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Introduction: Non-aureus Staphylococcus (NAS) species are currently the most

commonly identified microbial agents causing sub-clinical infections of the

udder and are also deemed as opportunistic pathogens of clinical mastitis in

dairy cattle. More than 10 NAS species have been identified and studied but little

is known about S. haemolyticus in accordance with dairy mastitis. The present

study focused on the molecular epidemiology and genotypic characterization of

S. haemolyticus isolated from dairy cattle milk in Northwest, China.

Methods: In this study, a total of 356 milk samples were collected from large

dairy farms in three provinces in Northwest, China. The bacterial isolation and

presumptive identification were done by microbiological and biochemical

methods following the molecular confirmation by 16S rRNA gene sequencing.

The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk

diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR.

The phylogenetic grouping and sequence typing was done by Pulsed Field Gel

Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively.

Results: In total, 39/356 (11.0%) were identified as positive for S. haemolyticus.

The overall prevalence of other Staphylococcus species was noted to be 39.6%

(141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri

10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S.

epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains

exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-

sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin

(28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were

susceptible to tetracycline, vancomycin, and linezolid. The overall percentage
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of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15%

(18/39). Among ARGs, mphC was identified as predominant (82.05%), followed

by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%),

aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%),

and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H

phylogenetic groups while the MLST categorized strains into eight STs with ST8

being the most predominant while other STs identified were ST3, ST11, ST22,

ST32, ST19, ST16, and ST7.

Conclusion: These findings provided new insights into our understanding of

the epidemiology and genetic characteristics of S. haemolyticus in dairy farms

to inform interventions limiting the spread of AMR in dairy production.
KEYWORDS

dairy mastitis, Staphylococcus haemolytius, antimicrobial resistance, phylogeny,
sequence typing, multi-drug resistance (MDR)
1 Introduction

Bovine mastitis is the most common and economically deadly

disease impacting the dairy sector all over the world (Gussmann

et al., 2019). The incidence of clinical mastitis (CM) on large

dairy farms in China could reach up to 3.3% per month (Dallago

et al., 2021). Clinical mastitis is caused by numerous pathogens,

but Staphylococcus species classified as coagulase-positive

Staphylococcus including S. aureus and coagulase-negative

Staphylococcus (CNS), also known as non-aureus Staphylococcus

(NAS), are the most common pathogens in lactating dairy cows (De

Buck et al., 2021). NAS is one of the most important and widespread

groups of pathogens including numerous species such as S.

chromogenes, S. haemolyticus, S. sciuri, S. saprophyticus, S.

simulans, S. succinus, and S. epidermidis (Wald et al., 2019). NAS

pathogens are not only opportunistic in animals and humans but

are also widely distributed in the environment such as dust, soil,

water, and air (Wu et al., 2021). Although NAS species are

considered to be a pathogen of low clinical incidence, it has

recently been identified as the relatively common causative agent

of bovine mastitis in many countries including China (Al-Harbi

et al., 2021). Intra-mammary infection (IMI) with NAS species is

often associated with asymptomatic mastitis leading to an increase

in somatic cell count and sometimes severe mastitis resulting in

reduced milk yield (Adkins et al., 2018). Among NAS, S.

haemolyticus ranked second in terms of bacterial recovery and is

one of the important opportunistic pathogenic bacteria (Jenkins

et al., 2019).

Mastitis remains one of the most common reasons for

antimicrobial, especially antibiotics, use in dairy herds worldwide

(Hogeveen et al., 2011). The higher prevalence of multidrug-

resistant strains in livestock has led to the extensive use of

antimicrobials to treat multiple diseases on dairy farms in China

(Tang et al., 2017). Staphylococcus species including NAS can
02
develop resistance to multiple antimicrobials, thus reducing the

effectiveness of antimicrobial therapy (Jenkins et al., 2019). The

most common antimicrobial resistance genes (ARGs) detected

among different classes of antimicrobials include b-lactam-

resistance genes (blaZ and mecA), tetracycline-resistance genes

(tetO, tetK, tetM, and tetL), aminoglycoside-resistance genes

(aadD, aphA3, and aacA-aphD), and macrolide-lincosamide

resistance genes (ermA, ermB, ermC, ermT, msrA, mphC, and

lnuA) (Pizauro et al., 2019; Qu et al., 2019; Pérez et al., 2020;

Walid et al., 2021). Multidrug-resistant NAS strains are increasingly

reported, and the growing resistance of NAS agents to

antimicrobials also limits the choice of drugs for treatment

purposes (Schoenfelder et al., 2017). NAS species are also

recognized as reservoirs of drug-resistance genes, highlighting

their threat to public health (Osman et al., 2017). Molecular

epidemiological studies by multiplex PCR, pulse field gel

electrophoresis (PFGE), 16S rRNA gene sequencing, and multi-

locus sequence typing (MLST) are important in understanding the

source and route of transmission of these pathogens (Kim et al.,

2019; Lin et al., 2022).

Because of the ubiquitous nature and acquisition of ARGs by

these microbial agents, it is important to understand their

epidemiology through the molecular approaches mentioned above

(Srednik et al., 2017; Benites et al., 2021). The Northwest region of

China is an important agricultural and pastoral region with much

potential for the dairy industry in Gansu, Ningxia, Qinghai, and

Xinjiang provinces, and the status of AMR among NAS, particularly

S. haemolyticus isolated from the dairy herd is still unknown in the

northwest region of China. Therefore, the present study was

designed to determine the molecular epidemiology and

antimicrobial resistance traits of S. haemolyticus isolated from

dairy origin in Northwest, China. This study also focused on the

genotypic characterization of S. haemolyticus strains concerning

phylogenetic lineage and sequence types (STs).
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2 Materials and methods

2.1 Materials

Antibiotic disks used for AST were purchased from Shanghai

Kejia Drug Testing Equipment Co., Ltd; SmaI, XbaI, proteinase K,

and La Taq DNA polymerase from Takara Co., Ltd; Lysozyme and

lysostaphin from Sigma Aldrich, Beijing, China; Mueller-Hinton

(MH) and Mannitol Salt agar from Guangdong Huankai Microbial

Technology Co., Ltd; Agarose from Shanghai Shenggong Biological

Co., Ltd; SeaKem Gold Agarose from Lonza Co., Ltd; and bacterial

genomic DNA extraction kit from Tiangen Biochemical

Technology Co., Ltd. The quality control strain used in this

experiment was Staphylococcus haemolyticus ATCC25923,

obtained from a culture bank.
2.2 Sample collection and transportation

A total of n = 356 milk samples were collected from five large dairy

farms in five cities of three provinces [Gansu (Lanzhou, LZ n= 96;

Zhangye, ZY n = 57), Qinghai (Xining, XN n = 48; Yushu, YS n = 71),

Ningxia, NX n = 84] in the Northwest region of China. The milk

samples were drawn directly from the animal teats into sterile 50 mL

tubes. Before taking the sample, the animal udder was washed with

lukewarmwater and dried with a clean towel. The teats of animals were

swabbed with 0.5% iodine solution (Merck, Germany), and the hands

of the milking personnel were also washed with an antiseptic solution.

The first few streaks of milk were discarded, and the middle streaks

were collected as adopted by Aqib et al., 2021. The collected milk

samples were stored at 4°C and transported to the microbiology

laboratory for further processing.
2.3 Isolation and identification of
Staphylococcus species

In this study, 100 mL of collected milk samples were cultured on

blood agar supplemented with 5% sheep blood. The agar plates were

incubated at 37°C for 24 hours and hemolysis patterns were

observed. Further, isolates were purified, and differentiated by

culturing on mannitol salt agar following the prior incubation

conditions, and presumptive identification was done by

microbiological examination based on colony morphology, gram

staining, catalase, and coagulase tests as done previously (Gizaw

et al., 2020). At the same time, all isolates were identified by the

automatic biochemical identification VITEK-2 system (BioMérieux,

France) according to the prior recommendations (Chajęcka-

Wierzchowska et al., 2023). Furthermore, the molecular

confirmation of the target specie, S. haemolyticus strains was done

by 16S rRNA gene sequencing according to the previously described

protocol (Qu et al., 2019). Briefly, the genomic DNA was extracted

using genomic DNA Extraction Kit (Tiangen Biochemical

Technology Co., Ltd) and PCR was performed using the primers

mentioned in Table S1. The PCR reaction mixture (25 mL)
comprised 12.5 mL Master Mix, 1 mL of forward and reverse
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primer each, 1 mL of extracted DNA, and 9.5 mL of deionized

water. The PCR amplification conditions were adjusted as initial

denaturation at 95°C for 5 minutes, followed by 35 cycles of

complete denaturation at 95°C for 30 seconds, elongation at 55°C

for 30 seconds, and extension at 74°C for 1 minute with a final

extension at 74°C for 5 minutes. The positive (S. haemolyticus

ATCC25923) and negative (without genomic DNA) control PCR

were done to validate the results. The PCR product was visualized

on 1% agarose gel under the GelDoc XR system and purified with

Wizard® genomic DNA purification kit (Promega, USA) following

the guidelines of the manufacturer and then sent elsewhere (Beijing

Huada Gene Technology Co., Ltd) for sequencing analysis. The

sequencing data were analyzed by checking the sequence similarity

index ≥99.0% and submitted to the National Center for

Biotechnology Information (NCBI) GenBank (https://

blast.ncbi.nlm.nih.gov/) under the accession numbers from

OQ652547 to OQ652584 and OQ787674.
2.4 Antimicrobial susceptibility testing of
S. haemolyticus strains

The antimicrobial susceptibility of the 16S rRNA gene

confirming S. haemolyticus strains was assessed on the Mueller

Hinton agar (MHA) by Kirby-Bauer disk diffusion (KBDD) assay

following the EUCAST guidelines against nine antimicrobial agents

belonging to nine different classes. The tested antibiotics included

were cefoxitin (CFX, 30mg), ciprofloxacin (CIP, 5mg), gentamicin

(GEN, 10mg), tetracycline (TET, 30mg), trimethoprim-

sulfamethoxazole (SXT, 1.25-23.75mg), florfenicol (FFC, 30mg),
erythromycin (ERY, 15mg), and linezolid (LZD, 10mg). The AST

of vancomycin was done by MIC broth micro-dilution assay

according to the protocol described in the EUCAST guidelines

(EUCAST, 2019). Briefly, inoculum for KBDD was prepared by

adjusting the turbidity at 0.5 McFarland Standard and swabbing

was done on MHA under sterile conditions. Antibiotic disks were

placed on agar surface with sterile forcep at the proper distance, and

plates were incubated at 35 ± 1°C for 18 ± 2h. After incubation, the

zone of inhibition was measured and compared with EUCAST

clinical breakpoints (EUCAST, 2019).
2.5 Identification of ARGs

All of the 39 strains were screened for the detection of ARGs by

PCR. A total of 30 ARGs against nine antibiotics belonged to nine

different antimicrobial classes; ermA, ermB, ermC, ermF, erm(33),

mphC, and msrB for erythromycin (macrolides, lincosamides, and

streptogramin B); vanA and vanB for vancomycin (glycopeptide);

cfr for l inezol id (oxazolidinones) ; cfxA for cefoxit in

(cephalosporin); tetM, tetO, tetL, and tetK for tetracycline

(tetracycline’s); fexA and floR for florfenicol (amphenicol); aacA-

aphD and aadD for gentamicin (aminoglycosides); gyrA, gyrB, grlA,

and grlB for ciprofloxacin (fluoroquinolones); and sul1, sul2, sul3,

dfrA, dfrD, dfrG, and dfrK for trimethoprim-sulfamethoxazole

(sulfonamides) were screened by PCR amplification using the
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primer mentioned previously (Table S2). The genomic DNA was

extracted using the DNA extraction kit and PCR reaction mixture

(25 µL) comprising 12.5 µL Master Mix, 1 µL of each primer, 1 µL

genomic DNA, and 9.5 µL of deionized water. The PCR

amplification conditions were adjusted as 95°C for 5 min for

initial denaturation, followed by 30 cycles at 95°C for 30 s, 30

cycles of annealing at various temperatures for 30 s (Table S2),

initial extension at 72°C for 1 min, and followed by final elongation

at 72°C for 10 min. The PCR product was run on 1% agarose gel at

80V and 130mA for 1 hour for visualization under UV light by

ethidium bromide staining.
2.6 Pulsed-field gel electrophoresis

All 39 S. haemolyticus strains were also subjected to PFGE

analysis to determine their phylogenetic grouping as described

previously (Kim et al., 2019). Briefly, the bacterial culture grown

overnight was embedded with low-melting SKG agarose gel, and then

blocks were placed in 1×TE buffer containing 10 mg/L lysostaphin

and incubated at 37°C for 3.5h. Subsequently, the blocks were

digested with SmaI at 30°C for 3h. Then, the blocks were loaded

into 1% SKG gel, and gel electrophoresis was performed in 0.5×TBE

buffer for 18h with a 120° change angle, 6 V/cm voltage, and

switching time of 5-40 sec. Salmonella H9812 (XbaI digestion) was

used as size markers. After electrophoresis, the gel was stained with

ethidium bromide (1: 10000) for 30 min, decolored in deionized

water for 30 min, and photographed under a gel imaging system. The

phylogenetic analysis of the PFGE band patterns was done by PyElph

software and compared with the standard (Pavel and Vasile, 2012).
2.7 Multi-locus sequence typing

MLST analysis was done based on primer sequences published on

the MLST website (https://pubmlst.org/shaemolytic/) for seven

housekeeping genes of S. haemolyticus including arc haemo,

SH1200, hemH, leuB, SH1431, cfxE, and riboseABC. The seven

housekeeping genes were PCR amplified and sequenced using the

genomic DNA of S. haemolyticus as a template. The sequencing data

were submitted to the MLST database (http://www.pubmlst.net/

databases/) to determine the STs of S. haemolyticus. The alignment

of obtained sequences was done using ChromasPro computer

software and the phylogenetic tree was made by the Neighbor-

Joining Method in the MEGA-X software.
3 Results

3.1 Prevalence of S. haemolyticus and
other Staphylococcus species

For the current study, a total of 356 milk samples were collected

from different dairy farms in different cities (Lanzhou, Zhangye,

Xining, Yushu, and Ningxia) in Northwest, China. In the present

study, 180/356 (50.6%) isolates were recovered and identified as
Frontiers in Cellular and Infection Microbiology 04
Staphylococcus species. Moreover, the prevalence of S. aureus was

noted to be 14.9% (53/356) and NAS was 35.7% (127/356)

(Figure 1A). Among NAS, S. haemolyticus was identified as the

predominant specie 11.0% (39/356), followed by S. sciuri 10.4% (37/

356), S. saprophyticus 7.6% (27/356), S. chromogenes 4.2% (15/356),

S. simulans 1.4% (5/356), and S. epidermidis 1.1% (4/356)

(Figure 1B). The prevalence of S. haemolyticus was higher (14.6%;

7/48) in Xining, followed by Zhangye (14.0%; 8/57), Lanzhou

(12.5%; 12/96), Ningxia (8.3%; 7/84), and was lower in Yushu

7.04% (5/71) (Figure 1C). The overall prevalence of all other

Staphylococcus species was noted to be higher in Lanzhou (58.3%;

56/96), followed by Ningxia 48.8% (41/84), Xining 29.2% (14/48),

Yushu 28.2% (20/71), and Zhangye 17.5% (10/57). Moreover, the

prevalence of S. aureus was noted to be 26.0%, 10.5%, and 14.1% in

Lanzhou, Zhangye, and Yushu, respectively, while S. saprophyticus

was higher in Xining (12.5%) and Ningxia (15.5%). The prevalence

of other Staphylococcus species among different sampling cities is

presented in Table 1.
3.2 Phenotypic AMR characteristics of 39
S. haemolyticus strains

Most of the S. haemolyticus strains showed resistance to ERY

(92.3%, 36/39), followed by SXT (51.3%, 20/39), CIP (43.6%, 17/39),

FFC (30.8%, 12/39), FOX (28.2%, 11/39), and GEN (23.1%, 9/39).

However, all strains were susceptible to TET, VAN, and LZD.

Moreover, none of the strains showed intermediate susceptibility to

all antibiotics (Figure 2). S. haemolyticus strains from LZ, YS, and

NX showed 100% resistance to ERY, which was noted to be lower in

other cities (85.7%, ZY, and 75.0%, XN). The AMR against SXT was

noted at 50%, 42.8%, 87.5%, 20.0%, and 42.8% by S. haemolyticus

strains from LZ, ZY, XN, YS, and NX, respectively (Table 2).

Moreover, none of the strains from ZY and NX showed resistance

to FOX with a similar trend from XN and NX against GEN. It was

observed that 80% of the strains from Yushu City were resistant to

multiple antimicrobials (FOX+GEN+CIP+FFC) and 20% to SXT.

All of the strains from all sampling cities were susceptible to TET,

VAN, and LZD. The overall AMR was noted to be higher in strains

from YS, followed by NX, LZ, XN, and ZY (Table 2).
3.3 Multi-drug resistant
S. haemolyticus strains

The current study depicted 46.15% (18/39) MDR S.

haemolyticus strains that showed resistance to at least one

antimicrobial agent from ≥3 classes of antimicrobials. Among

MDR strains, 30.77% (12/39) were resistant to three antibiotic

classes, followed by 10.26% (4/39) resistant to five classes, and

5.13% (2/39) resistant to four classes. None of the strains (0.0%)

showed resistance to all six classes of antibiotics (Figure 3A). The

percentage of MDR strains was noted to be highest at 12.82% (5/39)

from Lanzhou, followed by an equal percentage of 10.26% (4/39)

from Zhangye and Yushu. The MDR strains were noted to be 7.69%

(3/39) from Ningxia and 5.13% (2/39) from Xining (Figure 3B).
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3.4 Genotypic AMR characteristics of S.
haemolyticus strains

A total of 30 ARGs belonged to nine different antimicrobials

and classes; ermA, ermB, ermC, ermF, erm(33),mphC, andmsrB for

erythromycin (macrolides, lincosamides, and streptogramin B);

vanA and vanB for vancomycin (glycopeptide); cfr for linezolid

(oxazolidinones); cfxA for cefoxitin (cephalosporin); tetM, tetO,
Frontiers in Cellular and Infection Microbiology 05
tetL, and tetK for tetracycline (tetracycline’s); fexA and floR for

florfenicol (amphenicol); aacA-aphD and aadD for gentamicin

(aminoglycosides); gyrA, gyrB, grlA, and grlB for ciprofloxacin

(fluoroquinolones); and sul1, sul2, sul3, dfrA, dfrD, dfrG, and

dfrK for trimethoprim-sulfamethoxazole (sulfonamides) were

screened. Among 30 ARGs, 12 genes from different classes and

multiple genes acquiring spectrum were identified. Among

macrolides, lincosamides, and streptogramin B resistance genes,
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FIGURE 1

The prevalence of isolated species. (A) The overall prevalence of Staphylococcus, S. aureus, and non-aureus Staphylococcus (NAS) species. (B) The
individual distribution of NAS species. (C) The distribution of 39 S. haemolyticus strains within sampling cities.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1183390
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Shoaib et al. 10.3389/fcimb.2023.1183390
mphC was most predominant (82.05%), followed by ermB (33.33%)

and ermA (23.08%), while ermC, ermF, erm(33), and msrB genes

were not identified. Among amphenicol-resistance genes, only the

floR gene was harbored by 30.77% of strains. Among the

aminoglycosides, the aadD gene was a little more prevalent

(12.82%) than aacA-aphD (10.26%). The prevalence of the gyrA

gene was noted to be higher (30.77%) compared to grlA (12.82%),

with no identification of gyrB and grlB among the fluoroquinolones.

However, none of the S. haemolyticus strains was harboring the

glycopeptides, oxazolidinones, and tetracycline-resistance genes.

Moreover, among sulfonamides, sul1 (28.21%) was predominant,

followed by sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%), while

none of the strains was carrying the sul3, dfrD, and dfrK genes

(Figure 4A). All of the S. haemolyticus strains were carrying the

multiple genes spectrum, and most of the strains (43.6%, 17/39)

were carrying the three different patterns of two ARGs: mphC

+ermB (23.1%, 9/39), mphC+sul1 (10.3%, 4/39), and ermB+sul2

(10.3%, 4/39), followed by three different patterns of three ARGs;

floR+dfrA+ermA (7.7%, 3/39),mphC+cfxA+grlA (12.8%, 5/39), and

mphC+aadD+gyrA (5/39). Moreover, 7.69% (3/39), 5.13% (2/39),

and 10.3% (4/39) were carrying the single pattern of four, five, and

seven ARGs (Figure 4B).
Frontiers in Cellular and Infection Microbiology 06
3.5 The comparison between phenotypic
and genotypic resistance profile

The comparison in the phenotypic and genotypic expression

of 39 S. haemolyticus strains is presented in Table 3. This

comparative analysis was done with the perspective to analyze

the expressions of S. haemolyticus strains and whether the strains

showing resistance phenotypically were also carrying the ARGs or

not and vice versa. The study noted unique phenotypic and

genotypic expressions for all antibiotics except erythromycin.

The number of phenotypically resistant strains was noted at 36/

39 (92.31%) while the genotypic analysis showed that few strains

were carrying the multiple-resistance genes. All of the strains

showed no phenotypic and genotypic resistance to tetracycline,

vancomycin, and linezolid.
3.6 The phylogenetic grouping of S.
haemolyticus strains

The phylogenetic grouping of 39 S. haemolyticus strains

determined by PFGE generated by SmaI digestion and multiple

PFGE patterns was observed among the strains. The BioNumerics

cluster analysis software was used to construct the phylogenetic tree

(Figure S1). The 39 S. haemolyticus were classified into eight

different phylogenetic groups A, A1, B, C, D, E, F, G, and H. It

was observed that most of the S. haemolyticus strains (23.1%, 9/39)

belonged to group A and the least belonged (5.1%, 2/39) to group C.

Moreover, 10.3% (4/39) were classified A1, D, and F, each, and 7.7%

(3/39) into groups B and E, each. The percentage of strains

categorized under groups G and H was noted to be 12.8% (5/39)

in each group (Figure 5). In the phylogenetic grouping of strains

among the different sampling cities, most of the strains from

Lanzhou, Zhangye, Xining, Yushu, and Ningxia belonged to

groups A, H, D, F, and E, respectively. Moreover, the

phylogenetic grouping of S. haemolyticus strains from different

cities was as follows: Lanzhou (A, C, G, and H), Zhnagye (A, B,

and H), Xining (A, A1, B, D, and G), Yushu (A1 and F), and

Ningxia (A1, C, D, and E) (Table 4).
TABLE 1 The distribution of other Staphylococcus species in different sampling cities.

Species LZ (n= 96)
No. (%)

ZY (n= 57)
*No. (%)

YS (n= 71)
*No. (%)

XN (n= 48)
*No. (%)

NX (n= 84)
*No. (%)

S. aureus 25 (26.0) 6 (10.5) 10 (14.1) 3 (6.25) 9 (10.7)

S. sciuri 15 (15.6) 3 (5.3) 6 (8.4) 2 (4.2) 11 (13.1)

S. saprophyticus 6 (6.20) 0 (0.0) 2 (2.8) 6 (12.5) 13 (15.5)

S. chromogenes 7 (7.29) 0 (0.0) 0 (0.0) 2 (4.2) 6 (7.1)

S. simulans 2 (2.08) 1 (1.75) 0 (0.0) 1 (2.1) 1 (1.2)

S. epidermidis 1 (1.04) 0 (0.0) 2 (2.8) 0 (0.0) 1 (1.2)

Total 56 (58.3) 10 (17.5) 20 (28.2) 14 (29.2) 41 (48.8)
LZ, Lanzhou; ZY, Zhangye; YS, Yushu; XN, Xining; and NX, Ningxia.
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FOX TET ERY GEN VAN CIP SXT LZD FFC

Pe
rc

en
ta

ge

Antibiotics

R I S

FIGURE 2

Antimicrobial susceptibility of various antibiotics against S.
haemolyticus strains of dairy origin: FOX, Cefoxitin; ERY,
Erythromycin; TET, Tetracycline; GEN, Gentamicin; CIP,
Ciprofloxacin; VAN, Vancomycin; SXT, Trimethoprim-
Sulfamethoxazole; FFC, Florfenicol; and LZD, Linezolid.
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3.7 Multi-locus sequence typing

The MLST was done by the amplification and sequencing of

seven housekeeping genes. Thirty-nine S. haemolyticus strains were

categorized into eight different STs (ST8, ST3, ST11, ST22, ST32,

ST19, ST16, and ST7). Among STs, ST8 was found to be dominant,
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accounting for 33.3% (13/39) (Figure 6). The percentage

distribution of ST22 and ST19 were noted as similar (10.3%, 4/39

each). However, 5.1% (2/39) of strains were categorized as ST11,

while the percentage of other STs, ST3, and ST32 were noted as

7.7% (3/39), followed by ST16 and ST7 as 12.8% (5/39) each

(Figure 6). The detailed ST distribution in different sampling
TABLE 2 The percentage distribution of antimicrobial-resistant and susceptible strains among different sampling cities.

Antibiotics Lanzhou (%)
R (S)

Zhangye (%)
R (S)

Xining (%)
R (S)

Yushu (%)
R (S)

Ningxia (%)
R (S)

FOX 33.3 (66.7) 0.00 (100) 37.5 (62.5) 80.0 (20.0) 0.00 (100)

ERY 100 (0.00) 85.7 (14.3) 75.0 (25.0) 100 (0.00) 100 (0.00)

TET 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100)

GEN 8.33 (91.67) 57.1 (42.9) 0.00 (100) 80.0 (20.0) 0.00 (100)

CIP 41. 6 (58.4) 57.1 (42.9) 12.5 (87.8) 80.0 (20.0) 42.9 (57.1)

VAN 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100)

SXT 50.0 (50.0) 42.8 (57.2) 87.5 (12.5) 20.0 (80.0) 42.9 (57.1)

FFC 8.33 (91.67) 14.3 (85.7) 25.0 (75.0) 80.0 (20.0) 57.1 (42.9)

LZD 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100)
R, Resistant; S, Susceptible; FOX, Cefoxitin; ERY, Erythromycin; TET, Tetracycline; GEN, Gentamicin; CIP, Ciprofloxacin; VAN, Vancomycin; SXT, Trimethoprim-Sulfamethoxazole; FFC,
Florfenicol; and LZD, Linezolid.
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FIGURE 3

The percentage of MDR S. haemolyticus. (A) The percentage of S. haemolyticus strains showing resistance to three, four, five, six, and three to six
classes of antibiotics. (B) The percentage distribution of MDR S. haemolyticus strains among different sampling sites.
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cities is given in Table 5. The dominant STs from Lanzhou,

Zhangye, Xining, Yushu, and Ningxia were classified as ST8, ST7,

ST22, ST19, and ST32, respectively. Moreover, the strains from

Yushu only belonged to ST8 and ST19. The distribution of other

STs identified in other cities was as follows: Lanzhou (ST11, ST16,

ST7), Zhnagye (ST8, ST3), Xining (ST8, ST3, ST16), and Ningxia

(ST8, ST11, ST22) (Table 5).
3.8 The association between STs,
phylogenetic groups, and ARGs patterns

Most of the S. haemolyticus strains belonged to ST8 (13/39), and

the phylogenetic group A+A1 was carrying the mphC+ermB and

mphC+sul1 gene patterns. Moreover, 10.3% of strains belonged to

phylogenetic groups D and F with ST22 and ST19 carrying the ermB

+sul2 and mphC+floR+cfxA+aacA–aphD+ermA+gyrA+sul1 gene

patterns, respectively. The least number of strains, 2/39 (5.1%)

classified under ST11 and group C, were carrying the mphC+floR

+cfxA+ermA+dfrG resistance gene pattern. However, an equal

number of strains 5/39 (12.8%) that were classified into ST16 and

ST7 belonging to phylogenetic groups G and H harbored the

mphC+cfxA+grlA and mphC+aadD+gyrA gene patterns,

respectively (Table 6).
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4 Discussion

As per our knowledge and literature search, the current study is

the first study reporting the prevalence and characterization of S.

haemolyticus strains isolated from dairy cattle milk in Northwest,

China, with a large sample size (n= 356). In the present study, 180/

356 (50.6%) isolates were recovered and identified as Staphylococcus

species confirming them as the major pathogen of dairy mastitis in

China (Gao et al., 2017; He et al., 2020; Song et al., 2020). The

prevalence of S. aureus was noted to be 14.9% (53/356) and NAS

was 35.7% (127/356). Among the NAS, the prevalence of S.

haemolyticus was noted to be 11.0% (39/356), while other NAS

species were as follows: S. sciuri 10.4% (37/356), S. saprophyticus

7.6% (27/356), S. chromogenes 4.2% (15/356), S. simulans 1.4% (5/

356), and S. epidermidis 1.1% (4/356) based on the bacteriological

examination by the VITEK-2 system, as done previously (Gizaw

et al., 2020; Chajęcka-Wierzchowska et al., 2023). Further

confirmation of the targeted specie of S. haemolyticus strains was

done by 16S rRNA gene sequencing, which is known to be a reliable

molecular technique for microbial identification (Johnson et al.,

2019; Han et al., 2020). The present study identified 39/356 (11.0%)

strains as S. haemolyticus, which is consistent with previous findings

(Klimiene et al., 2016). The current study identified S. haemolyticus,

S. sciuri, S. saprophyticus, S. chromogenes, S. simulans, and
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The distribution of ARGs among 39 S. haemolyticus strains. (A) The individual gene distribution (B) The different patterns of ARGs possessed by strains.
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S. epidermidis as the most frequently isolated NAS species from

mastitic milk of dairy cows, which is consistent with previous

studies from other regions of China (Qu et al., 2019) and other

countries (Vanderhaeghen et al., 2014; Goetz et al., 2017; Jenkins

et al., 2019). Moreover, in this study, the prevalence of S. aureus was

noted to be 14.9% (53/356), which is higher than other

Staphylococcus species. These results are consistent with a

previously reported study that S. aureus is the major pathogen

among Staphylococcus species associated with cow mastitis
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(Cortimiglia et al., 2016). However, many previous studies have

reported the prevalence and characterization of S. aureus isolated

from cow milk from different provinces in Northwest, China (Li

et al., 2015; Li and Zhao, 2018; Dan et al., 2019; Kou et al., 2021; Shi

et al., 2021). Our study only focused on the epidemiology of NAS,

while other factors such as lactation stage, milking practices, and

severity of disease-related factors such as somatic cell count were

not recorded. The previous studies hypothesized that prior

mentioned factors along with immunity level, nutrition, and farm
TABLE 3 The comparison between phenotypic and genotypic resistance expressions.

Phenotype Genotypes

Antimicrobial agents No. Positive
(n= 39)

Percentage (%) ARGs No. Positive
(n= 39)

Percentage (%)

Cefoxitin 11 28.21 cfxA 11 28.21

Tetracycline 0 0.00 tetM 0 0.00

tetO 0 0.00

tetL 0 0.00

tetK 0 0.00

Erythromycin 36 92.31 ermA 9 23.08

ermB 13 33.33

ermC 0 0.00

ermF 0 0.00

erm(33) 0 0.00

mphC 32 82.05

msrA 0 0.00

Gentamicin 9 23.08 aacA-aphD 4 10.26

aadD 5 12.82

Vancomycin 0 0 vanA 0 0.00

vanB 0 0.00

Linezolid 0 0 cfr 0 0.00

Trimethorpim-Sulfamethoxazole 20 51.28 sul1 11 28.21

sul2 4 10.26

sul3 0 0.00

dfrA 3 7.69

dfrD 0 0.00

dfrK 0 0.00

dfrG 2 5.13

Ciprofloxacin 17 43.59 gyrA 12 30.77

gyrB 0 0.00

grlA 5 12.82

glrB 0 0.00

Florfenicol 12 30.77 floR 12 30.77

fexA 0 0.00
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management practices may be the predisposing factors for

opportunistic pathogens such as NAS to invade and proliferate

within the udder, leading to inflammation with clinical signs (Pal

et al., 2019; Qu et al., 2019; Libera et al., 2021). Except for these

factors, NAS species are also found to be ubiquitous in

environmental settings such as soil, dust, and farm environment

which may be the possible cause of udder infection by

environmental opportunist ic pathogens such as NAS

(Schoenfelder et al., 2017). Adkins et al. (2018) previously

documented that the intra-mammary (IM) infection of NAS

species leads to subclinical mastitis with an increase in somatic

cell count and later to clinical mastitis resulting in reduced milk

yield. The control of NAS is essential and complicated because too

many species are responsible for this problem. However, the

implementation of proper mastitis prevention and control

measures is guided by the National Mastitis Council (2017) to

control the IM infections caused by NAS in dairy cows.

In this study, we analyzed the susceptibility of 39 S.

haemolyticus strains of dairy origin against the nine antimicrobial

agents, which are cefoxitin, tetracycline, vancomycin, linezolid,

erythromycin, gentamicin, ciprofloxacin, trimethoprim-
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sulfamethoxazole, and florfenicol. Overall, most of the strains

were found to be resistant to erythromycin (92.3%), followed by

trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%),

florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%).

The increased resistance to these antibiotics by Staphylococcus

species has also been reported previously because of the increased

use of these antibiotics in the treatment of NAS infections (Botrel

et al., 2010; Persson et al., 2011; Qian et al., 2015; Kim et al., 2019). A

similar study conducted by Gizaw et al. (2020) using archived

isolates from cattle, farm environment, and personals noted a 3.6%

resistance to ciprofloxacin, 12.5% to kanamycin, and 55.4% to

erythromycin, which is much lower than the current findings,

indicating the extensive use of these antibiotics at the sampled

dairy farms in Northwest, China. Moreover, in the current study,

the cefoxitin resistance was noted to be lower compared to the

previous findings (Gizaw et al., 2020). The variations in

antimicrobial resistance in different studies may be due to the

highly genetically heterogeneous nature of bacterial isolates,

which may exhibit varying degrees of phenotypic and genotypic

expressions (Pacha et al., 2021). Moreover, another reason for the
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The phylogenetic grouping of 39 S. haemolyticus strains.
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The percentage distribution of sequence types among 39 S.
haemolyticus strains.
TABLE 4 The phylogenetic grouping of 39 S. haemolyticus strains among different sampling cities.

Phylogenetic
group

Lanzhou (n=12)
No. (%)

Zhangye (n= 7)
No. (%)

Xining (n= 8)
No. (%)

Yushu (n= 5)
No. (%)

Ningxia (n= 7)
No. (%)

A 6 (50.0) 2 (28.6) 1 (12.5) 0 (0.0) 0 (0.0)

A1 0 (0.0) 0 (0.0) 1 (12.5) 1 (20.0) 2 (28.6)

B 0 (0.0) 1 (14.3) 2 (25.0) 0 (0.0) 0 (0.0)

C 1 (8.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (14.3)

D 0 (0.0) 0 (0.0) 3 (37.5) 0 (0.0) 1 (14.3)

E 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (42.8)

F 0 (0.0) 0 (0.0) 0 (0.0) 4 (80.0) 0 (0.0)

G 4 (33.4) 0 (0.0) 1 (12.5) 0 (0.0) 0 (0.0)

H 1 (8.3) 4 (57.1) 0 (0.0) 0 (0.0) 0 (0.0)
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difference in susceptibilities might be the difference in susceptibility

assay, Staphylococcus specie, and isolation source because according

to our knowledge, none of the studies specifically check the

antimicrobial response of S. haemolyticus strains isolated from

dairy milk in China. Furthermore, all of the 39 S. haemolyticus

strains were 100% susceptible to tetracycline, vancomycin, and

linezolid, which is consistent with previous studies conducted by

Kim et al. (2019) and Mello et al. (2020). Moreover, in this study,

46.15% of strains were MDR S. haemolyticus with 30.77% resistant

to three antimicrobial classes, followed by 10.26% and 5.13%

resistance to four and five classes, respectively. The irregular and

non-justified use of antibiotics in livestock, especially in dairy

production systems leads to the emergence of bacterial strains

resistant to multiple antibiotics, which poses a potential threat to

animal and human health (Phophi et al., 2019; Attallah et al., 2021).

This misuse of antimicrobials put unnatural selective pressure on

bacteria, which accelerates the evolution of resistant strains (Fair

and Tor, 2014). Therefore, the justified use of antimicrobials in

dairy production must be ensured and monitored through

surveillance studies to get updated information regarding

antimicrobial resistance. Moreover, the antimicrobial resistance

can be lowered by restricting the use of antimicrobials as a feed

supplement in production systems and finding alternative sources

such as herbal medicine, essential oils, and traditional Chinese
Frontiers in Cellular and Infection Microbiology 11
veterinary medicine (Lu et al., 2008; Yang et al., 2019; Cheng and

Han, 2020; Ajose et al., 2022).

Previously, it was documented that food animals, especially

cattle, were recognized as the reservoir of drug-resistant bacteria

carrying ARGs, which can be transmitted to humans via the food

web (Bennani et al., 2020; Sivagami et al., 2020). To understand the

mechanism of gene transfer and the emergence of multi-drug

resistant strains within and across the bacterial species, the

knowledge of ARGs carried by pathogens is essential (Tóth et al.,

2020). Therefore, the present study investigated the ARGs carried

by S. haemolyticus strains isolated from dairy cattle milk; 30 ARGs

belonging to nine antimicrobial classes were screened. Among the

30 ARGs, 12 resistance genes were identified among 39 S.

haemolyticus strains. Among the macrolides, lincosamides, and

streptogramin B resistance genes, mphC was most predominant,

followed by ermB and ermA, while ermC, ermF, erm(33), and msrB

genes were not identified. The erm family of gene codes for

methylases confers resistance to streptogramin B (Petinaki and

Papagiannitsis, 2019), macrolides (Feßler et al., 2018b), and

lincosamides (Feßler et al., 2018a), while the mphC gene code for

phosphotransferase confers resistance only to macrolides

(Chajęcka-Wierzchowska et al., 2023). Other macrolide genes

such as msrA and B gene codes for transporter proteins that

confer resistance to both streptogramin B and macrolides
TABLE 5 MLST of 39 S. haemlolyticus strains from different sampling cities.

Sequence types Lanzhou (n=12)
No. (%)

Zhangye (n=7)
No. (%)

Xining (n=8)
No. (%)

Yushu (n=5)
No. (%)

Ningxia (n=7)
No. (%)

ST8 6 (50.0) 2 (28.6) 2 (25.0) 1 (20.0) 2 (28.6)

ST3 0 (0.0) 1 (14.3) 2 (25.0) 0 (0.0) 0 (0.0)

ST11 1 (8.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (14.3)

ST22 0 (0.0) 0 (0.0) 3 (37.5) 0 (0.0) 1 (14.3)

ST32 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (42.8)

ST19 0 (0.0) 0 (0.0) 0 (0.0) 4 (80.0) 0 (0.0)

ST16 4 (33.4) 0 (0.0) 1 (12.5) 0 (0.0) 0 (0.0)

ST7 1 (8.3) 4 (57.1) 0 (0.0) 0 (0.0) 0 (0.0)
TABLE 6 The association between STs, phylogenetic groups, and ARGs patterns.

Phylogenetic groups Gene patterns STs No. Positive (%)

A mphC+ermB ST8 9/39 (23.1%)

A1 mphC+sul1 ST8 4/39 (10.3%)

B floR+dfrA+ermA ST3 3/39 (7.7%)

C mphC+floR+cfxA+ermA+dfrG ST11 2/39 (5.1%)

D ermB+sul2 ST22 4/39 (10.3%)

E mphC+floR+gyrA+sul1 ST32 3/39 (7.7%)

F mphC+floR+cfxA+aacA–aphD+ermA+gyrA+sul1 ST19 4/39 (10.3%)

G mphC+cfxA+grlA ST16 5/39 (12.8%)

H mphC+aadD+gyrA ST7 5/39 (12.8%)
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1183390
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Shoaib et al. 10.3389/fcimb.2023.1183390
(Quezada-Aguiluz et al., 2022) were not identified in this study. A

similar study done by Qu et al. (2019) also detected that the

abovementioned genes carried by Staphylococcus species

conferred resistance to macrolides, l incosamides, and

streptogramin B with an additional lnuA gene. Among the

cephalosporins, the cfxA gene was identified, which is also in line

with the findings of Qu et al. (2019) and other previous studies (El-

Ashker et al., 2020; Jose et al., 2020). The higher frequency of these

genes from dairy isolates indicates the potential use of

cephalosporins for the treatment of clinical mastitis on dairy

farms in China. Previously, Qian et al. (2015) reported that b-
lactam antimicrobial agents such as penicillin, cephalosporin, and

monobactams were extensively used for the treatment of bovine

mastitis caused by Staphylococcus species. Among the amphenicol

ARGs, only the floR gene was harbored by S. haemolyticus strains,

which is in accordance with the previously published study by Wu

et al. (2021). Florfenicol is one of the most commonly used

antimicrobials in the dairy sector because of its wide range of

antimicrobial activity (Kawalek et al., 2016). Florfenicol acts by

binding with the 50S ribosomal subunit, resulting in the inhibition

of protein synthesis. floR gene encodes for membrane-associated

proteins that confer resistance to florfenicol (Shore et al., 2016).

Another study conducted by Li et al. (2020) confirmed that floR was

found to be the predominant gene conferring resistance to

florfenicol in different animal-derived bacteria. Among the

aminoglycosides, both aadD and aacA-aphD genes were

identified, which is in line with previously published studies (Qu

et al., 2019; Kowalewicz et al., 2023). The aacA-aphD gene code for

a multifunctional enzyme confers resistance to multiple

aminoglycosides such as amikacin, gentamicin, tobramycin, and

kanamycin (Schwarz et al., 2018), while aadD gene codes for

adenyltransferase enzyme confer resistance to neomycin,

kanamycin, tobramycin, and paromomycin (Batool et al., 2021).

The prevalence of the gyrA gene was noted to be higher compared

to grlA among the fluoroquinolones that confer resistance to

ciprofloxacin, as studied previously (Bonsaglia et al., 2018; Pham

et al., 2019). The acquisition of gyrA/B and grlA/B genes by

Staphylococcus species confers resistance to fluoroquinolones

because they code for two enzymes, DNA gyrase and

topoisomerase IV, respectively, which are required by the bacteria

during DNA replication (Schwarz et al., 2018; Lapointe et al., 2021).

However, none of the S. haemolyticus strains was harboring the

glycopeptides, oxazolidinones, and tetracycline-resistance genes,

which is contrary to the findings of Qu et al. (2019) but

inconsistent with the findings of Liu et al. (2022) for tetracycline.

Among sulfonamides, sul1 was predominant, followed by sul2,

dfrA, and dfrG, while none of the strains was carrying the sul3,

dfrD, and dfrK genes. A study conducted by Nurjadi et al. (2021)

also identified that dfrA, dfrD, dfrG, and dfrK genes confer

resistance to trimethoprim, and Khan et al. (2022) detected sul1,

sul2, and sul3 genes that confer resistance to sulfonamides among

the Staphylococcus species. The dfr genes confer resistance to

trimethoprim by modifications in the target dihydrofolate

reductase enzyme (Nurjadi et al., 2021). All of the S. haemolyticus

strains were carrying the multiple gene patterns that are mentioned

in Figure 5B, which follows many gene patterns identified in a
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previous study (Qu et al., 2019). This could be explained by the fact

that a single resistance phenotype can be mediated by multiple

resistance genes (Varela et al., 2021). The presence of diverse ARGs

in mastitic milk of dairy cows poses a potential threat to the

transmission of these genes from animal to human microbiota

through horizontal gene transfer (HGT) by mobile genetic elements

(Argudıń et al., 2017; Hu et al., 2017). Therefore, it is necessary to

monitor antimicrobial resistance, and their transmission

mechanisms are of much significance to guide the rational use of

antimicrobials in dairy production.

The PFGE and MLST methods are still used for the genotypic

characterization of bacterial isolates and to track the dissemination

of infections with limitations (Neoh et al., 2019; He and Reed, 2020;

Pizauro et al., 2021). Therefore, the present study used these

methods for the genotypic characterization of 39 S. haemolyticus

strains and grouped strains into eight phylogenetic groups and

sequence types. Based on PFGE, most of the strains belonged to

group A (9/39), followed by G (5/39), H (5/39), A1 (4/39), D (4/39),

F (4/39), B (3/39), E (3/39), and C (2/39). Most of the strains

belonging to group A are consistent with the previous findings of

Qu et al. (2019). Previously, a study conducted by Naushad et al.

(2016) also grouped NAS species into five: A, B, C, D, and E

phylogenetic groups based on whole genome sequencing (WGS). It

was observed that phylogenetic groups were sharing a common

cluster among 39 S. haemolyticus strains isolated from the close

locality. The study noted that the farms in a close geographical area

may share the same genotypes, suggesting clonal transmission

between dairy farms (Rainard et al., 2018). Notably, the MLST

results were found to be consistent with the results of PFGE as each

ST type corresponded to a single PFGE type. Among the STs, eight

unrelated STs were identified with ST8 being predominant,

followed by ST7, ST16, ST22, ST19, ST3, ST32, and ST11.

Previously, multiple studies from human and animal settings

reported ST8 as an emerging sporadic c lone among

Staphylococcus species from different regions of mainland China

(Li et al., 2018; Liu et al., 2018; Dong et al., 2020). The other

identified STs in this study have also been reported previously

among the Staphylococcus species from China: ST7 (Ou et al., 2020;

Zhu et al., 2022; Gu et al., 2023), ST 3 (Chang et al., 2022; Lin et al.,

2022), ST 16 (Du et al., 2013), ST22 (Zhou et al., 2022; Gu et al.,

2023), and ST19 (Jiang et al., 2016). As per our literature search,

ST11 and ST32 were not reported previously among the

Staphylococcus genus from China, while ST32 was reported in the

S. epidermidis strain from the USA (Mendes et al., 2012). The

presence of common STs in both animal and human strains is

indicative of in-between species transfer of genetic heritability from

both perspectives. The capability of a few pathogens from one host

specie to another specie poses a potential hazard to human health

and the food chain (Richardson et al., 2018). ST11 is reported in

China in gram-negative bacteria, e.g., K. pneumonia and S.

enteritidis strains (Li et al., 2021; Zhang et al., 2021). The

identification of ST11 among S. haemolyticus strains in our study

may indicate the possible transfer of genes from one bacterial specie

to another specie in different ecological niches through horizontal

gene transfer mechanisms such as transduction, conjugation, and

transformation (Bolotin and Hershberg, 2017; Richardson et al.,
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2018). There is a need to conduct in-depth studies to understand

more about virulence determinants, plasmid typing, serotyping, and

gene transfer mechanisms within one health framework to

understand the genetic basis of antimicrobial resistance spread

and pathogenicity mechanisms using advanced characterization

techniques such as whole genome sequencing (WGS).
5 Conclusions

The study noted a relatively high prevalence of S. haemolyticus

and other Staphylococcus species at sampled dairy farms in

Northwest, China, highlighting the importance of emerging

antimicrobial-resistant pathogens affecting dairy herds. The

antimicrobial susceptibility showed higher resistance to

erythromycin, trimethoprim-sulfamethoxazole, gentamicin,

cefoxitin, ciprofloxacin, and florfenicol, suggesting that the use of

these antimicrobials at dairy farms needs to be closely monitored.

However, susceptibility to tetracycline, vancomycin, and linezolid

could be the antimicrobials used to treat mastitis caused by this

pathogen. Most of the strains carrying the multiple resistance genes

pose a potential threat to public health via the consumption of

contaminated milk. The phylogenetic analysis classified strains

from groups A-H, while MLST detected eight STs, with ST8

being the most predominant. These findings provided new

insights into our understanding of the epidemiology and genetic

characteristics of S. haemolyticus in dairy farms to inform

interventions limiting the spread of AMR in dairy production.
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