541/v1
https://doi.org/10.15252/embj.201797724
https://doi.org/10.1080/1040841X.2021.1876630
https://doi.org/10.1177/26331055211018709
https://doi.org/10.1016/S0197-4580(03)00127-1
https://doi.org/10.3389/fams.2022.884810
https://doi.org/10.3390/microorganisms9020303
https://doi.org/10.21105/joss.00861
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1016/j.ncl.2017.01.005
https://doi.org/10.1017/s1462399411002006
https://doi.org/10.3233/JAD-160451
https://doi.org/10.1016/j.jalz.2018.06.3040
https://doi.org/10.1016/j.jalz.2018.06.3040
https://doi.org/10.1016/j.juro.2015.01.037
https://doi.org/10.1016/j.juro.2015.09.075
https://doi.org/10.3233/JAD-179907
https://doi.org/10.3389/fnagi.2019.00143
https://doi.org/10.1016/S0196-0709(96)90005-8
https://doi.org/10.1001/jama.1995.03520440052036
https://doi.org/10.1038/nature15709
https://doi.org/10.3233/JAD-215054
https://www.r-project.org/
https://doi.org/10.1016/j.neuron.2019.11.008
https://doi.org/10.1016/j.neuron.2018.05.023
https://doi.org/10.1371/journal.ppat.1008575
https://doi.org/10.15252/emmm.201606210
https://doi.org/10.1089/gtmb.2021.0088
https://doi.org/10.2174/1570159x15666170313122937
https://doi.org/10.1371/journal.pone.0009505
https://doi.org/10.1016/B978-1-4557-4801-3.00238-1
https://doi.org/10.1097/BCO.0b013e318230efcf
https://doi.org/10.1186/s40478-021-01255-x
https://doi.org/10.1186/s40478-021-01255-x
https://doi.org/10.1038/nrneurol.2017.188
https://doi.org/10.1016/j.abb.2016.03.017
https://doi.org/10.1038/s41598-020-59364-x
https://doi.org/10.1038/s41598-018-27256-w
https://doi.org/10.3390/microorganisms9061301
https://doi.org/10.1128/JCM.00847-11
https://doi.org/10.3389/fcimb.2023.1123228
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
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