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Application of mNGS in the study
of pulmonary microbiome in
pneumoconiosis complicated
with pulmonary infection
patients and exploration of
potential biomarkers

Xingya Yuan1, Linshen Xie1, Zhenzhen Shi2 and Min Zhou1*

1Department of Respiratory Medicine, West China Fourth Hospital, Sichuan University, Chengdu,
Sichuan, China, 2Dinfectome Inc., Nanjing, Jiangsu, China
Background: Pneumoconiosis patients have a high prevalence of pulmonary

infections, which can complicate diagnosis and treatment. And there is no

comprehensive study of the microbiome of patients with pneumoconiosis. The

application of metagenomic next-generation sequencing (mNGS) fills the gap to

some extent by analyzing the lung microbiota of pneumoconiosis population while

achieving accurate diagnosis.

Methods: We retrospectively analyzed 44 patients with suspected pneumoconiosis

complicated with pulmonary infection between Jan 2020 and Nov 2022.

Bronchoalveolar lavage fluid (BALF) specimens from 44 patients were collected

and tested using the mNGS technology.

Results: Among the lung microbiome of pneumoconiosis patients with

complicated pulmonary infection (P group), the most frequently detected

bacteria and fungi at the genus level were Streptococcus and Aspergillus, at

the species level were Streptococcus pneumoniae and Aspergillus flavus,

respectively, and the most frequently detected DNA virus was Human

gammaherpesvirus 4. There was no significant difference in a diversity

between the P group and the non-pneumoconiosis patients complicated with

pulmonary infection group (Non-P group) in pulmonary flora, while P< 0.01 for b
diversity analysis, and the differential species between the two groups were

Mycobacterium colombiense and Fusobacterium nucleatum. In addition, we

monitored a high distribution of Malassezia and Pneumocystis in the P group,

while herpes virus was detected in the majority of samples.

Conclusions: Overall, we not only revealed a comprehensive lung microbiome

profile of pneumoconiosis patients, but also compared the differences between their

microbiome and that of non-pneumoconiosis complicated with pulmonary

infection patients. This provides a good basis for a better understanding of the
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relationship between pneumoconiosis and microorganisms, and for the search of

potential biomarkers.
KEYWORDS

pneumoconiosis, microbiome, metagenomic next-generation sequencing, pulmonary
infection, biomarker
1 Introduction

Pneumoconiosis is a group of lung diseases caused by the

inhalation of inorganic mineral particles, usually because of certain

occupations. Its main pathological features include chronic lung

inflammation and progressive pulmonary fibrosis (Perret et al.,

2017), which can lead to respiratory and/or cardiac failure and

eventually death. Pneumoconiosis is prevalent worldwide, with

more than 60,000 new cases reported worldwide in 2017 (Shi et al.,

2020). With the development and optimization of the industry in

recent years, the pneumoconiosis population has decreased from

23.33% before 1970 to 2.29% in 2020 (Liu et al., 2022). However, the

mortality rate of pneumoconiosis is relatively high (GBD 2017

Disease and Injury Incidence and Prevalence Collaborators, 2018;

GBD 2013 Mortality and Causes of Death Collaborators, 2015),

which is a serious threat to global public health.

Patients with pneumoconiosis are susceptible to microbial

invasion such as Mycobacterium tuberculosis (Jun et al., 2013),

nontuberculous mycobacteria (NTM) (McGrath and Bardsley, 2009)

and Aspergillus(Vangara et al., 2022), leading to pulmonary

infection. And many patients with advanced pneumoconiosis die

of respiratory failure due to pulmonary infections (Barnes et al.,

2019; Qi et al., 2021). Traditional etiologic methods such as

microscopy, smear, and culture have low sensitivity, subjectivity,

and contamination, which can lead to missed or false detection and

affect patient outcomes (Dahyot et al., 2017). It is very important for

patients with pulmonary infections to identify the etiology and use

accurate drugs, especially for patients with lung damage such as

pneumoconiosis. Many studies have revealed that the abundance

and composition of microbial communities vary in different body

habitats, with strong links to health status and human disease

(Dickson et al., 2020; Wu et al., 2020). However, current analysis

of bacterial community diversity in pneumoconiosis mostly uses

sputum culture and 16S rRNA, which are not sufficient for

microbiome analysis, and in most cases, microorganisms cannot

be identified to species level (Mingjing Chen et al., 2017; Zhimin

Ma, 2020; Druzhinin et al., 2022).

Metagenomic next-generation sequencing (mNGS) has the

advantages of broad coverage, unbiased and unpredictable, and

can simultaneously identify bacteria, fungi and viruses in a single

sample (Chiu and Miller, 2019; Chen et al., 2021; D’Humières et al.,

2021). It has been widely used in clinical practice in recent years,

playing an important role in assisting clinical diagnosis, guiding

rational drug use, reducing patient burden, and improving patient

clinical outcome (Qian et al., 2020). In addition, mNGS does not
02
require culture and pathogen detection results are typically available

within 24-48 hours and are less susceptible to antibiotics than

culture (Miao et al., 2018). Early diagnosis of pneumoconiosis

complicated with pulmonary infection patients is very important

due to the poor prognosis (Barnes et al., 2019; Qi et al., 2021), while

the use of mNGS technique has not been reported for these patients.

This study retrospectively examines pulmonary microbiome

(bacterial, fungal, viral) characteristics in pneumoconiosis patients

with pulmonary infection (P group), compares the pulmonary

microbiome to non-pneumoconiosis patients with pulmonary

infection (Non-P group), analyzes differential microbiome, and

explores potential diagnostic biomarkers of pneumoconiosis.
2 Methods

2.1 Study population

Patients with suspected pneumoconiosis complicated with

pulmonary infection were recruited, the diagnostic criteria for

pulmonary infection was shown in Figure 1 (Cao et al., 2018; Shi

et al. , 2019), and pneumoconiosis was diagnosed with

pneumoconiosis by the Chinese diagnostic standard GBZ 70-2015

and the International Labor Organization’s classification standard

for pneumoconiosis (Honma et al., 2004), Recruitment was carried

out at a single site in West China Fourth Hospital Sichuan

University, Chengdu between Jan 2020-Nov 2022, Patients who

were under 18 years of age, unable to obtain bronchoalveolar lavage

fluid (BALF), and had incomplete information were excluded from

our study. Besides, some of the collected samples have been tested

by G test, GM test or culture before mNGS. Data were collected on

the demographics, underlying diseases and clinical features of the

patients enrolled and were listed in Table 1.
2.2 Specimen collection

BALF was obtained from 44 participants. The purpose of

collecting BALF is to make an etiologic diagnosis of the patient’s

infection. Samples were collected from patients according to

standard procedures (Levy et al., 2018). After local anesthesia of

the patient’s throat, the fiberoptic bronchoscope was introduced.

The lung was lavaged with room temperature sterile saline several

times through the fiberoptic bronchoscope, 20-60 mL each time. 10

mL of the sample was removed from the recovered solution, place 2
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mL of it into a sampling tube with RNA protection solution (Sigma-

Aldrich) and the rest into a sterile nucleic acid-free DNA sampling

tube and store immediately at -80°C.
2.3 Sample DNA and RNA extraction

BALF DNA was extracted using methods previously described

(Mac Aogáin et al., 2021; Ju et al., 2022), take 50 mL of proteinase k

and 1 mL of BALF sample, digest at 60°C for 20 min, and then leave

at 4°C for 5 min to lower the reaction temperature. Transfer the

sample to a sterile test tube and centrifuge briefly followed by DNA

extraction using the TIANamp Magnetic DNA Kit (DP710-t2,

Tiangen, China) according to the manufacturer’s protocol.

Sputum was liquefied by 0.1% DTT (dithiothreitol) for 20 min at

56°C before extraction. The QIAamp Viral RNA Mini Kit (Qiagen)

was used to extract RNA from the BALF (Langelier et al., 2018).

DNA libraries were prepared using the KAPA Hyper Prep Kit

(KAPA Biosystems) according to the manufacturer’s protocol.

Libraries were constructed after Qubit quantification. For RNA

extraction samples, rRNA was removed from total RNA and

libraries were constructed after purification as described for DNA

library construction. Agilent 2100 was used for quality control and

then DNA libraries were sequenced on the Dif seq platform for 50

bp paired end sequencing (Dinfectome Medical Technology Inc,

Nanjing, China).
2.4 Bioinformatics analysis

For pathogen identification, we used an in-house developed

bioinformatics pipeline (Zeng et al., 2022). Briefly, low quality

reads, adapter contamination, duplicated and shot (length <36

bp) reads were removed to generate high quality sequencing data.

Sequences from the human host were identified by mapping to the
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human reference genome (hs37d5) using the bowtie2 software

(Langmead and Salzberg, 2012). Reads that could not be mapped

to the human genome were retained. They were aligned to the

microorganism genome database for pathogen identification. Our

microorganism genome database contained the genome sequences

of bacteria, fungi, viruses, and parasites (can be downloaded from

https://www.ncbi.nlm.nih.gov/) (Wood et al., 2019).
2.5 Interpretation and reporting

The mNGS pathogen detection pipeline was described in

previous studies (Miao et al., 2018; Miller et al., 2019; Qian et al.,

2020; Zeng et al., 2022; Chen et al., 2023; Xu et al., 2023), and the

criteria for detection positivity were as follows: 1) at least one

species-specific read for Mycobacterium tuberculosis, Nocardia and

Legionella pneumophila detection; 2) for other bacteria, fungi, virus,

and parasites, at least three unique reads were needed; 3) pathogens

were excluded if the ratio of microorganism reads per million of a

given sample versus NTC was < 10.
2.6 Statistics analysis

The statistical analysis was carried out using the R software

(v4.2.1) (R Core Team, 2021). Alpha diversity was estimated by

Shannon index and Simpson index based on the taxonomic profile

of each sample. Beta diversity was assessed by Bray-Curtis measure.

PERMANOVA was performed using the R package “vegan” to

analyze the Bray-Curtis distance in different P and Non-P groups.

In all cases, two-tailed analysis was performed and considered.

Differences were regarded as significant at P < 0.05. Differential

relative abundance of taxonomic groups at the genus/species level

between groups was tested using the Kruskal-Wallis rank sum test

(R package “kruskal.test”) (Kruskal and Wallis, 1952). Statistical
FIGURE 1

Inclusion and exclusion flowchart of study.
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analyses and plots were processed by using SPSS statistical software

(IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY,

United States) and GraphPad Prism software (GraphPad Prism

version 8.0.2 for Windows, GraphPad Software, San Diego, CA,

United States).
3 Results

3.1 General information of
study participants

120 patients suspected of pulmonary infection and

pneumoconiosis were screened, 44 eligible patients were included

in the final analysis. Including 25 patients with pneumoconiosis and

19 patients with non-pneumoconiosis, 25 patients with

pneumoconiosis and 19 patients with non-pneumoconiosis
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underwent bronchoscopy to obtain BALF. In terms of patient

composition, all participants in the study were male and no

female patients were enrolled in pneumoconiosis due to

occupational characteristics. The main types of dusts causing

pneumoconiosis according to clinical data were production dust

(indoor work), mineral dust (coal mine, drilling related work), and

the average number of years patients were exposed to such work

was 10.76 years.
3.2 Characteristics of the pulmonary
microbiome of pneumoconiosis patients

We plotted bar charts based on the frequency of species

detection in pneumoconiosis patients, with the top 10 genera and

top 20 species detected. In BALF samples, 521 bacterial species, 78

fungi species, and 17 viral species were detected in the
TABLE 1 Patient and sample characteristics including biochemical parameters, underlying disease and clinical features.

Pneumoconiosis (P) (n=25) Non-Pneumoconiosis (Non-P) (n=19)

Age(years) (mean ± SD) 51.68 ± 11.51 62.2 ± 14.4

Gender

Male 25 14

Female 0 5

Inflammatory index

WBC(×109/L) (mean ± SD) 8.32 ± 2.41 8.85 ± 5.35

PCT(mg/L) (mean ± SD) 0.21 ± 0.09 0.19 ± 0.07

CRP (mg/L) (mean ± SD) 57.73 ± 78.00 71.86 ± 70.46

Neutrophils(×109/L) (mean ± SD) 6.51 ± 2.49 6.94 ± 5.34

Lymphatic cells(×109/L) (mean ± SD) 1.05 ± 0.59 1.18 ± 0.44

Working years (years) (mean ± SD) 10.76 ± 9.78 /

Underlying disease

Tuberculosis/history of tuberculosis (n) 6 1

Hypertension (n) 5 2

Hepatitis B (n) 3 1

chronic cor pulmonale 3 0

type 2 diabetes (n) 2 2

chronic obstructive pulmonary disease (n) 2 1

Cancer (n) 0 2

Clinical characterization

Fever (n) 6 7

Cough (n) 24 18

Expectoration (n) 23 14

Dyspnea (n) 5 1

Hemoptysis (n) 8 4
SD, standard deviation; Working years, Patient’s years of pneumoconiosis-related work; WBC, White Blood Count; PCT, Procalcitonin; CRP, C-reactive protein; Neutrophils, Neutrophil count,
Lymphatic cells, Lymphocyte count.
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pneumoconiosis patient group. At the genus level, the top three

bacteria detected were Streptococcus (96%), Acinetobacter (80%),

and Prevotella (80%). Aspergillus (76.47%), Candida (35.29%),

Pneumocystis (35.29%) for fungi. At the species level, the top 3

bacterial species detected were Streptococcus pneumoniae (72%,

relative abundance 0.040%), Stenotrophomonas maltophilia (72%,

relative abundance 0.036%) and Rothia mucilaginosa (60%, relative

abundance 0.047%), based on frequency of detection and relative

abundance of species detected. In terms of fungal detections, the top

3 were Aspergillus flavus (52. 94%), Pneumocystis jirovecii (35.29%),

and Schizophyllum commune (35.29%). In addition, we revealed

that herpes viruses were detected more frequently in

pneumoconiosis patients, with Human gamma herpesvirus type 4

detected in 61.54% of all patients, and Human betaherpesvirus type

7 and Human beta herpesvirus type 5 detection rates of 53.85% and

46.15%, respectively. Meanwhile, RNA viruses were found in two

patients, Human coronavirus NL63, Human respiratory virus 3 and

Rhinovirus A, respectively. Specific detections can be found in

Figure 2. Also, we counted the results of conventional

microbiological testing of BALF samples. 22 BALF samples were

cultured, G test and GM test simultaneously, and 15 samples were
Frontiers in Cellular and Infection Microbiology 05
cultured only, however, all of these results were negative based on

clinical judgment.
3.3 Microbiota analysis between P and
Non-P groups

Analysis of microbiome differences in pneumoconiosis patients

and non-pneumoconiosis patients will help understand the

relationship between microbes and pneumoconiosis and identify

biomarkers relevant to pneumoconiosis diagnosis.

Bar graphs were plotted based on the relative abundance of

detected species, as shown in Figure 3, and the species with the

highest relative abundance at the genus level in the P and Non-P

groups were detected as Streptococcus. Among the top 10 genera in

terms of relative abundance, the relative abundance of

Streptococcus, Prevotella, Mycobacterium and Rothia in the P

group was higher than that Non-P group, while all other genera

had higher relative abundance in the Non-P group, the relative

abundance of Corynebacterium was essentially equal between the

two groups.
B C

D E F

A

FIGURE 2

Lung microbiome of patients with pneumoconiosis complicated with pulmonary infection (BALF). (A) Distribution of bacteria at the genus level.
(B) Distribution of fungi at the genus level. (C) Distribution pie chart of detected bacteria, fungi, and viruses at the species level. (D) Distribution of
bacteria at the species level. (E) Distribution of fungi at the species level. (F) Distribution of Viruses at the species level.
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At the species level, among the top 10 species by relative

abundance, Prevotella melaninogenica, Rothia mucilaginosa,

Streptococcus oralis, Streptococcus mitis were detected in higher

relative abundance in the P group than Non-P group, while the

remaining species had higher relative abundance in the Non-P group.

Among them, Pseudomonas aeruginosa was usually associated with

poor patient prognosis (Wang et al., 2019), whileAbiotrophia defectiva

was normal in the oral, genitourinary, and intestinal tracts, may cause

sometimes serious infections in humans (Li J et al., 2022).

To analyze the differences in species diversity between the

groups, a-diversity and b-diversity were used. The findings

proved that there was no significant difference in ACE, Chao1,

Shannon or Simpson between the two groups (P > 0.05, only the

Shannon Diversity Index results were shown), indicating similar

species variety. The difference in species between groups was

analyzed with b diversity, and P < 0.01, suggesting that there was

a remarkable difference in species between groups and the grouping

was meaningful, as shown in Figure 4.
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We tested species differences between P and Non-P groups at

phylum, genus and species level. No conspicuous differences were

found in the phylum and genus between the groups, However, the

distribution of species differed dramatically. Mycobacterium

colombiense (M. colombiense) and Fusobacterium nucleatum (F.

nucleatum) were evidently different in their presence (Figure 5A),

with the former being detected mainly in pneumoconiosis patients

and the latter mainly in non-pneumoconiosis patients. The study

also used LEfSe analysis to explore species that differed strikingly

between groups (Figure 5B), with only three species differing

between the two groups, including one at the genus level and two

at the species level (i.e. the two different species mentioned above),

the genus Capnocytophaga was enriched in the P group.

Sperman correlation analysis was performed to explore the

correlation between clinical parameters such as patient’s age,

pneumoconiosis years, and inflammatory indicators at admission

with significantly different species and the top 18 species in terms of

relative abundance (for a total of 20 species, Figure 6). Prevotella,
B

A

FIGURE 3

Comparison of the relative abundance of microorganisms between P and Non-P groups. (A) Distribution of bacteria at the genus level in the P and
Non-P groups. (B) Distribution of bacteria at the species level in the P and Non-P groups.
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Actinomyces and Rothia were common colonizing organisms in the

mouth, Prevotella melaninogenica, Prevotella pallens, Actinomyces

odontolyticus, Rothia mucilaginosa and other oral bacteria were

distinctly and negatively correlated with patients ’ age,

pneumoconiosis years and lymphocyte count, which may mean

that the abundance of these microorganisms decreases as

pneumoconiosis progresses. M. colombiense was positively

correlated with years of work related to pneumoconiosis,

suggesting that the likelihood of M. colombiense infection

increased with the progression of pneumoconiosis, while we

observed that the relative abundance of Pseudomonas aeruginosa

was positively correlated with the length of hospitalization of

pneumoconiosis patients, which seemed somewhat unusual and

might be related to the small number of patients enrolled.
Frontiers in Cellular and Infection Microbiology 07
3.4 Comparison of fungi and virus
detection in P and Non-P

The mNGS technology can identify and detect bacteria, fungi

and viruses in the same sample, which is more conducive to a fully

revealed microbiome signature. The top 20 genera/species were

plotted in terms of relative abundance of species detected in the P

group, as shown in the Figure 7. At the genus level, the top four

genera detected were Aspergillus, Candida, Malassezia and

Pneumocystis. Among them, more Malassezia and Pneumocystis

were distributed in the P group, while Aspergillus and Candida were

more dominant in the Non-P group. At the species level, among

the top five detected species, Aspergillus sydowii, Aspergillus

versicolor, Candida albicans were higher in the Non-P group than
B

A

FIGURE 5

Species analysis of differences between P and Non-P groups. (A) Analysis of significant differences species. (B) LEfSe analysis.
BA

FIGURE 4

a and b diversity analysis between P and Non-P groups. (A) Shannon Index analysis. (B) Bray Curtis dissimilarity analysis.
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in the P group, while Aureobasidium melanogenum, Clavispora

lusitaniae were higher in the P group. The viruses detected were

displayed in Figure 7C below, with more viruses detected in the P

group, while Human gammaherpesvirus 4, Human betaherpesvirus

5, Influenza A virus were mainly detected in the Non-P group.

Human gammaherpesvirus 4, Human betaherpesvirus 5, Human

betaherpesvirus 7 and Human betaherpesvirus 6A were mainly

detected in the P group. The Human gammaherpesvirus or

Human betaherpesvirus mentioned above belong to the same

family, Herpesviridae.
4 Discussion

In this study, mNGS technology was used to comprehensively

reveal the pulmonary microbiome of pneumoconiosis patients,

including the characteristics of bacteria, fungi and viruses,

through BALF samples, and compare the differences in the lung

microbiome between the P and Non-P groups so as to compare the

microbial differences between the two groups for the exploration of

potential biomarkers. To our knowledge, this current study is the

first to investigate the lung microbiome of pneumoconiosis patients

using a comprehensive and systematic mNGS technique and is also

the first study to reveal differences in the lung microbiome of

patients with pneumoconiosis versus non-pneumoconiosis.

Due to the chronic progressive disease of pneumoconiosis and

the usual damage to the respiratory mucosa in pneumoconiosis

patients, pneumoconiosis patients have a high probability of the

lower respiratory tract (Xin and Zhang, 2017). Our study is the first

to use mNGS to reveal the lung flora of pneumoconiosis

complicated with pulmonary infection patients. In a previous
Frontiers in Cellular and Infection Microbiology 08
study, Druzhinin et al. employed 16S to analyze the microbial

composi t ion of sputum samples f rom coal workers ’

pneumoconiosis (CWP) and observed a significant increase in the

abundance of Streptococcus compared to the healthy group

(Druzhinin et al., 2022). In addition, Li et al. analyzed the

intestinal flora of pneumoconiosis patients and demonstrated a

remarkable increase of Prevotella abundance in the pneumoconiosis

group compared to the control group (Li Y et al., 2022). Similarly,

we monitored higher abundance of Streptococcus and Prevotella in

BALF samples from the P group compared to the Non-P group,

however, the differences between both groups were non-significant,

which we analyzed may be related to differences in sample type, as

well as the fact that sputum specimens are susceptible to oral

colonization flora compared to BALF samples.

Infections caused by fungi are gradually increasing in the clinic

due to the irrational use of antibiotics and the increased use of

hormonal drugs. Aspergillus is one of the main pathogens causing

invasive fungal diseases, as well as chronic pulmonary aspergillosis,

may worsen symptoms in advanced chronic obstructive pulmonary

disease (COPD) (Hammond et al., 2020), and is associated with

high mortality (Vandewoude et al., 2004). Aspergillus fumigatus

is the most common agent of invasive aspergillosis and has

been widely studied and reviewed (Dewi et al., 2021; Deng et al.,

2023). However, Aspergillus flavus is the most frequently detected

fungi in our studies of the pulmonary microbiome of

pneumoconiosis patients, it can produce the most carcinogenic

mycotoxin aflatoxins and cause aspergillosis in immune-

compromised patients. Meanwhile, in vivo experimental studies

have shown that the fungi is more toxic than Aspergillus fumigatus

and other Aspergillus species in terms of time to death and initial

inoculum in normal and immunocompromised experimental mice
FIGURE 6

Clinical and microbial correlation analysis, Work years, Patient’s years of pneumoconiosis-related work; P-years, Pneumoconiosis years; WBC, White
Blood Count; PCT, Procalcitonin; CRP, C-reactive protein; NEUT, Neutrophil count; LYC, Lymphocyte count. The symbol * represent significance p
< 0.05.
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(Rudramurthy et al., 2019). The G test is widely used for invasive

fungal infections (Lu et al., 2011; Li et al., 2015), while the GM test

can further identify invasive aspergillosis for early diagnosis (Guo

et al., 2010). In our study, some of the BALF samples were subjected

to both G test and GM test, however, their negative results indicated

the limitations of the traditional testing method to some extent,

while the culture of BALF samples seemed to be unsatisfactory. Due

to the specificity of the pneumoconiosis patient population, most of

the patients have been on long-term antibiotic and antifungal

medication prior to the relevant tests, which we speculate may be

one of the reasons for the unsatisfactory results of the traditional
Frontiers in Cellular and Infection Microbiology 09
tests, while some studies have reported that the detection rate of

mNGS is relatively less affected by the use of antibiotics compared

to the traditional testing modalities (Miao et al., 2018; Diao et al.,

2021). Beyond this, a combination of guidelines and consensus,

mNGS will be conducted when conventional tests fail to clarify the

pathogen, which may be due to the high cost limitations of

sequencing (Chinese Thoracic Society, 2023). We expect the

reduced cost of mNGS technology in the future to make this tool

more accessible, especially for low resource settings where the

burden of infectious diseases is high and the availability of many

pathogen-specific assays is low (Ramachandran et al., 2022).
B

C

A

FIGURE 7

Analysis of viruses and fungi in P and Non-P groups. (A) Distribution of fungi at the genus level in the P and Non-P groups. (B) Distribution of fungi at
the species level in the P and Non-P groups. (C). Distribution of viruses at the genus level in the P and Non-P groups.
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The high detection rate of Mycobacterium in pneumoconiosis

patients has been confirmed in large number of studies, including

Mycobacterium tuberculosis and NTM (Kim et al., 2009). M.

colombiense is mainly found in patients with pneumoconiosis and

is an emerging species in the complex group of Mycobacterium

avium, characterized by acid resistance, immobility, rod-shaped

structure, and slow growth. It was first isolated and described by

Murcia in 2006, and can be isolated in blood, sputum, and lymph

nodes (Murcia et al., 2006; Tang et al., 2023). The bacterium is

prone to cause severe pulmonary infection in immunodeficient or

immunosuppressed patient (Yu and Jiang, 2021), disseminated

diseases (Pena et al., 2019), ganglionar mycobacteriosis related

diseases (Larry et al., 2019), and disseminated diseases associated

with immunocompetent patients have also been reported (Esparcia

et al., 2008; Tang et al., 2023). Cases of the bacterium have been

reported in Europe, America, and Asia (Vuorenmaa et al., 2009;

Poulin et al., 2013; Gao et al., 2014). However, there is a lack of

attention to this bacterium, and it is often ignored in clinical

diagnosis (Van Ingen et al., 2018). Our study identified for the

first time that M. colombiense was substantially enriched in BALF

samples of P group, which may be related to lung damage of these

patients. The detection of this bacterium requires special attention

as it could be a potential biomarker to distinguish pneumoconiosis

from non-pneumoconiosis. However, this result has not been

reported in previous studies of flora associated with

pneumoconiosis (Druzhinin et al., 2022; Li Y. et al., 2022), which

may be due to differences in sample types. Although our study

inaugurally evaluates the lung microbiota of pneumoconiosis

complicated with pulmonary infection patients and reveals a

notable enrichment of M. colombiense in the P group, further

validation with larger sample sizes still is needed at a later stage

to characterize the lung microbiota of pneumoconiosis complicated

with pulmonary infection patients.

More and more studies have found the relationship between

viruses and human diseases. Viruses may cause serious respiratory

diseases, tumors, and neuropsychiatric related diseases in humans

(Gaglia and Munger, 2018; Bjornevik et al., 2022; Domingo and

Rovira, 2020), where respiratory tract viral infection is one of the

most common diseases in the human worldwide (Zhang et al.,

2020). We found more virus species in pneumoconiosis patients in

this study, suggesting that patients like this may be more susceptible

to viral attack, and the viruses detected were mainly Human

gammaherpesvirus 4 and Human gammaherpesvirus-like viruses.

Like other herpesviruses, the above viruses are double-stranded

linear DNA viruses that exhibit a biphasic lifecycle, which are

carried for life after infection, and overproduce when immunity is

low or compromised, leading to human infection. Studies have

shown that herpesviridae reactivation is associated with worse

clinical outcomes, possibly as a direct cause or as a manifestation

of the outcome of exacerbation of diseases (Huang and He, 2020).

We only detailed the lung viruses in pneumoconiosis patients, and

the relationship between viruses and the development, diagnosis

and treatment of pneumoconiosis patients remains to be explored

in more studies.

Overall, our study analyzed the differences in pulmonary

microorganisms between pneumoconiosis with pulmonary
Frontiers in Cellular and Infection Microbiology 10
infection and non-pneumoconiosis with pulmonary infection

patients and screened for differential flora between the two

groups, such as M. colombiense, F. nucleatum and the genus

Capnocytophaga. These species could be used as potential

biomarkers for the diagnosis of patients with pneumoconiosis

with pulmonary infection. In addition, M. colombiense was also

confirmed to be positively correlated with the number of years of

work related to pneumoconiosis, tentatively suggesting a correlation

between pneumoconiosis and microorganisms. This study

contributes to the understanding of the relationship between

microorganisms and pneumoconiosis and provides potential

biomarkers for the diagnosis of pneumoconiosis with pulmonary

infection, as well as basic data for the investigation of the

pathogenesis of the disease.

This study still has some shortcomings. First, this is a single-

center study and the patients enrolled only represent the lung

microbiome of pneumoconiosis patients around that center. In

addition, the number of patients in this cross-sectional study is

relatively small due to the reduced number of pneumoconiosis

patients and the fact that the patients are scattered in different

hospitals, so more centers are needed to participate and enroll more

patients to study the lung microbiome of pneumoconiosis in depth.
5 Conclusion

In this study, mNGS technology was used to fully expose the

microbiome characteristics of the lungs of patients who had

pneumoconiosis. Among the bacterial microbiota in the lungs of

pneumoconiosis patients, Streptococcus were mainly detected, with

Streptococcus pneumoniae as the main organism. Fungi were mainly

detected in Aspergillus with Aspergillus flavus as the main organism,

and the most frequently detected virus was Human

gammaherpesvirus 4. The P and Non-P groups had different

species at the species level, namely M. colombiense and F.

nucleatum, with the former mainly detected in pneumoconiosis

patients and the latter mainly in non-pneumoconiosis patients. As a

result, we uncovered microbiome characteristics and differences

between pneumoconiosis and non-pneumoconiosis with

pulmonary infection patients, which provides a good basis for

better understanding the relationship between pneumoconiosis

and microorganisms, as well as discovering potential biomarkers.
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