
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Veeranoot Nissapatorn,
Walailak University, Thailand

REVIEWED BY

Igori Balta,
University Of Life Sciences “King Mihai I”,
Romania
Gisli G. Einarsson,
Queen’s University Belfast, United Kingdom

*CORRESPONDENCE

Jiangchao Zhao

jzhao77@uark.edu

RECEIVED 15 May 2023

ACCEPTED 23 August 2023

PUBLISHED 08 September 2023

CITATION

Howe S, Kegley B, Powell J, Chen S
and Zhao J (2023) Effect of bovine
respiratory disease on the respiratory
microbiome: a meta-analysis.
Front. Cell. Infect. Microbiol. 13:1223090.
doi: 10.3389/fcimb.2023.1223090

COPYRIGHT

© 2023 Howe, Kegley, Powell, Chen and
Zhao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 September 2023

DOI 10.3389/fcimb.2023.1223090
Effect of bovine respiratory
disease on the respiratory
microbiome: a meta-analysis
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Shicheng Chen2 and Jiangchao Zhao1*

1Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville,
AR, United States, 2Medical Laboratory Sciences Program, College of Health and Human Sciences,
Northern Illinois University, DeKalb, IL, United States
Background: Bovine respiratory disease (BRD) is the most devastating disease

affecting beef and dairy cattle producers in North America. An emerging area of

interest is the respiratory microbiome’s relationship with BRD. However, results

regarding the effect of BRD on respiratory microbiome diversity are conflicting.

Results: To examine the effect of BRD on the alpha diversity of the respiratory

microbiome, a meta-analysis analyzing the relationship between the standardized

mean difference (SMD) of three alpha diversity metrics (Shannon’s Diversity Index

(Shannon), Chao1, and Observed features (OTUs, ASVs, species, and reads) and BRD

was conducted. Our multi-level model found no difference in Chao1 and Observed

features SMDs between calves with BRD and controls. The Shannon SMD was

significantly greater in controls compared to that in calves with BRD. Furthermore,

we re-analyzed 16S amplicon sequencing data from four previously published

datasets to investigate BRD’s effect on individual taxa abundances. Additionally,

based on Bray Curtis and Jaccard distances, health status, sampling location, and

dataset were all significant sources of variation. Using a consensus approach based

on RandomForest, DESeq2, and ANCOM-BC2, we identified three differentially

abundant amplicon sequence variants (ASVs) within the nasal cavity,

ASV5_Mycoplasma, ASV19_Corynebacterium, and ASV37_Ruminococcaceae.

However, no ASVs were differentially abundant in the other sampling locations.

Moreover, based on SECOM analysis, ASV37_Ruminococcaceae had a negative

relationship with ASV1_Mycoplasma_hyorhinis, ASV5_Mycoplasma, and

ASV4_Mannheimia. ASV19_Corynebacterium had negative relationships with

ASV1_Mycoplasma_hyorhinis, ASV4_Mannheimia, ASV54_Mycoplasma,

ASV7_Mycoplasma, and ASV8_Pasteurella.

Conclusions: Our results confirm a relationship between bovine respiratory

disease and respiratory microbiome diversity and composition, which provide

additional insight into microbial community dynamics during BRD development.

Furthermore, as sampling location and sample processing (dataset) can also

affect results, consideration should be taken when comparing results across

studies.
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1 Introduction

Bovine respiratory disease (BRD), also referred to as bovine

bronchopneumonia, is the most devastating disease affecting North

American cattle producers (Taylor et al., 2010). BRD is the leading

cause of death in pre-weaned dairy calves (Dubrovsky et al., 2020)

and is one of the leading causes of disease affecting feedlot cattle,

specifically in the first 50 days post feedlot arrival (Timsit et al.,

2016). It accounts for 70-80% of total feedlot morbidity and 40-50%

of total feedlot mortality (Edwards, 2010). The USDA APHIS

Feedlot study estimated that BRD costs, on average, $23.60/case

(USDA-APHIS, 2013). The costs associated with BRD can be

attributed to the cost of treatment and decreased carcass quality

grade. In the early 2000s, BRD was estimated to cost approximately

$800-900 million annually (Brooks et al., 2011), and more recently,

it has been estimated to be between $1-3 billion annually in the

United States (Cozens et al., 2019).

BRD is considered a multifactorial disease complex with

multiple causative agents, the most common being a bacterial

infection, typically with Mannheimia haemolytica, Pasteurella

multocida, Histophilus somni, or Mycoplasma bovis. However, the

commonly isolated bacterial “pathogens” are often found in the

upper respiratory tract (URT) of healthy cattle. Nevertheless,

historically most research has focused on these opportunistic

pathogens. Recently the role of the respiratory microbiome in

BRD has become a major research area of interest. Major

differences exist in the URT and lower respiratory tract (LRT)

microbiomes of beef and dairy cattle with and without BRD (Lima

et al., 2016; Gaeta et al., 2017; Johnston et al., 2017; Zeineldin et al.,

2017; Timsit et al., 2018; Klima et al., 2019; McMullen et al., 2019;

McMullen et al., 2020; Zeineldin et al., 2020; Raabis et al., 2021;

Centeno-Martinez et al., 2022). However, results regarding alpha

diversity (intra-sample diversity) and differentially abundant taxa

are inconclusive.

In human medicine, it is well-accepted that a loss of microbial

diversity in the gastrointestinal tract leads to many diseases (Mosca

et al., 2016). Additionally, in cystic fibrosis patients, reduced

respiratory microbial diversity has been correlated with reduced

respiratory function (van der Gast et al., 2011; Fodor et al., 2012;

Zhao et al., 2012). Moreover, decreased alpha diversity is linked to

COVID-19 infection and severity (Xu et al., 2021). Decreased

richness (Holman et al., 2015; Timsit et al., 2018; McMullen

et al., 2019) and decreased Shannon Diversity Index (Timsit et al.,

2018) have been observed in the URT of calves with BRD compared

to healthy calves. However, several studies have found no significant

difference or pattern of change in alpha diversity metrics between

BRD and healthy calves (Zeineldin et al., 2017; McMullen et al.,

2019; McMullen et al., 2020). Furthermore, it has been observed

that calves that developed BRD had decreased richness at arrival

compared to those that remained healthy (Holman et al., 2015).

However, this has also been disputed, as others observed no

difference (Zeineldin et al., 2017). Many studies report slightly

different results for observed sequence variants, including

observed operational taxonomic units (OTUs) (Holman et al.,

2015), species (Zeineldin et al., 2017; McMullen et al., 2019),

amplicon sequence variants (ASVs), and the number of reads
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(Lima et al., 2016), which can make comparisons among studies

difficult. Furthermore, previous results have varied regarding

differentially abundant and significantly enriched bacterial taxa as

well (Lima et al., 2016; Zeineldin et al., 2017; McMullen et al., 2020;

Zeineldin et al., 2020; Raabis et al., 2021; Centeno-Martinez et al.,

2022; Li et al., 2022).

More and more studies show that meta-analysis is a very

powerful tool to evaluate a scientific question when current

research is heterogenous, if there are conflicting results, or if there

is a lack of consensus regarding a certain scientific question

(Siddaway et al., 2019; Tawfik et al., 2019). As both culture-

dependent and -independent microbiome studies attempt to

describe microbial ecology (Gray and Head, 2008), formal meta-

analyses can likely be used to examine microbiome-associated

metrics and remove the “noise” that may contribute to conflicting

results due to hiding the underlying “biological pattern” (Duvallet

et al., 2017; Nikolova et al., 2021). For example, Nikolova et al.

(2021) performed a meta-analysis to analyze the effect of gut

microbiome alpha diversity associated with numerous psychiatric

conditions (Nikolova et al., 2021). Moreover, Avalos-Fernandez

et al. (2022) conducted a meta-analysis to determine the effect of

respiratory microbiome alpha diversity’s relationship with chronic

lung disease (Avalos-Fernandez et al., 2022). However, analyzing

reported metrics for relative abundance presents some issues, such

as differences in bioinformatic analyses pipelines, classification

databases, and differential abundance method, as all of these can

affect taxonomic classification and relative and differential

abundance results (Edgar, 2018; López-Garcıá et al., 2018; Prodan

et al., 2020; Nearing et al., 2022). Therefore, compiling and re-

analyzing sequences may be a preferred method to examine

individual taxa abundances across studies. As a result, a “formal”

meta-analysis was conducted to examine the development of BRD

on commonly analyzed alpha diversity metrics, including Shannon

Diversity Index, Chao1, and variations of observed sequence

variants (OTUs, species, ASVs, reads), hereon referred to as

“observed features.” Additionally, four datasets [(Nicola et al.,

2017) (Nicola), (Johnston et al., 2017) (Johnston), (Centeno-

Martinez et al., 2022) (Centeno-Martinez), and PRJNA532923

(PRJNA) (Arkansas, U.o, 2019)] of publicly available sequences

were re-analyzed to examine the effect of BRD on individual

bacterial abundances.
2 Materials and methods

2.1 Literature search, data extraction, and
effect size calculation

A detailed literature search was conducted using Preferred

Reporting Items for Systematic Reviews and Meta-analyses

(PRISMA) methods on May 5, 2022, and again on November 21,

2022 (Figure 1) (Moher et al., 2009). The search terms “bovine

respiratory disease” OR “bovine bronchopneumonia” AND

“microbiome OR microbiota” were used to search the following

databases: Agricola, NCBI PubMed, Web of Science, and NCBI

BioProject. Databases were searched to acquire relevant literature
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and deposited but not published sequences. A total of 170 records

were pooled, and 88 duplicates were removed. Then, 82 records

were screened for relevance, and 36 were excluded for being not of

interest (i.e., were review papers, not in cattle, not microbiome, etc.).

The remaining 46 records were screened in more detail and were

required to meet the following criteria: compare 16S rDNA

sequences from healthy and BRD cattle and report one of the

three alpha diversity metrics or contain publicly available data.

Finally, 32 records were excluded for not meeting the criteria, and

14 were included in the meta-analysis (Figure 1).

Available data ]i.e., alpha diversity metrics’ (Shannon Index,

Chao1, and Observed features) mean, standard deviation, and the

number of samples in each group (BRD, control)] was extracted

from each study. If the mean and standard deviation values were

not readily presented in the paper, Webplotdigitizer was used to

extract the data from published figures (Rohatgi, 2021). If the only

available figures did not provide the mean and standard deviation

(i.e., boxplot), these values were imputed using the following

website https://smcgrath.shinyapps.io/estmeansd/ using S2 and

the Box-Cox method (McGrath et al., 2020; McGrath et al., 2022)

as it does not assume normality as demonstrated previously

(Avalos-Fernandez et al., 2022). For graphics with error bars, the

average standard error of the mean (SEM) or standard deviation

was used, and the SEM was computed to standard deviation by

multiplying the SEM by the square root of the sample size. Due to

variable alpha diversity metrics reported and lack of available data,

all metrics (Shannon, Chao1, and Observed features) could not be

extracted from all studies. Therefore, studies without the metric of

interest were excluded from the effect size calculation for that

metric. Two records had sequencing data but did not report alpha

diversity metrics. Therefore, these sequences were analyzed using

QIIME2 (as described in section 3.3 below), and the Shannon’s

Diversity Index, Chao1, and Observed ASVs were calculated.

A database containing relevant metadata and data was

constructed (Supplementary Table 1). The SMD of both metrics

was calculated for each record using the escalc function, where 1
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(n1i (sample size), m1i (mean), sd1i (standard deviation) referred to

healthy calves, and 2 (n2i, m2i, and sd2i) referred to BRD calves, in

the R package metafor (v3.8-1) in R (v4.2.1) (Viechtbauer, 2010;

Team, R.C, 2022).
2.2 Meta-analytical model, subset analysis,
and publication bias

A multi-level meta-analytical model was run to determine the

overall effect of BRD on Shannon SMD, Observed features SMD,

and Chao1 SMD and to account for potential non-independence

and heterogeneity introduced by calculating multiple effect sizes for

specific records, as some studies reported metrics of interest for

differing sample locations (upper vs. lower respiratory tract) or time

points (feedlot entry vs. diagnosis, see Supplementary Table 1). This

was accomplished using the rma.mv function in the metafor

package and by setting “random = ~1|paper_num/count”, in

which paper_num is the study number and count is the entry

number (Supplementary Table 1), and the model was fitted using

restricted maximum likelihood (REML).

Subgroup analysis was then conducted to determine if sampling

location (URT vs. LRT) was a source of residual heterogeneity.

Therefore, the previous multi-level model was altered by setting

“mods = ~factor(location)-1”. Forest plots of the Shannon,

Observed features, and Chao1 SMDs were then created using the

forest function in the metafor package (Figures 1–3).

To assess publication bias for the Shannon SMD, a random

effects model was run and used to generate a funnel plot, which
FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) for alpha diversity analysis.
FIGURE 2

SMD of Shannon Diversity Index in Healthy and BRD Calves. Data
located right (blue) or left (pink) of the dotted line indicates that
healthy or BRD calves have higher SMD, respectively. Datapoint size
corresponds to precision. Bars depict 95% confidence interval. I2

indicates total heterogeneity. Values in parentheses indicate
between- and within-group heterogeneity. Middle column indicates
sampling collection time and sample type [transtracheal aspiration
(TTA), transtracheal wash (TTW), bronchoalveolar lavage (BAL),
nasopharyngeal swab (NPS), deep nasal swab (DNS), and nasal
swab (NS)].
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was created using the funnel function in the metafor package.

Additionally, Egger’s regression test was performed using the

regtest function in the metafor package in R. The failsafe number

was calculated using the fsn function in the metafor package

in R.
2.3 Sequencing analysis

The search terms “bovine respiratory disease” OR “bovine

bronchopneumonia” AND “microbiome OR microbiota” were used to

search NCBI BioProject. To be selected, datasets had to be comprised of

16S sequencing data from the bovine respiratory microbiome from BRD

calves and controls, have available metadata indicating which samples

were BRD and controls, and be at least overlapping the V4 region. Four

datasets met these requirements and were downloaded from the SRA

database using prefetch and fasterqdump from the SRA toolkit and were

analyzed by QIIME2 (version 2022.8) as previously described (Wang

et al., 2019; Wang et al., 2021; Wang et al., 2022). Briefly, data from each

dataset were individually imported into QIIME2 (Bolyen et al., 2019).

Demultiplexed paired-end V3V4 sequences were trimmed to the V4

region using cutadapt (Martin, 2011) with the forward primer (515F:

GTGCCAGCMGCCGCGGTAA) and reverse primer (806R:

GGACTACHVGGGTWTCTAAT). The forward and reverse adapters

used were the reverse complements of the reverse and forward primer,

respectively (forward adapter: ATTAGAWACCCBDGTAGTCC;

reverse adapter TTACCGCGGCKGCTGGCAC), and untrimmed

reads were discarded. Then for each dataset, forward and reverse reads
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were joined, reads were filtered, and Deblur was used to further trim and

denoise sequences (Amir et al., 2017). Identical filtering and Deblur

parameters were used for each dataset. The feature table and

representative sequences for each dataset were then merged, and data

were rarefied to 1108 reads. Shannon diversity index, Chao1, and

Observed ASVs were calculated for alpha diversity analysis (see

sections 3.1 and 3.2), and Bray-Curtis and Jaccard distances were

calculated using QIIME2 and visualized using PCoA plots created with

R (v.4.2.1). ASVs were then classified against the Greengenes database

(version 13_8_99), and both relative abundance and count ASV tables

were created. Then, Bray Curtis and Jaccard distances were calculated

using the distance function in the phyloseq R package (v1.40), and

sources of variation were assessed using the anosim function from the

vegan package (v2.6-4) (McMurdie and Holmes, 2013).
2.4 Differential abundance and
taxa interactions

To further investigate the role of BRD on the respiratory

microbiome, differential abundance tests were conducted to

determine control- and BRD-associated ASVs for each sample

type [nasal swabs (NS), nasopharyngeal swabs (NPS),

bronchoalveolar lavage (BAL), and trans-tracheal aspiration

(TTA)]. Only one of the datasets (Centeno-Martinez) included

negative control samples. One ASV (ASV6_Pseudoalteromonas)

was highly abundant in all negative control samples. This ASV

was excluded from NS differential abundance analysis since the

Centeno-Martinez dataset was comprised of only NS samples. A

consensus approach was used to select differentially abundant taxa

for each health status in each sampling location, as recommended

by Nearing et al. (2022) (Nearing et al., 2022). To be classified as a

control- or BRD- associated taxa, ASVs must have been in the top

25 RandomForest predictors and selected as differentially abundant

using both DESeq2 and Analysis of Compositions of Microbiomes

with Bias Correction 2 (ANCOM-BC2) for the respective health

status. Briefly, RandomForest (v4.7-1.1) was performed on the first

500 ASVs from the rarefied relative abundance table; for each

location, a differing number of variables were tried at each branch

(mtry) to attempt to optimize results (Breiman, 2001). For DESeq2

and ANCOM-BC2 analysis, the top 1500 ASVs in the rarefied count

ASV table were converted into a phyloseq object (McMurdie and

Holmes, 2013). For DESeq2 analysis, the phyloseq object was

converted to a DESeq2 object, size factors were estimated with

the argument type = “poscounts”, and taxa with less than 5 reads in

3 samples were filtered out. Then, DESEq2 (v1.36) with the fittype =

“local”, was used to analyze differentially abundant taxa at the ASV

level. ASVs were considered differentially abundant using DESeq2 if

Padj < 0.05 (Love et al., 2014). For ANCOM-BC2 (v1.6.4) analysis,

ASVs with no variances were removed. The following arguments

were set as follows, prv_cut = 0.1, p_adj_method = “hochberg”,

struc_zero = TRUE, neg_lb = FALSE. ASVs were considered

differentially abundant using ANCOM-BC2 if Q < 0.05 (Lin and

Peddada, 2020; Lin et al., 2022).
FIGURE 3

SMD of Observed features in Healthy and BRD Calves. Data located
right (blue) or left (pink) of the dotted line indicates that healthy or
BRD calves have higher SMD, respectively. Datapoint size
corresponds to precision. Bars depict 95% confidence interval. I2

indicates total heterogeneity. Values in parentheses indicate
between- and within-group heterogeneity. Middle column indicates
sampling collection time and sample type [transtracheal aspiration
(TTA), transtracheal wash (TTW), bronchoalveolar lavage (BAL),
nasopharyngeal swab (NPS), deep nasal swab (DNS), and nasal
swab (NS)].
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To further examine bacterial relationships at the species level,

Sparse Estimation of Correlations among Microbiomes (SECOM)

was used to determine both linear and non-linear relationships. The

full rarefied count ASV table (excluding the ASV highly abundant

in negative controls) was converted into a phyloseq object.

Monotonic/linear relationships were quantified using the

Spearman correlation coefficient. The secom_linear function in

the ANCOMBC package (v2.0.2) was used with the following

arguments: pseudo = 0, prv_cut = 0.1, lib_cut = 0, corr_cut = 0.5,

wins_quant = c(0.05, 0.95), method = “spearman”, soft = FALSE,

n_cv = 10, thresh_hard = 0, thresh_len = 100, max_p = 0.05, n_cl =

2. In order to be further analyzed, taxa had to co-occur in at least ten

samples and have P < 0.05. Non-linear relationships were quantified

using the distance correlation coefficient. The secom_dist function

in the ANCOMBC package was used with the following arguments:

pseudo = 0, prv_cut = 0.1, lib_cut = 0, corr_cut = 0.5, wins_quant =

c(0.05, 0.95), R = 100, max_p = 0.05, n_cl = 10, thresh_hard = 0 (Lin

et al., 2022).
3 Results

The literature search resulted in 14 records, including published

studies and unpublished deposited sequences. The final database

consisted of 27 entries. Information for each entry, such as study

sample size, calf age, sample date, and individual study effect sizes

can be found in Supplementary Table 1. The effect size calculated

for both metrics was the standardized mean difference (SMD), also

referred to as Hedges g. This method compares the differences

between two means, is standardized, and bias-corrected because it

takes the sample size into account (Nakagawa et al., 2015). As both

metrics were not available for all records, a total of 24, 20, and 18

effect sizes were calculated from 12, 10, and 10 records for Shannon

SMD, Observed features SMD, and Chao1 SMD, respectively

(Figure 1; Supplementary Table 1).
3.1 Healthy calves have increased
Shannon SMD

The SMD varied considerably for each record for all metrics.

Among them, many records of Shannon SMD were highly positive,

showing that the SMD was greater in healthy calves than in BRD

calves. This observation demonstrated that the healthy calves had

greater microbial diversity. However, there were still many records

with negative SMDs, which signified that the SMD was higher in

BRD calves than in healthy calves (Figure 2). The same trends were

shown in Observed features SMD and Chao1 SMD (Figures 3, 4).

A meta-analytical model determined BRD’s overall effect on the

diversity and richness of the respiratory microbiome. Considering

the non-independence and heterogeneity introduced by calculating

multiple effect sizes from one study, the multi-level meta-analytical

model was selected. In this combined analysis, regardless of

location, the Shannon SMD was significantly higher in healthy

calves than that in calves with BRD (SMD: 0.387, P < 0.05, 95% CI:

0.067 – 0.706). Among them, high heterogeneity was observed
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(I2 = 72.4%) (Figure 2). However, there were no significant

differences between healthy and BRD calves for Observed features

SMD (SMD: 0.247, P > 0.05, 95% CI: -0.044 – 0.539) and only

moderate heterogeneity was observed (I2 = 66.0%) (Figure 3).

Similar results were observed for Chao1 SMD (SMD: 0.295, P >

0.10, 95% CI: -0.143 – 0.733) and high heterogeneity was observed

(I2 = 86.2%) (Figure 4). Shannon SMD was next analyzed for

publication bias because it was the only significant metric

observed. Our result showed that the funnel plot was not

asymmetrical and publication bias did not exist based on Egger’s

regression test (P > 0.1). The fail-safe number (FSN) was also

calculated, indicating the number of insignificant studies needed to

decrease the observed significance to the target significance. The

FSN for the Shannon SMD model was 215, showing that it would

take 215 insignificant results to decrease the observed significance

(P < 0.0001) to the target significance (P = 0.05) (Figure 5).

Additionally, the FSN value was greater than 5k + 10 (where k is

the number of effect sizes calculated) (Robert, 1979). Therefore, it

was concluded that the Shannon SMD lacked publication bias.
3.2 Sampling location (URT vs. LRT) could
not explain residual heterogeneity

It is well known that the structure and composition of the upper

respiratory tract (URT) and lower respiratory tract (LRT)

microbiomes differ (Timsit et al., 2018). In this study, subset

analysis was conducted to determine if the sampling sites affected

the SMD. In the URT, the Shannon SMD was significantly higher in

healthy calves than that in BRD calves (SMD: 0.387, P < 0.05, 95%
FIGURE 4

SMD of Chao1 in Healthy and BRD Calves. Data located right (blue)
or left (pink) of the dotted line indicates that healthy or BRD calves
have higher SMD, respectively. Datapoint size corresponds to
precision. Bars depict 95% confidence interval. I2 indicates total
heterogeneity. Values in parentheses indicate between- and within-
group heterogeneity. Middle column indicates sampling collection
time and sample type [transtracheal aspiration (TTA), transtracheal
wash (TTW), bronchoalveolar lavage (BAL), nasopharyngeal swab
(NPS), deep nasal swab (DNS), and nasal swab (NS)].
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CI: 0.05 – 0.724). Instead, in the LRT, healthy calves tended to have

a higher Shannon SMD compared to BRD calves (SMD: 0.388, P =

0.06, 95% CI: -0.016 – 0.792). Additionally, high heterogeneity still

existed after subgroup analysis (I2 = 72.2%), indicating that the URT

vs. LRT did not explain the heterogeneity observed (Figure 2).

For the Observed features SMD, no differences were observed

between healthy and BRD calves in the URT (SMD: 0.217, P > 0.1,

95% CI: -0.093 - 0.528) or LRT (SMD: 0.339, P > 0.1, 95% CI: -0.152

– 0.831), and moderate heterogeneity was still observed (I2 = 65.5%)

(Figure 3). Similarly, for the Chao1 SMD, no differences were

observed between healthy and BRD calves in the URT (SMD:

0.236, P > 0.1, 95% CI: -0.229 – 0.702) or LRT (SMD: 0.473, P >

0.1, 95% CI: -0.218 – 1.164), and high heterogeneity was still

observed (I2 = 85.9%) (Figure 4).
3.3 Sampling location and dataset are
major sources of microbiome variation

Four datasets [(Nicola et al., 2017) (Nicola), (Johnston et al.,

2017) (Johnston),(Centeno-Martinez et al., 2022) (Centeno-

Martinez), and PRJNA532923 (PRJNA) (Arkansas, U.o, 2019)]

were used for this study because they contained V4 or V3-V4 16S

rDNA sequencing data from the respiratory tract of cattle with and

without BRD and included available metadata to identify controls

or calves with BRD. However, due to the lack of available data for all

time points and unclear metadata, we only used sequences from

samples (BRD vs. control) taken at BRD diagnosis/onset or post-

mortem samples. Thus, no feedlot entry samples were included in

this study. The datasets contained different read numbers; therefore,

all samples were further rarefied to 1,108 reads to better examine

results evenly across samples.
Frontiers in Cellular and Infection Microbiology 06
Both Bray-Curtis and Jaccard distances were calculated and

next visualized using PCoA plots. Furthermore, an Analysis of

Similarity (ANOSIM) was performed to assess sources of variation.

Based on the Bray-Curtis PCoA plot, clustering did not occur due to

different health status (e.g., BRD vs. controls). However, it occurred

when the analysis was done on location within the respiratory tract

and dataset (Figure 6). This observation was further confirmed by

ANOSIM analysis (Table 1). Health status, URT vs. LRT, dataset,

and sampling location were sources of variation. However, the

sampling location (R: 0.6474, P < 0.001) was the most significant

source of variation, followed by dataset (R: 0.6032, P < 0.001).

Health status contributed the least to variation (R: 0.0399, P < 0.05).

Similar results were observed in the analysis of Jaccard distances.

Samples did not cluster based on health status and appeared to

cluster based on dataset or sampling location (Figure 7).

Additionally, ANOSIM analysis of Jaccard distances showed that

all tested variables were significant sources of variation. However,

the main sources were dataset (R: 0.7614, P < 0.001), followed by

sampling location (R: 0.7486, P < 0.001); the health status was the

least important source of variation (R: 0.0475, P < 0.05) (Table 1).
3.4 Control- and BRD- associated ASVs

Our results showed that sampling location was the largest source

of variation based on Bray Curtis distances and the second largest

source of variation based on Jaccard distances (Table 1); therefore,

control- and BRD- associated ASVs were determined based on

sampling site, including nasal (NS) (Centeno-Martinez, Nicola,

PRJNA), nasopharyngeal (NPS) (PRJNA), lung (Johnston),

bronchoalveolar lavage (PRJNA), and trans tracheal aspiration

(TTA) (Nicola). ASV6 was removed from NS differential abundance

analysis because it was highly abundant in the negative controls of the

Centeno-Martinez dataset. A consensus approach was used to

determine differentially abundant ASVs, as recommended by

Nearing et al. (2022). To be considered differentially abundant, an

ASV had to be ranked among the top 25 RandomForest predictors

and be selected as differentially abundant using both DESeq2 and

ANCOM-BC2. Using these criteria, only one sampling location (NS)

contained differentially abundant ASVs. Using DESeq2, 16 ASVs were

identified as differentially abundant in the nasal cavity, and 8 of them

were RandomForest predictors (Supplementary Figures 1A, B). Using

ANCOM-BC2, 3 ASVs were identified as differentially abundant in

the nasal cavity, which overlapped with those identified by

RandomForest and DESeq2. Therefore, the consensus-based

approach allowed us to identify 3 differentially abundant ASVs in

the nasal cavity. ASV5_Mycoplasma was differentially abundant in

BRD calves (DESeq2: log2fold change (lfc): -1.85, padj < 0.05;ANCOM-

BC2: Wcontrol: -4.00, Q < 0.05), and ASV19_Corynebacterium

(DESeq2: lfc: 0.97, padj < 0.05; ANCOM-BC2: Wcontrol: 4.02, Q <

0.05) and ASV37_Ruminococcaceae (DESeq2: lfc: 0.82, padj < 0.05;

ANCOM-BC2:Wcontrol: 3.91, Q < 0.05) were differentially abundant in

controls (Figure 8). Furthermore, the abundance of the three

control- or BRD- associated ASVs were also broken down by

dataset to ensure that they were present in more than one dataset

(Supplementary Figure 2).
FIGURE 5

Publication bias was not detected for Shannon SMD. Asymmetrical
funnel plot indicates lack of publication bias. Blue and pink circles
indicate effect sizes from the lower and upper respiratory tract,
respectively. Egger’s test P > 0.05 and FSN > 130 indicate lack of
publication bias.
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In NPS samples, 4 ASVs were differentially abundant using

DESeq2. Furthermore, two ASVs overlapped with RandomForest

predictors. However, no ASVs were identified as differentially

abundant using ANCOM-BC2 (Supplementary Figures 3A, B).

Similar results were observed in the LRT samples. For example,

for lung samples, 6 ASVs were differentially abundant when

DESeq2 was applied. In this analysis, 1 ASV was found to be

differentially abundant using ANCOM-BC2 While no ASVs

overlapped with each other. Among TTA samples, only 1 ASV
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was differentially abundant using DESeq2, while none were

differentially abundant using ANCOM-BC2. Moreover, no ASVs

were identified as differentially abundant in BAL samples when

both DESeq2 and ANCOM-BC2 were used.
3.5 Linear and non-linear interactions exist
between bacterial taxa in the nasal cavity

To further investigate the possible role(s) of the control- and BRD-

associated ASVs, we used SECOM to analyze both linear and non-

linear relationships between different taxa (at the ASV level). The nasal

cavity was chosen for SECOM analysis because it was the only location

with differentially abundant ASVs and contained multiple datasets for

comparison. ASV5_Mycoplasma, ASV19_Corynebaterium, and

ASV37_ Ruminococcaceae were of interest at the ASV level

(Supplementary Tables 2, 3). It is noted that there can be non-linear

relationships between taxa when no linear relationship exists. However,

if a linear relationship exists, a non-linear one should also; if one does

not, results should be interpreted carefully. Therefore, only linear
B

C D

A

FIGURE 6

Principal coordinate analysis (PCoA) plots based on Bray-Curtis distances. (A) illustrates health status [ANOSIM: R: 0.03, P < 0.05 (Table 1)], (B) URT
vs. LRT [ANOSIM: R: 0.47, P < 0.001 (Table 1)], (C) dataset [ANOSIM: R: 0.6, P < 0.001 (Table 1)], and (D) sampling location [ANOSIM: R: 0.64, P <
0.001 (Table 1)]. Legends for each plot indicate sample breakdown.
TABLE 1 Analysis of Similarities (ANOSIM) of Bray-Curtis and Jaccard Distances.

Bray-Curtis R Jaccard R

Health Status 0.0399** 0.04753***

URT vs LRT 0.4711*** 0.5403***

Dataset 0.6032*** 0.7614***

Sampling Location 0.6474*** 0.7486***
**P < 0.01.
***P < 0.001.
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B

C D

A

FIGURE 7

Principal coordinate analysis (PCoA) plots based on Jaccard distances. (A) Illustrates health status [ANOSIM: R: 0.047, P < 0.05 (Table 1)], (B) URT vs.
LRT [ANOSIM: R: 0.54, P < 0.001 (Table 1)], (C) dataset [ANOSIM: R: 0.76, P < 0.001 (Table 1)], and (D) sampling location [ANOSIM: R: 0.74, P < 0.001
(Table 1)]. Legends for each plot indicate sample breakdown.
BA

FIGURE 8

Differentially abundant ASVs within the nasal cavity. ASVs were determined differentially abundant if they were selected as a RandomForest
predictors (top 25) and were differentially abundant using both DESeq2 (Padj < 0.05), and ANCOM-BC (Q < 0.05). (A) Top 25 RandomForest
predictors; pink indicates BRD-associated ASV; blue indicates healthy control-associated ASV. (B) Boxplot of DESeq2 counts; Pink indicates
abundance in BRD samples; blue indicates abundance in control samples.
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relationships with overlapping non-linear relationships were reported.

It should also be noted that the non-linear relationship (distance

correlation) was only non-zero and does not have a direction, as it

only described a general dependency between taxa (Lin et al., 2022). As

this was a meta-analysis and combining datasets could introduce lots of

“noise,” the primary goal was to identify general dependencies between

the selected taxa and any ASVs associated with Mycoplasma,

Mannheimia, Histophilus, and Pasteurella. Therefore, the SECOM

distance matrix was primarily used to determine relationships

(Table 2; Supplementary Table 2), and SECOM Spearman2 (p-value

filtering) was used to determine the direction of the relationship

(Table 3; Supplementary Table 3). ASV19_Corynebacterium had a

negative relationship with ASV1_Mycoplasma_hyorhinis (distance:

0.38; r: -0.41; P < 0.05), ASV4_Mannheimia (distance: 0.46; r: -0.31;
P < 0.05), ASV54_Mycoplasma (distance: 0.4; r: -0.41; P < 0.05),

ASV7_Mycoplasma (distance: 0.31; r: -0.28, P < 0.05), and

ASV8_Pasteurella (distance: 0.38; r: -0.4; P < 0.05) and a positive

relationship with ASV376_Mycoplasma (distance: 0.64; r: 0.67; P <

0.05). ASV37_Ruminococcaceae had a negative relationship with

ASV1_Mycoplasma_hyorhinis (distance: 0.31; r: -0.29; P < 0.05),

ASV4_Mannheimia (distance: 0.39; r: -0.3; P < 0.05), and

ASV5_Mycoplasma (distance: 0.3; r : -0.28; P < 0.05).

ASV5_Mycoplasma had a posi t ive re la t ionship with

ASV1_Mycoplasma_hyorhinis (distance: 0.43; r: 0.42; P < 0.05),

ASV10_Histophilus_somni (distance: 0.52; r: 0.50; P < 0.05), and

ASV346_Mycoplasma (distance: 0.88; r: 0.87; P < 0.05) (Tables 2, 3).

Finally, ASV37_Ruminococcaceae had a relationship with

ASV7_Mycoplasma (distance: 0.22; P < 0.05), but the direction could

not be determined (Table 2). Furthermore, ASV19_Corynebacterium

and ASV37_Ruminococcaceae had a positive relationship with each

other (distance: 0.63; r: 0.56; P < 0.05) (Tables 2, 3). These data

indicated that, in the nasal cavity, the healthy control-associated ASVs

potentially interact with the BRD-associated ASV and other

opportunistic pathogens within the nasal cavity and that the BRD

opportunistic pathogens were likely interacting with each other.
4 Discussion

Our study provides the first meta-analysis examining BRD’s

effect on the respiratory microbiome alpha diversity. Overall,

healthy calves had a greater Shannon diversity index of 0.39

standard deviations, indicating that the respiratory microbiome of

healthy calves had increased microbial diversity compared to calves

that developed BRD (P < 0.05). These results agreed with the

previous observations: healthy calves had increased alpha

diversity metrics compared to those with BRD (Holman et al.,

2015; Timsit et al., 2018; McMullen et al., 2019). However, no

difference was observed for either the Chao1 or Observed features

metrics. There could be many reasons for this. First, the Shannon

Diversity Index is a measure of evenness and richness, meaning that

it considers both bacterial presence/absence and bacterial

abundance (Kim et al., 2017). Whereas both Chao1 and Observed

features measure bacterial richness, meaning they only take into

account bacterial presence/absence (Hughes et al., 2001). Therefore,

this might indicate that the abundance of specific bacteria, rather
Frontiers in Cellular and Infection Microbiology 09
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than just their presence, accounted for BRD. However, it is also

possible that this difference is not related to disease but rather the

effect of different data analytical methods. Chiarello et al. (2022)

observed that data analysis pipeline significantly influenced

presence/absence indices. Furthermore, richness estimates were

also influenced using either ASVs or OTUs. They also noted that

this affected both the richness metric values and sample ranking

(Chiarello et al., 2022). Therefore, it is possible that the data analysis

method had a greater effect on the richness alpha diversity metrics

(Chao1, Observed features) than on the Shannon Diversity Index.

The effect of data analytical pipeline on alpha diversity SMD could

be addressed by re-analyzing publicly available sequencing data.

However, many of the included studies did not have publicly

available sequencing data and metadata. Future studies should

make all sequencing data and metadata publicly available to

address this question.

Furthermore, the URT of healthy calves had a greater

Shannon diversity index of 0.38 standard deviations than BRD

calves (P < 0.05), and no differences were observed in the LRT

between BRD and healthy calves. This could indicate that the

URT microbiome’s Shannon Diversity Index is more affected by

BRD, but it could also be due to the small sample size for the

LRT. Although the LRT samples had by far the smallest sample

size, the sample size for the entire meta-analysis (total records/

effect sizes) is small, indicating a need for additional research

into the bovine respiratory microbiome and its role in BRD. In

addition, subset analysis based on sampling location did not

explain the high heterogeneity observed for Shannon SMD. This

indicates that other unexplained factors, such as sampling time,

diet, age, and/or management factors, etc., likely also affect the

respiratory microbiome, leading to the observed high residual

heterogeneity. Future meta-analyses should attempt to explain

this heterogeneity if possible. Nevertheless, no publication bias

was observed for the Shannon SMD in this study. Therefore,

although high residual heterogeneity was observed for Shannon

SMD, the lack of publication bias and significant effect size,

especially for the URT, clearly demonstrate that the URT

microbiome Shannon diversity index is higher in healthy

calves than in those with BRD. However, it remains unclear if

the decreased diversity in BRD calves is due to disease

development or if decreased diversity predisposes the calf to

BRD because all sampling time points were analyzed together

due to a lack of available data.

To assess the effect of BRD on the respiratory microbiome,

publicly available sequences with available metadata were compiled

and analyzed as a singular dataset. Previous datasets with available

data could not be included due to a lack of available metadata or the

use of a non-overlapping 16S hypervariable region. Beta diversity

analysis indicated that all tested variables (health status, URT vs.

LRT, sampling location, and dataset) were significant sources of

variation on both Bray Curtis and Jaccard distances. Interestingly,

health status was the smallest source of variation for both beta

diversity metrics, whereas either sampling location or dataset were

the greatest sources of variation. This indicates that sampling

location and other outside influences affect the microbiome more

than health status alone. Chai et al. (2022b) performed a meta-
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analysis on metagenomic sequencing data from the bovine

respiratory microbiome. Their results showed that microbial

structure and function were significantly affected by both

geographical location and sampling niche. Therefore, this

indicates that respiratory tract location and environmental

factors, such as diet or climate, likely affect the respiratory

microbiome more than health status alone, as these differed for

each geographic location included in the study (Chai et al., 2022b).

To address these issues, we split samples into individual

sampling locations (NS, NPS, BAL, lung tissue, and TTA) to

examine control- and BRD-associated ASVs. ASVs were

considered differentially abundant using a consensus approach of

RandomForest, DESeq2, and ANCOM-BC2. Nearing et al. (2022)

showed that differing differential abundance analysis methods

yielded differing results and recommended applying a consensus

approach to determine robust biological interpretations (Nearing

et al., 2022). In the nasal cavity, ASV19_Corynebacterium and

ASV37_Ruminococcaceae were identified as healthy control-

associated ASVs, as they were higher in abundance in controls,

and ASV5_Mycoplasma was identified as the only BRD-associated

ASV. While Mycoplasma is present in the microbiome of clinically

healthy cattle also (Chai et al., 2022a), it is clear that

ASV5_Mycoplasma is associated with BRD.

To further evaluate the nasal cavity microbiome, Sparse

Estimation of Correlations among Microbiomes (SECOM) was

used to examine both linear and non-linear relationships between

taxa. Pearson and Spearman correlation coefficients have been

deemed inappropriate for use with microbiome data; however,

SECOM takes into account the sparsity of microbiome data (Lin

et a l . , 2022) . Using SECOM at the ASV-level , both

ASV37_Ruminococcaceae and ASV19_Corynebacterium were

positively correlated with each other and were negatively

correlated with ASV4_Mannheimia and many Mycoplasma ASVs.

Furthermore, ASV19_Corynebacterium was negatively correlated

with ASV8_Pasteurella, and, interestingly, positively correlated with

ASV376_Mycoplasma. It should be noted that Mannheimia,

Mycoplasma, and Pasteurella are not opportunistic pathogens

themselves and that other species exist within these genera as well

(Slack, 2010; Suástegui-Urquijo et al., 2015; Parker et al., 2018).

Ruminococcaceae is a normal and abundant member of the bovine

gastrointestinal tract microbiome (Lopes et al., 2019). It has also

been observed in the upper respiratory tract as well, and it is

thought that its presence is due to contact with feces, manure, or

digesta due to rumination (Amat et al., 2019a; Crosby et al., 2022).

Additionally, Crosby et al. (2022) observed that Ruminococcaceae

abundance was decreased in the upper respiratory tract of cattle

with BRD and speculated that this might be due to decreased

rumination in sick calves (Crosby et al., 2022). Therefore, our

observation of ASV37_ Ruminococcaceae as a healthy control-

associated ASV within the bovine nasal cavity indicates a need for

further research into the role of gastrointestinal tract-associated

microbes in respiratory health. Amat et al. (2019b) observed that

three Corynebacterium isolates from the nasopharyngeal tract of

healthy cattle were able to inhibit the growth of M. haemolytica in

vitro (Amat et al., 2019b). One can assume that Corynebacterium
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may repress the growth of BRD pathogens in the animal hosts. It is

well established that Corynebacterium is part of normal microbiota

in the bovine nasal cavity and nasopharyngeal tract regardless of

health status (Gaeta et al., 2017; Holman et al., 2017; Nicola et al.,

2017; Zeineldin et al., 2017; McDaneld et al., 2018; Timsit et al.,

2018; Amat et al., 2019a; Chai et al., 2022a). However,

Corynebacterium sp. have often been associated with human

respiratory disease (Yang et al., 2018) and cause disease in cattle,

albeit not in the respiratory tract (Smith et al., 2020; Lücken et al.,

2022). Regardless, our results and Amat et al. (2019b) showed that

Corynebacterium may be involved in maintaining microbiome

stability of the bovine URT and preventing BRD opportunistic

pathogen invasion and colonization. However, additional research

is needed to evaluate the role of Corynebacterium within the bovine

respiratory tract and the role of gastrointestinal microbes in the

upper respiratory tract.

It should be noted that our study has some limitations. First, all

data included in this study was based on 16S sequencing data.

Future studies utilizing shotgun metagenomics, metabolomics, or

quantifying total bacterial load would provide additional insight

into the respiratory microbiome’s role in BRD development and

progression. Additionally, due to a lack of available data, all time

points were analyzed together when analyzing the effect of BRD on

different alpha diversity metrics SMD. However, our multi-level

model attempted to account for the potential non-independence

introduced by calculating multiple effect sizes for some studies.

Although, it should be noted that the inclusion criteria for this study

were very broad; therefore, only broad conclusions can be drawn. It

remains unclear if the decreased Shannon SMD observed in BRD

calves is due to disease development or if decreased diversity

predisposes the calf to BRD. Future studies should aim to make

all data, including sequencing data or calculated alpha diversity

metrics (even if the metric is not significant), publicly available to

aid in answering this question. Moreover, subset analysis based on

sampling location did not explain the high heterogeneity observed

for Shannon SMD, indicating that other unexplained factors exist

that also affect the respiratory microbiome. Future studies should

aim to make all data publicly available and have clear, descriptive

metadata, so future meta-analyses can explain the residual

heterogeneity observed. Additionally, other factors, such as breed,

age, geographical location, climate, and management practices all

affect the respiratory microbiome, and we cannot rule out the effects

of these factors in our study. Future studies comparing the

respiratory microbiome of BRD calves would also need to be

standardized in this field, as in the human microbiome project,

including sample collection, storage, DNA extraction, the

hypervariable region of the bacterial 16S rRNA gene, and

analytical pipelines. The definition and diagnosis of BRD, the

application of antibiotics, and the sampling time after feedlot

arrival should also need to be considered when comparing the

bovine respiratory microbiome between studies. Finally, as

previously noted, the sample size of our study is small, and many

studies could not be included due to either a lack of publicly

available data or unclear metadata. Our study would be

strengthened by the inclusion of additional data, so future studies
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should aim to make all sequencing data and descriptive metadata

publicly available.

5 Conclusion

Our study investigated the effect of BRD on the alpha (intra-

sample) diversity of the cattle respiratory microbiome, which fills

the knowledge gap between respiratory microbiome alpha diversity

and BRD. The multi-level model concluded that healthy calves had

an increased Shannon Diversity Index, and no difference was

observed for richness measures (Observed or Chao1). Overall,

these results indicate that Shannon Index in calves with BRD is

lower than in healthy calves. Furthermore, publicly available

sequences were combined and re-analyzed for four datasets.

ANOSIM, based on Bray-Curtis and Jaccard distances, found

that, although significant, health status was the smallest source of

variation, and sampling location and dataset were the largest

sources of variation, respectively. Additionally, in the nasal cavity,

ASV19_Corynebacterium and ASV37_Ruminococcaceae were

healthy control-associated ASVs, and ASV5_Mycoplasma was the

only BRD-associated ASV. Based on SECOM analysis,

ASV19_Corynebacterium was negatively associated with

ASV4_Mannhe im i a , A SV1_Mycop l a sma_hyo r h i n i s ,

ASV54_Mycoplasma, ASV7_Mycoplasma, and ASV8_Pasteurella,

and positively correlated with ASV376_Mycoplasma, and

ASV37_Ruminococcaceae, the other healthy control-associated

ASV. Taken together, these results indicate that additional

research is needed into the role of Corynebacterium in the bovine

respiratory microbiota and that sampling location and other factors

significantly affect microbial structure and need to be considered.
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SUPPLEMENTARY FIGURE 1

ASVs identified as differentially abundant in nasal cavity using only

RandomForest and DESeq2. ASVs were selected if they were selected as a
RandomForest predictors (top 25) and were differentially abundant using

DESeq2 (Padj < 0.05). (A) Top 25 RandomForest predictors; pink indicates
BRD-associated ASV; blue indicates healthy control-associated ASV.

(B) Boxplot of DESeq2 counts; Pink indicates abundance in BRD samples;
blue indicates abundance in control samples.

SUPPLEMENTARY FIGURE 2

Differentially abundant ASVs in the nasal cavity broken down by health status

and datasets. ASVs were determined differentially abundant if they were
selected as a RandomForest predictors (top 25) and were differentially

abundant using both DESeq2 (Padj < 0.05), and ANCOM-BC (Q < 0.05).
Boxplots formed based on DESeq2 counts. Pink indicates abundance in BRD

samples; blue indicates abundance in control samples.

SUPPLEMENTARY FIGURE 3

ASVs identified as differentially abundant in nasopharyngeal cavity using
RandomForest and DESeq2. ASVs were selected if they were selected as a

RandomForest predictors (top 25) and were differentially abundant using
DESeq2 (Padj < 0.05). (A) Top 25 RandomForest predictors; pink indicates

BRD-associated ASV; blue indicates healthy control-associated ASV.

(B) Boxplot of DESeq2 counts; Pink indicates abundance in BRD samples;
blue indicates abundance in control samples.
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