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In this study, two distinct in vitro infection models of Aspergillus fumigatus, using

murine macrophages (RAW264.7) and human lung epithelial cells (A549), were

employed to identify the genes important for fungal adaptation during infection.

Transcriptomic analyses of co-incubated A. fumigatus uncovered 140 fungal

genes up-regulated in common between both models that, when compared

with a previously published in vivo transcriptomic study, allowed the

identification of 13 genes consistently up-regulated in all three infection

conditions. Among them, the maiA gene, responsible for a critical step in the

L-phenylalanine degradation pathway, was identified. Disruption ofmaiA resulted

in amutant strain unable to complete the Phe degradation pathway, leading to an

excessive production of pyomelanin when this amino acid served as the sole

carbon source. Moreover, the disruption mutant exhibited noticeable cell wall

abnormalities, with reduced levels of b-glucans within the cell wall but did not

show lack of chitin or mannans. The maiA-1 mutant strain induced reduced

inflammation in primary macrophages and displayed significantly lower virulence

in a neutropenic mouse model of infection. This is the first study linking the A.

fumigatus maiA gene to fungal cell wall homeostasis and virulence.
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Introduction

Melanins are secondary metabolites composed of indolic

monomers or phenolic polymers that act as pigments (Bayry

et al., 2014). The saprophytic fungus Aspergillus fumigatus can

produce two types of melanins. One of them is the

dihydroxynaphthalene melanin, also known as DHN-melanin,

which is one of the principal components of the conidial cell wall

(Latgé and Chamilos, 2019) and together with the rodlet layer

functions as the external hydrophobic layer of conidial cell wall.

Underneath, forming the fibrillar layer are the b-(1,3)-glucans,
chitin, a-(1,3)-glucans and galactomannan (Gastebois et al., 2009;

Bayry et al . , 2014; Beauvais and Latgé, 2015). When

the conidia germinate, the external protective layer is shed,

galactosaminogalactan is synthetized, and the fibrillar core is

exposed to the environment. A second type of melanin is

produced during mycelial growth, pyomelanin, which is a water-

soluble pigment (Perez-Cuesta et al., 2020). This molecule is

produced by spontaneous polymerization of homogentisate

(HGA) during the L-phenylalanine/L-tyrosine degradation

pathway (hereinafter named Phe degradation pathway). In this

pathway, HGA is accumulated and converted to benzoquinone

acetate by spontaneous oxidative transformation, then polymerized

to pyomelanin. Finally, it is important to highlight that unlike other

fungal species, such as Cryptococcus neoformans (Strycker et al.,

2021) or even other Aspergillus species (Pal et al., 2013), A.

fumigatus does not produce DOPA-melanin.

The principal function of DHN-melanin is protecting the

fungus against environmental hazards such as desiccation (Gow

et al., 2017), UVA, UVB and ionizing radiation (Eisenman and

Casadevall, 2012; Braga et al., 2015). This pigment also has a

protective role against amoeba predation (Hillmann et al., 2015),

masks the A. fumigatus pathogen-associated molecular patterns

(PAMPs) modulating monocytes and lymphocytes response

(Luther et al., 2007; Chai et al., 2010), inhibits phagolysosome

acidification (Jahn et al., 2002) and scavenges ROS production by

host cells (Jahn et al., 1997). Furthermore, it has been demonstrated

that the DpksP/alb1 A. fumigatus strain, white strain that no

produces DHN-melanin, was less virulent than strains with

normal production of this pigment (Jahn et al., 1997; Langfelder

et al., 1998; Tsai et al., 1998). Among the biological functions that

pyomelanin fulfills, this molecule seems to protect young hyphae

against oxidative stress (Schmaler-Ripcke et al., 2009), and until

now the importance of A. fumigatus pyomelanin for fungal

virulence is still unclear (Perez-Cuesta et al., 2020).

Pyomelanin production is associated with conidial germination

and directly depends on the cell wall integrity pathway (CWI)

(Valiante et al., 2009). The CWI is a signaling cascade essential to

maintain cell wall homeostasis (Valiante et al., 2015; Rocha et al.,

2020; Ibe and Munro, 2021). This pathway is activated when cell

surface sensors (Wsc1, Wsc3, and MidA) detect environmental

stress that affect the fungal cell wall (Dichtl et al., 2012; Grice et al.,

2013). This leads to activation of the Rom2 (Samantaray et al., 2013)

and Rho1 complex. which, in turn, activates the apical kinase PkcA

(Dichtl et al., 2012; Rocha et al., 2020). Activated PkcA subsequently

phosphorylates the core CWIMAP kinase cascade, Bck1, Mkk2 and
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MpkA (Grice et al., 2013; Samantaray et al., 2013; Valiante et al.,

2015; Rocha et al., 2020; Ibe and Munro, 2021). Once MpkA is

phosphorylated it travels to the nucleus to phosphorylate RlmA that

coordinates the response against stress (Rocha et al., 2020).

It has also been described that the A. fumigatus Phe degradation

pathway is mediated by six genes located on chromosome 2 (hppD,

hmgX, hmgA, fahA, maiA and hmgR). In addition, there are two

other genes not included inside the abovementioned cluster, phhA

and tat, which code for phenylalanine hydroxylase and the tyrosine

aminotransferase, respectively (Heinekamp et al., 2013). They

oversee the first degradation steps of Phe to Tyr, and Tyr to 4-

hydroxyphenylpyruvate. There are several published studies

uncovering the function of the genes of the Phe/Tyr degradation

gene cluster and their importance for the fungus based on deletion/

disruption mutants (Schmaler-Ripcke et al., 2009; Keller et al.,

2011). However, there are still two genes of the cluster that are

not well-characterized because they have not been silenced yet

(fahA and maiA).

The A. fumigatus maiA is an exonic 696 bp gene (Afu2g04240)

that does not contain introns in its sequence and codifies a

maleylacetoacetate isomerase putatively involved in this Phe

degradation pathway. Specifically, this enzyme orchestrates the

isomerization of 4-maleylacetoacetate (4-MA) into 4-

fumarylacetoacetate (4-FA) (Perez-Cuesta et al., 2020). In theory,

the resulting phenotype of the defective maiA strain should

phenocopy DhmgA, which is the gene that codifies the enzyme

located just upstream of maiA in this degradation pathway.

In this study, the A. fumigatus genes most strongly over-

expressed upon co-culture with two different cell lines (murine

macrophages and human lung epithelial cells) were studied using

the AWAFUGE microarray. Among them, maiA was selected

because it was overexpressed in these two in vitro models, as well

as in a previously published in vivo infection (Guruceaga

et al., 2018). Therefore, to study its role in fungal biology and

virulence, a disruption mutant strain (maiA-1) was generated

and characterized. The data obtained strongly support the

involvement of maiA in the maintenance of cell wall structure

as well as in the virulence of the fungus using a neutropenic

mouse model.
Materials and methods

Aspergillus fumigatus strains, media, and
growth conditions

In this study, we used the A. fumigatus Af293 strain as the wild

type genetic background to develop the disruption mutant strain

maiA-1 as well as its complement strain maiA-1comp. and the

deletion mutant strain DmaiA. All fungal strains were cultured in

Glucose Minimal Media (GMM) (6 g NaNO3, 0.52 g KCl, 0.52 g

MgSO4 x 7H2O, 1.52 g KH2PO4, 1 ml trace elements [2.2 g ZnSO4 x

7H2O, 1.1 g H3BO3, 0.5 g MnCl2 x 4H2O, 0.5 g FeSO4 x 7H2O, 0.16

g CoCl2 x 5H2O, 0.16 g CuSO4 x 5H2O, (NH4)6Mo7O24 x 4H2O, 5 g

Na4EDTA in 100 ml distilled H2O], 10 g glucose, 15 g agar, pH 6.5,

in 1 liter distilled H2O) at 37°C for five days, and their conidia were
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harvested directly from the agar plates using sterile water, followed

by two washes with saline solution (0.9% NaCl). The concentration

of conidia needed for each experiment was calculated using a

Bürker counting chamber.

To study the ability of the fungal strains to grow with a sole

carbon source, GMM was replaced by a GMM medium without

glucose (named salt agar).
Cell lines

The murine macrophage cell line RAW 264.7 and the human

lung epithelium cell line A549, both obtained from the American

Type Culture Collection (ATCC, Manassas, VA, USA), have been

used in this study. The culture conditions as well as viability

calculation and passage method were done following a previously

described method (Guruceaga et al., 2021). Briefly, cultures were

maintained in complete RPMI (RPMI 1640 supplemented with 10%

heat-inactivated fetal bovine serum, 200 mM L-glutamine, 100 U/

ml penicillin, and 0.1 mg/ml streptomycin) and incubated under

standard conditions (37 °C, 5% CO2, and 95% humidity). Cell lines

were used only when the viability of them after passage was higher

than 90%. All supplies were purchased from Sigma-Aldrich (St.

Louis, MO, USA).
Phagocytosis assays and fungal behavior
against RAW 264.7 cell line

To understand the behavior of the fungal strains in contact with

the murine macrophages cell line RAW 264.7 we followed the

method previously described (Guruceaga et al., 2021). Briefly, 2 x

105 cells/ml in 500 µL of cell culture RPMI (RPMI 1640 medium

supplemented with 10% heat-inactivated FBS, 200 mM L-

glutamine, 100 U/ml penicillin and 0.1 mg/ml streptomycin) were

seeded in 24-well plates which contained 12 mm-diameter

coverslips. After overnight incubation, RAW264.7 cells were co-

cultured with A. fumigatus conidia at a multiplicity of infection

(MOI) of 10 (ten conidia per cell) using 500 µL of challenge RPMI

(RPMI 1640 medium supplemented with 10% heat-inactivated FBS,

and 200 mM L-glutamine). In parallel, we seeded the same amount

of conidia in the absence of RAW 264.7 cells. After 2-, 4-, 6-, and 8-

hours post-incubation we moved the coverslips to a new plate with

cold PBS to calculate the percentage of phagocytosis, fungal

germination, and hyphal branching using a Nikon Eclipse TE200-

U inverted microscope.
Endocytosis assays and fungal behavior
against A549 cell line

To study fungal behavior in contact with the human alveolar

epithelial cell line A549 we seeded 1 x 106 cells/ml in 500 µL of cell

culture RPMI using 24-well plates which contained 12 mm-
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diameter cover slips. After an overnight incubation, the cells were

co-cultured with A. fumigatus conidia pre-stained with FITC

(conidia were stained overnight at 4°C in an orbital shaker) at a

MOI of 5 in 500 µL of challenge RPMI. At each incubation time (2,

4, 6, 8 and 10 hours), we moved the coverslip to a new plate to

calculate the percentage of endocytosis. For that, a minimum of 500

cells/conidia/hyphae were counted in each replicate of the

experiment using the inverted microscope Nikon Eclipse TE2000-

U to calculate endocytosis (%), fungal germination (%) and hyphal

branching (%) both in contact with epithelial cell lines and A.

fumigatus growing alone as the control condition.
RNA isolation and purification

For RNA isolation, we collected the cells and fungus using a cell

scraper after the incubation time selected in each case (6.5 hours with

RAW 264.7 and 8.5 hours with A549). Then, the samples were

centrifuged for 1 minute at 14,000 rpm and the pellet was suspended

in 1 ml of pre-chilled DEPC sterile deionized water to lyse the mouse/

human cells. After that, the samples were centrifuged again in the

same conditions abovementioned, the fungal pellet was suspended in

500 µL of pre-chilled DEPC-treated sterile deionized water and

transferred to a 1.5 ml tube containing 200 µL of 0.5 mm glass

beads (Sigma-Aldrich, St. Louis, MO). The samples were

homogenized using the MillMix 20 beat-beater (Technica, Dulles,

VA, USA) at 30 Hz for 2 minutes. Finally, we centrifuged the samples

as mentioned above, and the supernatant was recovered and

transferred to the extraction columns of the RNeasy Plant Mini Kit

(Qiagen, Hilden, Germany). The RNA isolation procedure was

finished following the manufacturer´s instructions and the RNA

quantity and integrity was verified on a 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). For microarray analysis and

RT-qPCR confirmation, three independent RNA samples

for each time point, each of them obtained from an independent

co-incubation with cells assays or controls, were studied.
Microarray selection, hybridization, and
expression data analysis

The fungal transcriptome was studied using the AWAFUGE

microarray (Agilent Whole A. fumigatus Genome Expression 44K

v.1). The microarray hybridization and the analysis of the raw data

obtained was processed as previously described (Guruceaga et al.,

2018). Raw intensity data was analyzed using the limma library

implemented in the Bioconductor package (Smyth, 2004; López-

Romero, 2011). Background subtraction and data normalizing was

done using normexp and quantile routines respectively. We fixed a

statistical significance level of 0.05 after analyzing the data using

ANOVA test with Benjamini-Hochberg correction. Finally, we

determined the genes down- or up-regulated relative to the fungal

growth alone.
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Microarray data confirmation by reverse
transcription quantitative PCR

We selected a subset of 22 genes to verify fungal expression

profiles by RT-qPCR co-cultured with RAW 264.7 macrophages,

and 22 genes with A549 pneumocytes. In both cases, we used the

same 4 reference genes. Specific A. fumigatus primers were designed

using Primers Quest Tool (available at “ eu.idtdna.com/site”) to

avoid biased results due to mouse or human RNA remaining in the

samples (Table S1). Selection of the most suitable housekeeping

genes and analysis of the RT-qPCR results were completed

following a previous publication (Guruceaga et al., 2018).

Finally, the expression levels of uge3 and pksP, two essential

genes in galactosaminogalactan and DHN-melanin biosynthetic

processes, were studied by RT-qPCR assays following protocols

previously published (Martin-Vicente et al., 2018).
Gene ontology analysis

The GO enrichment of those DEGs (log FC > 1.5 or log FC <

-1.5), was done using the Hans Knoell Institute FungiFun website

(elbe.hki-jena.de/fungifun/) (Priebe et al., 2015).
Gene target selection criteria

The selection of maiA as an important A. fumigatus gene

involved in fungal virulence was determined after analyzing our

transcriptomic results and previous transcriptomic studies

(Guruceaga et al., 2018). We classified the genes following their

fold change values (FC). We only focused our attention on those

genes highly down- or up-regulated (FC < 1.5 or FC > 1.5

respectively). After that, we compared the common A. fumigatus

up-regulated DEGs in three different assays: 1) A. fumigatus strain

Af293 in co-incubation with lung epithelial cell line A549, 2)

A. fumigatus strain Af293 in co-incubation with macrophages

RAW 264.7 and 3) A. fumigatus strain Af293 infecting

immunosuppressed mice (Guruceaga et al., 2018).
Mutant strains generation

The A. fumigatus mutant strains used in this study were

performed following the CRISPR/Cas9 strategy previously

described (Al Abdallah et al., 2017). In this study, we used the

Af293 genetic background to use the same strain used in the

transcriptomic studies in which we selected maiA as interesting

avoiding bias interpretations. Briefly, A. fumigatus maiA mutant

strains were performed using Hygromycin B (Thermo Fisher,

Waltham, MA, USA) as a selection marker. For the disruption

mutant strain (maiA-1), Cas9 targets and the corresponding crRNA

were designed to delete the initial methionine of the maiA gene. In

contrast, for DmaiA we designed two gRNAs located in the 5´UTR

and 3´UTR respectively with the aim of replacing the whole target
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gene with the HygR cassette. Transformation of A. fumigatus

protoplasts was carried out following the classic protocol

described in the literature (Yelton et al., 1984). Finally, the

complement of the maiA-1 strain (maiA-1comp.) was constructed

by re-introducing the original maiA gene followed by the

phleomycin resistance cassette in the native locus. All the primers

and gRNAs used can be found in Table S2.
Determination of the pyomelanin production

Pyomelanin production was measured following a previously

published protocol (Schmaler-Ripcke et al., 2009). Briefly, GMM

broth (150ml) was inoculated with 1 x 107 conidia of each indicated

A. fumigatus strain. After 20 h of pre-incubation, Phe or Tyr was

added to a final concentration of 10 mM. Aliquots of 500 µL of

GMM broth were taken at 24, 48 and 72 hours. Pigment formation

was analyzed by direct absorbance measurements at 405 nm of the

alkalized supernatants obtained by adding 20 µL of 5 M NaOH per

ml of sample and centrifuging them at 16,000 x g for 2 min. Three

independent replicates of the experiment were carried out on

different days.
A. fumigatus cell wall stress assay, spot
dilution assay and radial growth

The cell wall stressor assays were done using 6-well plates

(Invitrogen, Waltham, MA, USA). The wells were filled with

GMM or SMM supplemented with increasing concentrations (20,

40, 60, 80, 120, and 160 µg/ml) of CR or CFW. In parallel, plates

with GMM or SMM without stressors were used as controls. To

study if chitin synthase activity was affected by the maiA gene

silencing, GMM 6-well plates containing (0, 0.5, 1, 2, 4, and 8 µg/

ml) of Nikkomycin Z were performed. To inoculate the plates, 5 µL

of a 2 x 106 conidia/ml stock of each strain was pipetted at the center

of the plates. The pictures were taken after incubation of the plates

at 37°C for 48 h.

The spot dilution assay of each strain was done following the

method previously described (Martin-Vicente et al., 2018). Briefly,

we inoculated 104, 103, and 102 conidia (5 µL/drop) in GMM plates

supplemented with 1.2M NaCl or 1.2M KCl as cell membrane

stressor compounds or 5 mM Caffeine as a MAPK-inducing stress

agent. To study the ability of the strains to use Phe, Tyr, or Phe/Tyr

as the sole carbon source, we supplemented salt agar (GMM

without glucose) plates with 50 mM Phe, 50 mM Tyr, or 50 mM

Phe and 50 mM Tyr. The pictures were taken after incubation of the

plates at 37°C for 48 h.

Furthermore, we characterized the radial growth ability of the

maiA-1mutant strain compared to the Af293. For that, we seeded a

20 µL drop containing a suspension of 108/ml fresh conidia in the

middle of a GMM agar plate. The plates were incubated at 37°C for

five days and the radial growth of the macroscopic colonies were

measured daily.
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Three independent replicates of the experiment were carried

out on different days. Representative pictures of each condition

are shown.
Scanning electron microscopy

For the cell wall surface study, 5 x 105 conidia/ml from the Af293

and maiA-1 strains were seeded in 1 ml of GMM in 24-well plates

containing glass coverslips. The plates were incubated at 37°C, 5%

CO2 and 95% of humidity for 12 hours. The fungal surface of each

strain was studied after 2, 4, 8 and 12 hours of incubation by SEM. At

each timepoint indicated, the GMMwas removed, and fixing solution

(2% glutaraldehyde in PBS buffer) was added to each well for 1h at 4°

C. Then the samples were dehydrated through increasing ethanol

concentrations and hexamethyldisilane. Finally, they were covered

with gold under an argon atmosphere, and visualized under the

scanning electron microscope (Hitachi S-4800).
Mouse bone marrow macrophages
isolation and cytokine measurements

BMMs were isolated following a previous publication (Pellon

et al., 2018). The in vitro challenge of the BMMs was done following

the same conditions previously described for RAW 264.7 cells. TNF

cytokine determination was doing using the mouse TNF-auncoated
ELISA kit (Invitrogen, Waltham, MA, USA) following

manufacturer’s instructions after 16 hours of co-incubation

between BMMs and A. fumigatus.
Fungal susceptibility to H2O2 oxidative agent

The susceptibility of the fungal strains to H2O2 was measured

using GMM agar plates following a diffusion assay. Briefly, conidia

of both strains (1 x 107) were seeded and spread evenly over the

surface of a GMM agar plate (90 mm petri dishes). Once the fungus

was seeded, a central well was generated in the middle of the agar

plate using a sterile pipet tip. Finally, 50 µL of a 200 mM solution of

H2O2 was added to the central well. After drying for 5 minutes, the

plates were incubated at 37°C for 48 hours. Three independent

replicates of the experiment were carried out on different days.
Study of cell wall components

The b-glucan assay was performed following methods

previously described (Fortwendel et al., 2009; Koenig et al., 2017;

Souza et al., 2019). Briefly, 1 x 107 conidia of each strain were grown

overnight into 25 ml of GMM broth at 37°C. After 16 hours of

growing, hyphae were collected by filtration through Miracloth

(Sigma-Aldrich, St. Louis, MO, USA) and washed using 0.1 M

NaOH solution. Washed fungal hyphae were lyophilized for 24

hours. Five milligrams of dry hyphae were disrupted in a bead-

beater three times (1 minute each) with 1 minute of ice incubation

between each. Hyphal powder was resuspended to a final

concentration of 20 mg/ml in 1 M NaOH and the solution was
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incubated at 52°C for 30 min. Fifty microliters of each sample were

mixed with 185 µL of aniline blue staining solution (183 mM

glycine, 229 mM NaOH, 130 mM HCl, and 618 mg/l aniline blue,

pH 9.9) into a 96-well masked fluorescence plate (Invitrogen,

Waltham, MA, USA). The sample-containing plates were

incubated at 52°C for 30 min, followed by a cool down period of

30 min at room temperature. Fluorescence readings were performed

using an excitation/emission wavelength of 405/460 nm

respectively. All the experiments were performed in triplicate

using three independent A. fumigatus cultures, and the results

were represented as relative quantification versus the Af293 strain.

Chitin content analysis was performed following protocols

previously published (Cánovas et al., 2017; Rocha et al., 2020).

Briefly, 96 well plates containing 100 µl of GMM per well

were inoculated with 103 conidia/well of each strain and

incubated at 37 °C for 16, 18, 20, 22, and 24 hours. After each

incubation time, 150 µl of CFW stock solution (10 µg/ml in cell

culture PBS) was added to each well. Fluorescence (excitation, 360

nm; emission, 460nm) and absorbance (600 nm) were measured in

parallel in a BioTek multiplate reader. The slope, calculated

fluorescence against absorbance, of each strain was plotted. The

experiment was repeated eight times with technical replicates.

Fluorescence microscopy study of cell wall chitin, mannans and

exposed chitin of the fungal strains was completed using CFW

(1 µg/ml in cell culture PBS), concanavalin Alexa Fluor 647

conjugate (Invitrogen, Waltham, MA, USA), and Wheat Germ

agglutinin Alexa Fluor 633 conjugate (Invitrogen, Waltham, MA,

USA), respectively. To do this, 24-well glass bottom plates were

inoculated with 1 x 103 conidia and incubated for 16 hours at 37 °C.

After the incubation time, samples were observed under Nikon

Eclipse Ti2.
Murine model of invasive
pulmonary aspergillosis

Groups of 20 female CD-1 mice (Charles River, Wilmington,

MA, USA), weighing approximately 25 g, were immunosuppressed

by intraperitoneal injections of 150 mg/kg cyclophosphamide

(Sigma-Aldrich, St. Louis, MO) starting 4 days before the

inoculation and every 3 days following, using 75 mg/kg of

cyclophosphamide, and a single subcutaneous injection of 40 mg/

kg triamcinolone acetonide (Kenalog, Bristol-Myers Squibb) 24 hours

before the infection. On day 0, mice were transiently anesthetized

with isoflurane and challenged via nasal inoculation with 106 conidia

in sterile saline solution. Survival was monitored at least twice a day

and those animals showing severe signs of distress were humanely

euthanized by anoxia with CO2. Survival curves were compared using

the log-rank test in GraphPad Prism v. 8.2.1 for Windows. In parallel,

histological studies were carried out to understand if loss of maiA

impacts over the early infection establishment. To do this, 4 mice

were infected with Af293, and 4 mice were infected with the maiA-1

strain, following the same protocol and conditions previously

explained. At 3 days post-infection, mice were euthanized, and

their lungs were harvested and fixed in 10% buffered formalin for

72 hours before being paraffin embedded. Subsequently, 4 µm slices
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were sectioned, mounted, and stained with hematoxylin-eosin (H&E)

and Grocott’s Methenamine Silver (GMS). The studies were

performed in accordance to approved ethical protocols by the

LACU committee of the University of Tennessee Health Science

Center (Protocol number 22-0373).

Statistics

All the assays were done in triplicate on three independent days.

All the statistical analysis were carried out using GraphPad Prism v.

8.2.1 (GraphPad Software Inc., San Diego, CA, USA) for Windows.

In each assay, at least three biological replicates were done to

measure each parameter in each condition, avoiding biased

results. Error bars included in all the graphs represent standard

deviation. ANOVA or t-test was used depending on if we did

multiple comparisons or compared punctual data, respectively, after

ensuring the data sets followed a normal distribution.

Availability of data

The ArrayExpress database (www.ebi.ac.uk/biostudies/

arrayexpress) contains the AWAFUGE microarray (v.1) design

under accession number A-MEXP-2352. The same database also

contains each raw microarray dataset obtained under accession

number E-MTAB-13476. Moreover, the in vivo transcriptomic

analysis previously published can be found in the same database

under accession number E-MTAB-5314.

Results

Study of co-incubation between
A. fumigatus and macrophages

The results obtained from co-incubation with the murine

macrophage RAW 264.7 cell line revealed 80% phagocytosis after
Frontiers in Cellular and Infection Microbiology 06
4 hours of co-incubation (Figure 1A), but no statistical differences

were observed. Although the germination of conidia reached 30% at

6 hours in all cases (infection and control cultures), at the end of the

experiment significantly higher germination was detected in the

conidia incubated with macrophages, compared to the controls

(Figure 1B). In contrast, we did not find any differences in the

amount of hyphal growth or their ability to stablish a second axis of

polarity during germination (Figure 1C).
Study of co-incubation between
A. fumigatus and epithelial cells

Co-incubation of A. fumigatus with the lung epithelial cell line,

A549, revealed a maximum endocytosis of approximately 5% after 6

hours of co-incubation (Figure 2A). In addition, the contact with

these epithelial cells generated a slight inhibition of the germination

rate. Indeed, 30% of germination was reached after 8 hours of co-

incubation with the epithelial cells while this germination rate was

reached at 6 hours when the fungus grew alone (Figure 2B).

However, an increase in germlings with multiple polarity axis was

observed after 8 hours of co-incubation of A. fumigatus with

epithelial cells (Figure 2C).
A. fumigatus gene expression in response
to the co-incubation with RAW 264.7
macrophage or A549 epithelial cell lines

To understand the molecular changes that A. fumigatus suffers

in the onset of the infection process, we consider 30% of

germination a suitable endpoint for this purpose because in this

time point both the germlings and the remaining swollen conidia

are starting the activation and adaptation of their metabolism for

infection. This happened after 6 and 8 hours of co-incubation with

macrophages and epithelial cells, respectively, moment in which
A B C

FIGURE 1

Characterization of the co-incubation between the fungal strain Af293 and the macrophage cell line RAW 264.7. (A) Phagocytosis assay during 8
hours of co-incubation with Af293. To do that, 500 µL of challenge RPMI containing 2 x 105 macrophages and A. fumigatus conidia in a MOI of 10
were seeded in 24-well plates which contained 12 mm-diameter coverslips. (B) Percentage of germination of the Af293 strain alone and in with co-
incubation with RAW 264.7 macrophages. The dashed line indicates 30% germination. (C) Percentage of Af293 germlings with multiple polarity axes
alone and in co-incubation with RAW 264.7 macrophages. Statistical analysis in panel (A) was performed by One-Way ANOVA followed by multiple
comparisons. ns p > 0.05. Statistical analysis in panel (B, C) were performed by t-test. *p < 0.05.
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three samples of mRNA from each condition obtained in

independent experiments, as well as their respective controls,

were hybridized with the AWAFUGE microarray. Once the data

were analyzed and normalized, 2,137 and 5,325 A. fumigatus genes

were found differentially expressed with respect to their controls (A.

fumigatus without cells) when the fungus was incubated with

macrophages and with human lung epithelial cells, respectively.

To limit and prioritize the genes to be studied, only those

displaying > 1.5 or < -1.5-fold change (log2) (FC) in their conditions

were considered. By this criteria, 235 A. fumigatus genes were

down-regulated, and 280 genes were up-regulated during the co-

incubation with the macrophages (Figure 3A), whereas 534 were

down-regulated and 878 genes were up-regulated during the

contact with the epithelial cells (Figure 3B).

The transcriptomic data obtained from the AWAFUGE

microarray was confirmed by RT-qPCR, showing a good

correlation result between both techniques. Specifically, a

correlation of 70.79% and 90.03% was obtained between

microarray and RT-qPCR verification in the co-incubation of A.

fumigatus with macrophages, and with epithelial cells, respectively

(Figures 3C, D). In Figures 3E, F, FC values obtained for each gene

and technique used in the validation process are shown. All of them,

except those marked in red (dots in panels C and D and arrows in

panels E and F), displayed a similar expression in both techniques.

In addition, maiA gene expression values were plotted in green.
GO enrichment analysis of the most up/
down-regulated DEGs and comparison
between different infection models

To identify those A. fumigatus processes, components, and

functions of greatest importance that were impacted during the

experimental infection procedure, we performed a Gene Ontology

(GO) enrichment analysis (the complete analysis of DEGs can be

found in Table S3).
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Among the DEGs, 227 (RAW 264.7 vs Control) and 592 (A549

vs Control) were associated with a known biological process. The

five most relevant processes in this category are those related with

transport, regulation, response to stress, secondary metabolic

process, and lipid metabolic process.

In addition, 252 A. fumigatus genes (RAW 264.7 vs Control)

and 605 genes (A549 vs Control) were associated with a known

molecular function. The categories corresponding to the most genes

are oxidoreductase activity, hydrolase activity, and transporter and

transferase activities.

Moreover, it is remarkable that 321 (RAW 264.7 vs Control)

and 795 (A549 vs Control) genes have been previously associated

with a known cellular location, including (in order of gene numbers

associated) membrane, mitochondrion, nucleus, cytosol, plasma

membrane and the extracellular region.

To select the most important genes related to infection, among

the large amount of overexpressed A. fumigatus genes found, those

up-regulated with a FC > 1.5 in co-incubation in common between

macrophages and epithelial cells were selected. Using this approach, a

total of 140 A. fumigatus genes were obtained (Table S4). These genes

were then cross-referenced with those detected as overexpressed

during a previous mouse infection model (Guruceaga et al., 2018).

This analysis decreased the list to 13 significantly up-regulated

summarized in Table 1. Among those, Afu2g04240 (maiA) gene

was selected as a good candidate to be characterized in this study for

its role in A. fumigatus for the next reasons: i) It is one of the genes

related with the Phe degradation pathway still unstudied, ii) Its

potential role in the infection process detected in our

transcriptomic analysis.
The maiA gene is essential for Phe
degradation pathway

The genetic manipulation strategy followed to generate the

mutant strains is described in Materials and Methods section and
A B C

FIGURE 2

Characterization of the co-incubation between the fungal strain Af293 and the human epithelial cell line A549. (A) Endocytosis assay during 10 hours
of co-incubation with Af293. To do that, 500 µL of challenge RPMI containing 1 x 106 macrophages and A. fumigatus conidia in a MOI of 5 were
seeded in 24-well plates which contained 12 mm-diameter coverslips. (B) Percentage of germination of Af293 in co-incubation with the lung
epithelial cell line A549 in the same conditions explain in panel (A). The dashed line indicates 30% germination. (C) Percentage of Af293 germlings
with multiple polarity axes alone and in co-incubation with the lung epithelial cell line A549 in the same conditions explain in panel (A). Statistical
analysis in panel (A) was performed by One-Way ANOVA followed by multiple comparisons. ns p > 0.05. Statistical analysis in panel (B, C) were
performed by t-test. *p < 0.05.
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summarized in Figure 4. Briefly, a disruption mutant was generated

by replacing the initial methionine (iMet) with the hygromycin

resistance gene. The resulting mutant strain (maiA-1) was resistant

to hygromycin and has the target gene silenced due to the lack of the

iMet (Figure 4A). The complete deletion strain (DmaiA) was also

performed, through complete substitution of the maiA locus by the

hygromycin resistance gene (Figure 4B). Finally, the complement of

the maiA-1 strain (maiA-1comp.) was constructed by replacing the

disrupted allele with the native maiA followed by the phleomycin
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resistant gene in the native locus (Figure 4C). All the strains were

generated using CRISPR-Cas9 highly efficient genetic technology in

the Af293 genetic background. The DmaiA strain was constructed

to validate the results obtained in the disruption strain. As is

possible to see in (Figures S1 and 2) the deletion strain

phenocopied the maiA-1 strain results, confirming the usefulness

of the disruption strategy.

As mentioned above, we hypothesized that loss-of-function

mutations at the maiA locus would produce high concentrations
A B

C D

E F

FIGURE 3

Gene expression analysis. Volcano plot showing A. fumigatus differentially (black) (FC > 1.5 or FC < -1.5) and non-differentially (grey) expressed genes
in co-incubation with RAW 264.7 macrophages (A), A549 lung epithelial cells. (B). The x-axis values represent the fold change (log2) of microarray
data and the y-axis values represent the statistical significance (–log10P). Spots with positive values indicate upregulation of the gene during co-
incubation with the indicated cell line. (C, D) Correlation analysis between microarray and RT-qPCR data. The x-axis values represent the fold
change (log2) of microarray data and the y-axis values represent the fold change (log2) of RT-qPCR results of the selected fungal genes in co-
incubation with RAW 264.7 macrophages (C), and A549 lung epithelial cells (D). Each point corresponds to the mean value from three independent
samples. (E) Comparative levels of fungal gene expression between the microarray and the RT-qPCR (Af293 in co-incubation RAW 264.7
macrophages). (F) Comparative levels of fungal genes expression between the microarray and the RT-qPCR (Af293 in co-incubation with A549 lung
epithelial cells). Green points in (A–D) and green arrows in (E, F) show the corresponding results obtained for maiA. Red spots in (C, D) and red
arrows in (E, F) show contradictory results in gene expression detected between microarrays and RT-qPCR results.
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A B

C

FIGURE 4

Schematic of gene manipulations by CRISPR/Cas9 editing. (A) Silencing strategy of the maiA gene. One protospacer adjacent motif was designed to
disrupt the iMet (ATG orange square) of the maiA gene. The disruption was repaired using the hygromycin resistance cassette with 40 base pair
microhomology regions upstream and downstream the maiA gene in the Af293 genetic background to generate the maiA-1 mutant strain (maiA
green dashed arrow represents non-functional maiA gene). (B) The complete deletion of the maiA gene was carried using two protospacers
adjacent motif designed to the flanking regions of the maiA gene. The repair template process was developed following the same strategy described
in panel (A) to generate the DmaiA mutant strain. (C) To complement the maiA-1 mutant strain, the native maiA gene was cloned into pAGRP
plasmid (iMet included) upstream the phleomycin resistant cassette and generating the pAGRP_maiAcomp. plasmid. Two protospacers adjacent motif
designed to the flanking regions of the maiA gene were used. The repair template cassette was amplified from the pAGRP_maiAcomp. plasmid using
primers containing 40 base pair microhomology regions upstream and downstream the HygR-maiA disrupted regions, generating the maiA-1comp.

mutant strain. All the colonies were confirmed by PCR and sequencing. The genetic maps were created with BioRender.com.
TABLE 1 Common overexpressed DEGs in the three experimental infection models.

Fold Change (log2)

ID Product
RAW 264.7
vs Control

A549
vs Control

Intranasal infection (Day 4 vs
Day 1) a

Afu1g04160 Aspartate aminotransferase 3.22 2.45 3.22

Afu2g04200 4-hydroxyphenylpyruvate dioxygenase 6.38 6.78 4.21

Afu2g04240 Maleylacetoacetate isomerase maiA 2.42 2.22 3.72

Afu3g07810 Succinate dehydrogenase subunit sdh1 2.72 1.52 2.90

Afu4g10610 Stress responsive A/B barrel domain protein 1.59 1.94 4.39

Afu5g02320 Conserved hypothetical protein 2.07 3.27 3.33

Afu5g02330 Major allergen and cytotoxin Asp f 1 aspf1 3.00 3.10 4.64

Afu6g00430 IgE-binding protein 2.84 2.24 4.02

Afu6g02210 Cytochrome P450 monooxygenase 2.46 3.68 4.28

Afu6g03590 Citrate synthase cit1 2.61 3.54 4.05

Afu6g12250
Succinyl-CoA:3-ketoacid-coenzyme A

transferase putative
2.07 3.28 3.61

Afu7g02010 Indoleamine 2,3-dioxygenase family protein 5.70 3.66 5.72

Afu8g05530 Fumarate reductase osm1 2.52 2.56 3.97
F
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aData obtained from a previous publication (Guruceaga et al., 2018).
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of 4-MA that could polymerize spontaneously to pyomelanin

(Figure 5A). To study the pyomelanin production ability, Af293

as well as the maiA-1 mutant and the maiA-1comp. strains were

grown for 72 hours in GMM broth (Figure 5B), GMM broth

supplemented with 10 mM of Phe (Figure 5C) or GMM broth

supplemented with 10 mM of Tyr (Figure 5D). Indeed, when Phe or

Tyr were added to the media, the maiA-1 mutant strain

accumulated pyomelanin indicated by an increase of the 405 nm

absorbance signal (Figure 5C) that can be also visually observed

(Figure 5D). A varying ability to degrade both amino acids was

shown since the production of pyomelanin was different when Phe

or Tyr were used, likely because Phe may be utilized by other

metabolic pathways, compared to Tyr (Figure S3).

It was also striking that when salt agar plates were

supplemented with 50 mM of Phe, 50 mM of Tyr or 50 mM of

both amino acids as the sole carbon source, the maiA-1 strain

exhibited impaired growth (Figure 5E). Attempts to measure

biomass accumulation in submerged culture to further quantify

the reduced ability to utilize these amino acids as carbon sources

revealed a complete lack of growth for the maiA-1 mutant in both

Phe and Tyr (data not shown).
Role of maiA in growth and development
of A. fumigatus

To understand the role and importance of the maiA gene in the

basal growth of A. fumigatus, the maiA-1 disrupted strain was

analyzed using germination and radial growth assays in GMM).

Although the germination rate of all the strains was the same over

the time studied (Figure 6A), slight differences in the radial growth

ability were found between the Af293, the maiA-1 and maiA-1comp.

after 72 hours of growth. After 96 hours, no difference in the radial

growth between Af293 and the complemented strain was found. In

contrast the maiA-1 mutant strain colonies were slightly smaller

compared to those from the Af293 background (Figure 6B).

Although statistical differences exist at the various timepoints, no

overt defects in colony formation were seen.

To better understand the role ofmaiA in maintaining fungal cell

wall homeostasis, a stress response assay using two cell wall stressor

compounds was performed (Figure 7). The maiA-1 mutant strain

was hyper-susceptible to the cell wall stressors congo red (CR) and

calcofluor white (CFW) as observed by the inability to grow at

concentrations higher than 40 µg/ml of both compounds in GMM

(Figure 7 top panels). The ability of this mutant strain to grow in the

presence of both compounds was recovered by the addition of

sorbitol to the media (SMM) (Figure 7 bottom panels), further

supporting that growth inhibition in the mutant was due to cell

wall instability.

The CFW results suggest that maiA-1 mutant could present

some lack of chitin in its cell wall. However, as can be seen in Figure

S4, the ability of the strains to grow in presence of Nikkomycin Z

indicates that chitin synthase activity is not affected in the

disruption mutant (Figure S4A). In addition, the abundance of

chitin between fungal strains is the same (Figure S4B), a finding that

was corroborated by fluorescent microscopy using CFW as a chitin
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indicator dye (Figure S4C). All these results reject the hypothesis of

reduced chitin in the mutant cell wall.
The maiA-1 hyphae display an
unstructured morphology

Scanning electron microscopy (SEM) analysis of the mycelial

appearance after culturing for 12 hours in GMM broth showed that

the Af293 strain maintained a normal hyphal morphology with

typical 45° branch angles and mycelia that were strongly attached to

the surface (Figure 8A). In addition, analyzing the images at higher

magnification, the Af293 hyphae were surrounded by an

extracellular matrix, which was more prevalent at the hyphal

apex (Figure 8C).

On the contrary, the maiA-1 strain displayed a disorganized

mycelium, which seemed to be more aerial, less attached to the

surface and in consequence more rounded (Figure 8B) without the

surrounding matrix observed in Af293 (Figure 8D).

Furthermore, other cell wall components such as N-

acetylglucosamine exposed residues (exposed chitin) and mannans

were studied through fluorescence microscopy, and no differences

either in amount (changes in fluorescence intensity) or in cell

distribution along the hyphae were detected (Figures S5A, B).

While chitin is more exposed in the hyphal tips and around the

conidia where the first germ tube was formed (Figure S5A), mannan

is homogenously distributed along the hyphae (Figure S5B) of all the

fungal strains studied. Although the SEM findings could imply a lack

of galactosaminogalactan due to the loss of maiA function, no

differences in expression levels of uge3 between fungal strains were

detected (Figure S6A). Furthermore, with the aim to exclude over

production of DHN-melanin as a compensatory mechanism due to

lack ofmaiA, expression levels of the pksP gene were measured in the

fungal strains. As is possible to observe (Figure S6B), no expression

differences of the pksP gene were detected between our fungal strains.
maiA is required for normal
A. fumigatus virulence

Finally, we characterized the pathogenic abilities of the maiA-1

strain with a set of in vitro and in vivo assays. First, we performed an

in vitro characterization challenging mouse bone marrow-derived

macrophages (BMMs) with our isogenic set of strains. No

differences in phagocytosis rates were observed over 8 hours of

co-culture between the BMMs and any of the three fungal strains

(Figure 9A). These results could be related with the H2O2

susceptibility assay in which similar sized zones of clearance were

found in all strains (Figure 9B). It is important to highlight that this

assay was developed in GMM, condition in which pyomelanin

production ability of the fungal strains (Af293, maiA-1 and maiA-

1comp.) is the same (Figure 5B). To test if pyomelanin production

could have a protective effect against oxidative stress, the same assay

was developed using GMM supplemented with 10 mM Phe and

Tyr. As shown Figure S7, although a modest pyomelanin

production can be observed (back of the plates) (Figure S7B), no
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FIGURE 5

Fungal strain characterization results in relation to pyomelanin production and growth ability in presence of Phe and/or Tyr. (A) Phe degradation
pathway including the genetic cluster and the proteins involved in each step. The red cross indicates the point in which the pathway is disrupted due
to the disruption produced in maiA-1 strain. The diffused grey area indicates the part of the pathway that the maiA-1 strain cannot perform.
Pyomelanin secretion time course of Af293, maiA-1, and maiA-1comp. strains growing for 72 hours in (B) GMM broth, (C) GMM broth supplemented
with 10 mM Phe and (D) GMM broth supplemented with 10 mM Tyr. Dashed boxes in (B–D) indicate quantitative information corresponding to the
photographs indicated by arrows. Statistical analyses were performed by Two-way ANOVA with Tukey’s test for multiple comparisons. *p < 0.05 or
**p < 0.001. (E) Ten thousand fresh conidia of the Af293, maiA-1, and maiA-1comp. strains were inoculated onto salt agar plates or salt agar plates in
which the only carbon source was Phe (50 mM), Tyr (50 mM), or Phe and Tyr (50 mM each). Plates were incubated at 37°C for 72h. Note that maiA-1
mutant showed a non-significant basal growth probably produced by residual sugars present in the agar. No growth was detected when the assay
was done in liquid media following the same conditions (Data not shown).
Frontiers in Cellular and Infection Microbiology frontiersin.org11

https://doi.org/10.3389/fcimb.2024.1327299
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Guruceaga et al. 10.3389/fcimb.2024.1327299
statistical differences regarding the size of inhibition could be

detected (Figure S7A).

In a detailed study of the BMM cells-pathogen interaction,

significantly less TNF release was observed in the macrophages co-

cultured with the maiA-1 mutant strain compared to those co-

cultured with either the wild-type ormaiA-1comp. strain (Figure 9C).

A very interesting finding was discovered when the b-glucan
content of each fungal strain was studied. Specifically, the total

glucan content was found to be significantly lower in the maiA-1
Frontiers in Cellular and Infection Microbiology 12
mutant strain compared to the wild-type strain (Figure 9D). This

result might indicate that reduced stimulation of BMMs induced by

the maiA-1 mutant strain could be attributable to its lower b-
glucan content.

Moreover, the impact of the absence of the maiA gene on

virulence was studied using a neutropenic mouse model of invasive

aspergillosis (IA) (Figure 9E). The results revealed that 85% and

90% of the mice infected with the Af293 strain and themaiA-1comp.,

respectively, had died after 15 days post-infection. In contrast, the
A B

FIGURE 6

Cellular characterization results of the maiA-1 mutant strain. (A) Percentage of germination during 8 hours of incubation in GMM of the Af293, maiA-
1, and maiA-1comp. strains. (B) Colony diameters of 2 x 106 fresh conidia of each strain (Af293, maiA-1, and maiA-1comp.) seeded onto GMM plates.
The diameter of each strain was measured daily for a maximum of 5 days. Statistical analyses were performed by two-way ANOVA with Tukey’s test
for multiple comparisons. *p< 0.05.
A B

FIGURE 7

Phenotypic characterization of Af293, maiA-1, and maiA-1comp. strains using GMM agar 6-well plates. GMM or SMM 6 well plates supplemented with
different concentrations (0, 20, 40, 60, 80, 120, 160 µg/ml) of congo red (CR) (A) or calcofluor white (CFW) (B) were inoculated using 1 x 103 fresh
conidia of each strain (Af293, maiA-1, and maiA-1comp.). The plates were incubated at 37°C for 48 h, time in which pictures were taken. Identical
control wells are demonstrated in the two upper panels for GMM alone without the addition of either CR or CFW, and identical control wells are
demonstrated in the two lower panels for SMM alone. Representative images of 3 replicates per condition are shown.
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group of mice infected with the maiA-1 strain showed 40% survival

at the end of the assay. The overall statistical analysis of the assay

showed a significantly lower lethality of the maiA-1 mutant strain.

This lower lethality showed by themaiA-1 strain is not explained

by the ability of this mutant to establish infection in lungs. As seen in

Figure 10, no overt differences in fungal lesion presentation were

found between those mice infected with the Af293 and the maiA-1

strain at 3 days post-infection. Regarding the inflammation produced

by the strains (Figure 10A), the lungs from mice infected with the

Af293 strain presented a slightly higher inflammation

homogeneously distributed through the organ than those lungs

infected with the maiA-1 strain. In relation with the GMS images

(Figure 10B), is easy to see multiple A. fumigatus foci of both strains

growing in the lungs after 3 days post-infection (1.5 magnification),

but as more magnifications the pictures were taken, is easier to find

more Af293 foci infecting the lung parenchyma than the maiA-1

fungal strains that is more located around the airways and less in the

parenchyma. Either way, these slight differences found between both

fungal strains during the early stages of infection establishment likely

do not explain the mortality differences.
Discussion

In this work, RAW 264.7 macrophages and A549 human lung

epithelial cells were used as in vitro infection models in co-

incubation with A. fumigatus to perform two independent
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transcriptomic studies. After characterization of both models

during co-incubation, when A. fumigatus reached 30%

germination, the total mRNA was isolated and hybridize with the

AWAFUGE 1.0 microarray. The transcriptomic analysis of both in

vitro experimental assays showed that 140 A. fumigatus were up-

regulated (FC > 1.5) in common in the two models used. To further

prioritize the number of genes of interest, they were then compared

with those detected as up-regulated during a previously published

murine intranasal infection (Guruceaga et al., 2018). Using this

approach, 13 genes were found to be up-regulated in all three

abovementioned infection procedures. Some of these genes have

been previously studied by other authors and have been related with

the infection process or detected as expressed at the onset of the

contact between cells or sera. Among them, it is important to

highlight genes such as aspf1, that codifies an A. fumigatus allergen

commonly found in different proteomic/transcriptomic studies

(Guruceaga et al., 2018; Ramirez-Garcia et al., 2018) or the

fumarate reductase Osm1, whose expression has been previously

observed during hypoxia and during the first contact between the

dormant conidia and the host (Teutschbein et al., 2010; Vödisch

et al., 2011). Two up-regulated genes codify TCA cycle enzymes: the

succinate dehydrogenase Sdh1 and the citrate synthase Cit1. The

former protein has been previously described as expressed after

human neutrophil exposure (Sugui et al., 2008), during the exit of

the dormancy (Lamarre et al., 2008) as well as under hypoxia

(Vödisch et al., 2011). Regarding the Cit1, some researchers have

detected its expression during the contact with sera (Asif et al.,
FIGURE 8

Scanning electron micrographs of A. fumigatus strains growing in GMM broth for 12 hours. (A, C) SEM images of Af293 hyphae. (B, D) SEM images of
maiA-1 hyphae. Red arrows denote specific details described in text. Representative images of 3 replicates per condition are shown.
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FIGURE 9

Characterization of the Af293, maiA-1, and maiA-1comp. strains during the infection process. (A) Phagocytosis measured after 8 hours of co-
incubation between the three fungal strains and primary BMMs. To do that, 500 µL of challenge RPMI containing 2 x 105 BMMs and A. fumigatus
conidia in a MOI of 10 were seeded in 24-well plates which contained 12 mm-diameter coverslips. (B) Inhibition halus diameter of a culture of the
three fungal strains on GMM agar plates after 48 hours of incubation in presence of 200 mM H2O2 in a central well of the plate. To do that, 1 x 107

fresh conidia of each strain were seeded and spread over a GMM aga plate. After that, 50 µL of a 200 mM solution of H2O2 was added into a central
well previously generated. The plates were incubated at 37°C for 48h. (C) BMMs TNF release after 16 hours challenge with the three fungal strains
following the conditions described in panel (A). (D) Relative content of b-glucans quantified in the three fungal strains. (E) Kaplan-Meier analysis of
chemotherapeutically immune suppressed infected mice for 15 days post intranasal exposition to Af293, maiA-1, and maiA-1comp. fungal strains.
Statistical analyses of panels (C, D) were performed by Two-way ANOVA with Tukey’s test for multiple comparisons. *p< 0.05. Statistical analysis of
panel (E) was done by Log-Rank test. *p< 0.05; **p< 0.001.
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2010) and with airway epithelial cells (Oosthuizen et al., 2011); in

addition, the cit1 gene was also described as essential for IA

manifestation (Ibrahim-Granet et al., 2007).

The A. fumigatus catabolic Phe degradation pathway is encoded

by a cluster of 6 genes (hppD, hmgX, hmgA, fahA,maiA, and hmgR)

in this microorganism (Schmaler-Ripcke et al., 2009; Perez-Cuesta

et al., 2020). Except for two genes (fahA and maiA), the cluster of

genes involved in this pathway has been previously studied through

the development of loss-of-function mutant strains. The DhppD
null mutant displayed a lack of pyomelanin synthesis because HGA

formation was blocked. Furthermore, the hyphae of this mutant

showed increased susceptibility to hydrogen peroxide and other

oxidizing agents when compared with Af293 (Schmaler-Ripcke

et al., 2009). Moreover, this gene has been detected as

overexpressed at 96 hours post-intranasal infection in comparison

with the first 24 hours in immunosuppressed mice (Guruceaga

et al., 2018). Other authors also detected the overexpression of
Frontiers in Cellular and Infection Microbiology 15
hpdA, the hppD homolog in Penicillium marneffei, after exposure to

macrophages (Boyce et al., 2015). In addition, the DhmgX mutant

strain has been shown to have similarities with a DhppD strain

(Keller et al., 2011). This DhmgX mutant was unable to produce

HGA and, therefore, HmgX could be a cofactor or mediator of

HppD enzyme function (Keller et al., 2011). On the other hand, the

DhmgA mutant strain showed an increase in pyomelanin owing to

the accumulation of HGA and displays reduced susceptibility to

oxidizing agents compared to DhppD (Schmaler-Ripcke et al.,

2009). Finally, the last gene of the Phe degradation pathway

studied was the transcription factor hmgR. The DhmgR mutant is

incapable of using Tyr as the sole carbon source or nitrogen source

and, therefore, only a residual accumulation of pyomelanin was

observed in cultures (Keller et al., 2011).

The only published study concerning maiA in A. fumigatus

showed that this gene was overexpressed when the medium was

supplemented with Tyr (Keller et al., 2011). Orthologs of this gene
A

B

FIGURE 10

Histological study of mice infected with Af293 and maiA-1 strain after 3 days post-infection. (A) Lung sections stained with Hematoxylin – Eosin
(H&E). Pictures were taken with 5x magnification after 3 days post-infection. Black arrows indicate inflammation foci through the lung tissue.
(B) Lung sections stained with Grocott’s Methenamine Silver (GMS). In the figure is possible to see consecutive magnifications from 1.5x to 23x of the
same section of the lungs. Red squares highlight the area amplify in the next picture. The most representative pictures were shown in the figure.
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has been silenced in both Aspergillus nidulans and P. marneffei

(Fernández-Cañón and Peñalva, 1995; Fernández-Cañón and

Peñalva, 1998; Boyce et al., 2015). The catabolic Phe degradation

pathway, in whichmaiA is putatively involved, is responsible for the

production of one type of soluble melanin, known as pyomelanin,

when an accumulation of intermediate metabolites, such as HGA or

4-MA, occurs. The mutation of the maiA gene is predicted to result

in truncation of the final part of the pathway inhibiting the

degradation of Phe or Tyr to fumarate and acetoacetate, which

are destined to the Krebs cycle or the biosynthesis of other amino

acids. Consequently, there would be an accumulation of 4-MA and

HGA and the subsequent production of pyomelanin.

In accordance with previous publications (Schmaler-Ripcke

et al., 2009; Keller et al., 2011; Perez-Cuesta et al., 2020), in

response to Phe and Tyr, the maiA-1 mutant strain would block

the Phe degradation pathway causing a probable accumulation of 4-

MA and, likely, of the previous metabolites of the pathway that can

polymerizate to pyomelanin. Specifically, the mutant strain maiA-1

started to produce this pigment when Phe and, especially, Tyr were

added to the medium as the only carbon source. These results

support our hypothesis that A. fumigatus can uses in a more

effective way Phe than Tyr as an alternative carbo source.

However, results obtained by other investigators using the DhmgA

mutant showed that this strain produced more pyomelanin by the

addition of Phe than Tyr (Schmaler-Ripcke et al., 2009).

Regarding basal growth analysis, our results suggest that the

absence of the maiA gene did not impact on germination and

minimally impacted on basic radial growth of the colonies. In

contrast, the cell wall stress assays carried out in this study pointed

out that the maiA-1 strain suffers an alteration of the cell wall

stability, which makes it unable to grow in presence of CR or CW,

perhaps due to the lower content of glucans detected in its wall.

Although, CR and CW are compounds with a chemical structure that

can interact with b-linked glucans and, specifically, it is thought that

both compounds interfere with cell wall assembly by binding to

chitin, no differences in chitin content were detected between the

fungal strains. Conceivably, CW and CR act by binding to nascent

chitin chains, thereby inhibiting the assembly enzymes that connect

chitin to b-1,3-glucan and b-1,6-glucan (Herth, 1980; Wood, 1980;

Pringle, 1991). The ability to grow in the presence of both compounds

was recovered by osmotic stabilization using sorbitol.

Other studies performed with mutant strains related with high-

osmolarity glycerol response pathway (shoA, msbA, opyA, sakA and

mpkC) which reported similar cell wall phenotypes (i.e., more

sensitive to cell wall stress) are also more sensitive to osmotic

stresses (Mattos et al., 2020; Silva et al., 2020) and to caspofungin. In

contrast, the maiA-1 strain displayed the same growth ability as the

Af293 strain in the presence of osmotic stresses such as KCl or

NaCl. In addition, the maiA-1 strain showed normal susceptibility

to the antifungal drugs tested (voriconazole, fluconazole,

posaconazole, caspofungin and micafungin) following the

EUCAST standardized method (data not shown). It is true that,

while the maiA gene is involved in Phe degradation pathway, the

other aforementioned genes are involved in the high-osmolarity

glycerol response pathway and, therefore, the studies are not totally

comparable. Another possible explanation is that, although the
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maiA-1 mutant strain displayed a cell wall defect, this is not

caused through an issue in the cell wall integrity pathway because

this mutant strain was not affected by the presence of caffeine in the

media as other investigators have previously described (Valiante et al.,

2008; Valiante et al., 2009). This issue could be generated by a

blockage of the Phe degradation pathway since the maiA-1 strain is

unable to complete the catabolic process of Phe and Tyr by which the

fungus could synthesize new amino acids for structural purposes.

The SEM analysis showed a general unstructured appearance of

the maiA-1 mutant strain confirming a cell wall issue as we

hypothesized from the CR and CFW stress assays, that is not

related with the amount or distribution of chitin, exposed chitin

or mannans in the cell wall. The Af293 hyphae looked similar to

other SEM images presented by other investigators previously

(Wuren et al., 2014; González-Ramıŕez et al., 2016; Joubert et al.,

2017). However, the maiA-1 hyphae showed differences in the

external structure of the cell wall and a lack of a putative matrix-

like substance that surrounded the apex of Af293 hyphae, although

no differences in transcriptional levels of uge3 were detected and in

consequence a lack of galactosaminogalactan (Gravelat et al., 2013).

The last step of the research was to study the role of the maiA

gene in fungal virulence. The cell wall is the main fungal target

recognized by the immune cells and, for that, an in vitro model of

infection using primary BMMs was performed. The maiA-1 and

Af293 strains showed the same H2O2 resistance ability, similar to

the results previously described using DhppD and DhmgA mutants

(Schmaler-Ripcke et al., 2009). Besides, Boyce and coworkers

performed the same experiment with P. marneffei also found that

DhppA and DhmgA showed a very mild sensitivity to H2O2 (Boyce

et al., 2015). No other studies have previously described a similar

phenotype with alterations in cell wall, and b-glucans composition,

upon silencing genes involved in the Phe degradation pathway in A.

fumigatus, A. nidulans or P. marneffei. However, this result could

explain, not only why the maiA-1 strain produced significantly less

TNF release by BMMs after 16 hours, but also the phenotype

showed in response to CR and CFW and the SEM images.

The lower mortality observed in neutropenic mice infected with

the mutant strain is novel and interesting because other mutant

strain of a gene involve in the Phe degradation pathway (DhppD)
did not show any difference in the mortality rate observed when was

compared with its complemented strain (hppDc) (Keller et al.,

2011). In addition, it is important to note that these other studies

used only transient immune suppression with corticosteroids

instead of our model (cyclophosphamide and triamcinolone

acetonide) that employs persistently immunosuppressed mice.

What we can conclude about the lower mortality of the maiA-1

strain is that is not caused by an issue in the establishment of the

infection; more studies focused on how loss of maiA can modulate

or impacts host-pathogen response are needed to understand how

this gene interferes with the mortality ability.

In this study, an involvement of maiA with fungal cell wall,

which is seemingly independent of classical MAPK regulation, has

been established. Furthermore, a new Phe/Tyr fitness theory by

which the use of Phe as sole carbon source is energetically more

beneficial to A. fumigatus is proposed. Finally, the role of the

maiA gene in fungal virulence has been revealed using a
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chemotherapeutically immune suppressed murine infection

model. In fact, this is the first study in which a mutation of one

of the genes involved in the Phe degradation pathway is directly

related to A. fumigatus virulence. The process by which the maiA-

1 strain suffers cell wall defects should be studied in future

investigations, but the impossibility of this mutant strain to

utilize these amino acids in a more efficient way could be

involved in the phenotype observed both related with cell wall

defects as well as the decreased virulence.
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SUPPLEMENTARY FIGURE 1

Phenotypic spotting assay characterization of Af293, maiA-1, DmaiA, and
maiA-1comp using GMM agar plates supplemented with the indicated agents

after 72 hours of incubation.

SUPPLEMENTARY FIGURE 2

Phenotypic characterization of DmaiA in response to Phe and Tyr to

demonstrate that the phenotype of whole deletion of maiA gene is the

same as the disruption strain maiA-1. Pyomelanin secretion ability of the
Af293 and DmaiA-1 growing in A) GMM broth, B) GMM broth supplemented

with 10 mM Phe and C) GMM broth supplemented with 10 mM Tyr. D)
Spotting assay after 72 hours of incubation of the Af293 and DmaiA strains on

salt agar plates in which the only carbon source were Phe (50 mM), Tyr (50
mM) or Phe and Tyr (50 mM each). GMM or SMM 6-well plates supplemented

with different concentrations (0, 20, 40, 60, 80, 120, 160 µg/ml) of congo red

(CR) (E) or calcofluor white (CFW) (F). Statistical analyses were performed by t-
test. *p < 0.05.

SUPPLEMENTARY FIGURE 3

Schematic representation of the Phe degradation pathway as well as the
metabolic pathways in which Phe or Tyr take part. Red boxes indicate

metabolic pathways still un-described in A. fumigatus. The pink box

indicates that the pathway is described in A. fumigatus but do not generate
energy as consequence. Green boxes represent metabolic pathways by

which A. fumigatus could obtain energy. Orange boxes represent the two
mechanisms of A. fumigatus to obtain Phe. Grey boxes represent steps

described in other species but not in A. fumigatus. Grey boxes and dashed
grey lines are related to Tyr while continuous grey lines are related to Phe.

This figure was built in based on KEGG pathway database (www.genome.jp/

kegg/pathway.html).

SUPPLEMENTARY FIGURE 4

Loss of maiA function does not cause an evident loss of chitin synthase

activity or abundance of chitin. A) GMM 6 well plates supplemented with
different concentrations (0, 0.5, 1, 2, 4, 8 µg/ml) of Nikkomycin Z were

inoculated using 1 x 103 fresh conidia of each strain (Af293, maiA-1, and

maiA-1comp.). The plates were incubated at 37°C for 48 h, time in which
pictures were taken. B) Chitin detection during growth on solid media. 1 x 103

fresh conidia of each strain were grown on solid media for 16-24 hours at 37°
C. Every 2 hours a 150 µl of CFW stock solution (10 µg/ml in PBS) was used to

quantify chitin by fluorescence detection. The data shown are the slope after
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plotting CFW fluorescence against biomass measured as absorbance at 600
nm. The results are the average ± SEM (n=16). C) Fluorescent micrographs

taken after 16 hours culture at 37°C and stained with a CFW stock solution (1

µg/ml in PBS) for 10 minutes in dark. Samples were taken using a Nikon
Eclipse Ti2 microscope. To make easy the comparison of fluorescence

between samples all the pictures were taken the same day and using 2 milli
seconds of exposition time. In panels A and C, representative images of 3

replicates per condition are shown.

SUPPLEMENTARY FIGURE 5

Loss of maiA function does not impact the amount and distribution of
exposed chitin or mannans in the cell wall. Fluorescent micrographs taken

after 16 hours culture at 37°C and stained with a mix of CFW and WGA-Alexa
Fluor 633 conjugate (A), or ConA-Alexa Fluor 647 conjugate (B). In panel A, we

first show chitin staining with CFW to watch the whole hyphae, then exposed
chitin stained with WGA and finally the co-localization of both after merging

both images. Tomake easy the comparison offluorescence between samples

panel A pictures were taken the same day and using 2 milli seconds of
exposition time for the CFW and 20 milli seconds for WGA, and panel B
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pictures were taken using 9 milli seconds of exposition time. Representative
images of 3 replicates per condition are shown.

SUPPLEMENTARY FIGURE 6

Expression levels of uge3 and pksP genes in the Af293, maiA-1, and maiA-

1comp. fungal strains.

SUPPLEMENTARY FIGURE 7

Response of the fungal strains to H2O2 oxidative stress in absence or

presence of Phe and Tyr. A) Inhibition halus diameter of a culture of the

three fungal strains on GMM agar plates or GMM+ (GMM supplemented with
10mMPhe & Tyr) after 48 hours of incubation in presence of 200mMH2O2 in

a central well of the plate. To do that, 1 x 107 fresh conidia of each strain were
seeded and spread over a GMM or GMM+ agar plates. After that, 50 µL of a

200 mM solution of H2O2 was added into a central well previously generated.
The plates were incubated at 37°C for 48 h. Two-way ANOVA with Tukey’s

test for multiple comparisons was applied to analyze the data but no statistical

differences were found. B) Most representative pictures of the conditions
explained in panel (A).
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