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Background: Graves’ disease (GD), characterized by immune aberration, is

associated with gut dysbiosis. Despite the growing interest, substantial

evidence detailing the precise impact of gut microbiota on GD’s autoimmune

processes remains exceedingly rare.

Objective: This study was designed to investigate the influence of gut microbiota

on immune dysregulation in GD.

Methods: It encompassed 52 GD patients and 45 healthy controls (HCs),

employing flow cytometry and enzyme-linked immunosorbent assay to

examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS)

levels. Gut microbiota profiles and metabolic features were assessed using 16S

rRNA gene sequencing and targeted metabolomics.

Results: Our observations revealed a disturbed B-cell distribution and elevated

LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant

differences in gut microbiota composition and a marked deficit in short-chain

fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451

(Dialister), and ASV503(Coprococcus), were observed in GD patients. These

specific bacteria and SCFAs showed correlations with thyroid autoantibodies,

B-cell subsets, and cytokine levels. In vitro studies further showed that LPS

notably caused B-cell subsets imbalance, reducing conventional memory B cells

while increasing naïve B cells. Additionally, acetate combined with propionate

and butyrate showcased immunoregulatory functions, diminishing cytokine

production in LPS-stimulated cells.
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Conclusion:Overall, our results highlight the role of gut dysbiosis in contributing

to immune dysregulation in GD by affecting lymphocyte status and

cytokine production.
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1 Introduction

Graves’ disease (GD), a targeted autoimmune disorder, impacts

approximately 2% of women and 0.2% of men globally (McLeod

and Cooper, 2012; Smith and Hegedüs, 2016; Taylor et al., 2018),

with a higher prevalence among individuals aged 30 to 50 years (Liu

H. et al., 2022). Epidemiological studies have revealed that GD

manifests at a rate of about 20 to 40 cases per 100,000 individuals

annually (Davies et al., 2020). The disease manifests through the

diminished self-tolerance to thyroid antigens, particularly the

thyroid-stimulating hormone receptor (TSHR), accompanied by

lymphocytic infiltration within the thyroid tissue (Weetman, 2001).

The antibody targeting TSHR (TRAb) function predominantly as

an agonist, precipitating unchecked hormone secretion and leading

to the prevalent symptom in GD patients: hyperthyroidism (Davies

et al., 2020). This hyperthyroid condition is linked to heightened

risks for several health issues, such as atrial fibrillation, pulmonary

embolism, and preeclampsia (Brandt et al., 2011). Despite these

insights, the exact mechanisms underlying GD’s onset remain

enigmatic.

In GD, the infiltration of lymphocytic is predominantly

composed of CD4+ T cells, CD8+ T cells, and CD19+ B cells

(Kristensen B., 2016). While T cells contribute to autoimmunity

through cytokine release and by providing activation signals to B

cells (Bonasia et al., 2021), their exact impact hinges on their specific

subsets. CD4+ helper T (Th) cells can be subdivided into

functionally dis tinct subsets, including Th1, Th2 and Th17 cells,

while CD8+ cytotoxic T (Tc) cells can be classified into Tc1, Tc2 and

Tc17 cells. Although T-cell autoreactivity is evident, B cells

seemingly spearhead the synthesis of thyroid autoantibodies,

encompassing TRAb, thyroid peroxidase antibody (TPOAb), and

thyroglobulin antibody (TgAb). IgD is mainly expressed on naïve B

cells and functions to inhibit response, while CD27 promotes B cells

terminal differentiation (Han et al., 2016; Nechvatalova et al., 2018).

Based on CD27 and IgD expression, B cells can be subdivided into

four classical subsets: naïve (CD27-IgD+), pre-switched memory

(CD27+IgD+), double-negative memory (CD27-IgD-) and

conventional memory (CD27+IgD-) subsets. An atypical

distribution of B-cell subsets, combined with hindered immune

checkpoint molecule expression, is postulated to ignite humoral

immune activation (Smith and Clatworthy, 2010; Jin et al., 2020).

This cascade amplifies autoantibody production, inflicting

substantial harm to the host. Our previous study has proved
02
abnormal distribution of B-cell subsets occur in the presence of

GD (Liu Y. et al., 2022), yet the exact mechanisms initiating this

immune response remain to be fully understood.

Recently, the role of gut microbiota in modulating

immunological homeostasis has garnered significant interest. A

mounting body of evidence indicates alterations in the gut

microbiota composition among patients with autoimmune

disorders, encompassing systemic lupus erythematosus (Guo

et al., 2020), rheumatoid arthritis (Xu et al., 2020), inflammatory

bowel disease (Palm et al., 2014) and type 1 diabetes mellitus

(Biassoni et al., 2020). Recent investigations have elucidated

marked gut microbiota dysbiosis in GD patients, characterized by

reduced diversity and skewed microbial profiles (Su et al., 2020;

Jiang et al., 2021). Nonetheless, certain studies yield conflicting data

concerning the genera levels (Zhao et al., 2022; Deng et al., 2023).

Notably, a majority of these investigations rely on clustering

sequences based on operational taxonomic units (OTUs) — an

approach that has faced scrutiny (Edgar, 2018). Given the nebulous

understanding of the precise interplay between autoimmune

activation and gut microbiota in GD, there is an urgent need for

more accurate methodologies, such as amplicon sequence variant

(ASV) analysis, to investigate the impact of gut microbiota on GD

autoimmunity. Thus, this study aims to examine the influence of

gut microbiota on immune abnormalities in GD using the ASV

analysis method.

In the study, we initially contrasted the immune profiles, gut

microbiota, and short-chain fatty acids (SCFAs) between GD

patients and healthy controls (HCs). We then delineated the

interrelationships among pivotal ASVs, SCFAs, immune-

inflammatory indices, and clinical phenotypes. Subsequently, we

investigate the effect of SCFAs and lipopolysaccharides (LPS) on

immune status in an in vitro study. The results of the study may

provide novel insights into the autoimmune pathogenesis of GD.
2 Materials and methods

2.1 Study population and sample collection

A total of 52 GD patients and 45HCs were recruited from

Henan Provincial People’s Hospital from March 2020 to March

2021. Demographic details, clinical data and dietary habits of the

participants were collected from hospital electronic medical records
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and questionnaires. Comprehensive diagnostic criteria, along with

inclusion and exclusion criteria for the participants, are elucidated

in the Supplementary Methods.

The study was approved by the Ethics Committee of Henan

Provincial People’s Hospital [NO. 2019 (66)]. All procedures were

executed in compliance with the Declaration of Helsinki, and written

informed consents were obtained from all study participants.

All participants underwent an overnight fast of no less than 8

hours. Both fecal and serum specimens from all participants were

harvested and preserved at −80°C pending DNA extraction or

cytokine assessment. Additionally, fresh whole blood samples

from 33 GD patients and 32 HCs were collected and subjected to

immediate flow cytometry analysis.
2.2 Laboratory testing

Thyroid function tests and thyroid autoantibody assessments

were conducted at the clinical laboratory of Henan Provincial

People’s Hospital using chemiluminescent immunoassays

techniques. Measurements of serum levels of TSH, free

triiodothyronine (FT3), free tetraiodothyronine (FT4) and TRAb

were performed with the Cobas e602 analyzer (Roche Diagnostics,

Basel, Switzerland). This analyzer utilizes ruthenium-complex-

labeled antibodies, including anti-TSH, anti-T3, anti-T4

antibodies, and the human TSHR monoclonal antibody M22.

Additionally, serum levels of TgAb and TPOAb were measured

using the UniCel DxI 800 analyzer (Beckman Coulter, Brea, USA).

These assays were executed following the manufacturer’s

instructions provided in the package inserts. The established

reference values for normalcy are delineated as: FT3 (3.1-6.8

pmol/L), FT4 (12.0-22.0 pmol/L), TSH (0.27-4.2 mIU/mL), TgAb

(0-4 IU/mL), TPOAb (0-9 IU/mL), and TRAb (< 1.75 IU/L).
2.3 DNA extractions and 16S rRNA gene
amplification sequencing

Genomic DNA was extracted from fecal samples using the

E.Z.N.A. ®Stool DNA Kit (Omega Biotek, Inc., USA). The harvested

DNA served as the template for PCR amplification targeting the V3-V4

region of the 16S rRNA genes. Utilized forward primer (341F) had the

sequence 5’-CCTACGGGNGGCWGCAG-3’, and the reverse primer

(805R) was 5’-GACTACHVGGGTATCTAATCC-3’. Amplification

was conducted using the EasyCycler 96 PCR system (Analytik Jena

Corp., Germany). Subsequent to PCR, the amplification products from

diverse samples were labeled with specific indices, pooled in equimolar

ratios, and sequenced by Shanghai Mobio Biomedical Technology Co.,

Ltd. on the MiSeq platform (Illumina Inc., USA) following the

stipulated manufacturer protocols.
2.4 Analysis of sequencing data

ASVs were identified with the DADA2 algorithm. The

representative sequences for each ASV were annotated in
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reference to the SILVA database (SSU138). Alpha-diversity

metrics, namely Shannon index for diversity, observed ASV count

for richness, and the Pielou index for evenness, were calculated.

Principal coordinates analysis (PCoA) based on Unweighted

UniFrac distances was conducted by the R program (version

3.6.0, http://www.R-project.org/) to visualize microbiome space

between samples. A heatmap plot of the key variables was

generated using the ‘pheatmap’ package of the R program. For

the identification of differentially abundant taxa, the linear

discriminant analysis effect size (LEfSe) method (version 1.1,

https://github.com/SegataLab/lefse) was deployed.
2.5 GC–MS analysis for targeted
metabolomic of SCFAs

Upon thawing the serum on ice, 100 µL aliquots were

transferred into a 2-mL glass centrifuge tube. This was combined

with 100 mL of 20% phosphoric acid in water and 500 µL of 50 µg/

mL 4-methyl valeric acid. After thorough vortex mixing, the

suspension was centrifuged at 14,000×g for 20 minutes. A 1 µL

aliquot of the resulting supernatant was analyzed using an Agilent

7890-5977 GC−MS system. For the quantification of short-chain

fatty acids, a calibration curve was established spanning a

concentration range of 0.1–100 µg/ml. The internal standard (IS)

ensured corrections for potential inconsistencies in sample injection

and minor instrument response variations. Chromatographic

separation was performed on an Agilent FFAP capillary GC

column (30 m × 0.25 mm ID × 0.25 µm). The initial column

temperature was set at 100°C, then ramped to 160°C at a rate of

5°C/min. This was followed by an increase to 150°C at 5°C/min, and

subsequently to 240°C at 80°C/min, where it was maintained for 6

minutes. Helium served as the carrier gas, flowing at 1.0 mL/min.

The temperatures for the injection port and ion source were 260°C

and 230°C, respectively. Analyses were conducted under SIMmode.
2.6 Isolation and culture of peripheral
blood mononuclear cells

Ten-milliliter whole blood samples were collected from

randomly selected GD patients (n=4) and healthy donors (n=4)

into sterile tubes containing sodium heparin. The tubes were gently

inverted to ensure thorough mixing of the blood. PBMCs were then

isolated from the blood samples utilizing the Ficoll-Hypaque (GE

Healthcare, USA) density gradient centrifugation method. Post-

isolation, the PBMCs were resuspended in a cell culture medium

consisting of RPMI 1640 supplemented with 10% heat-inactivated

fetal bovine serum and 1% penicillin-streptomycin. The cells were

seeded into 6-well plates at a density of 5 × 105 cells per well. In the

experimental setup, cells were either kept in the cell culture medium

alone or subjected to various treatments: LPS (1 µg/mL), a

combination of LPS and sodium acetate (2 mM), or LPS

combined with a mixture of SCFAs [2 mM each of sodium

acetate, sodium propionate, and sodium butyrate] (all reagents

sourced from Sigma Aldrich, USA). After a 24-hour incubation at
frontiersin.org
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37°C with 5% CO2, both the cells and their respective culture

supernatants were harvested for subsequent analyses.
2.7 Flow cytometric analysis

For the assessment of B-cell subsets and CD32b expression, the

collected whole blood samples from 33 GD patients and 32 HCs were

subjected to a staining procedure with antibodies V500-CD45, APC-

H7-CD19, BV421-IgD, PE-Cy7-CD27, and APC-CD32. After a 30-

minute incubation at room temperature, erythrocytes were lysed

using a standard lysing solution. For Th/Tc cell subset analysis, whole

blood samples were treated with a cell activation cocktail, comprising

phorbol-12-myristate-13-acetate, ionomycin, and brefeldin A, and

incubated for 6 hours. Subsequent staining was conducted at room

temperature for 30 minutes using the following antibodies: V500-

CD45, FITC-CD45, APC-CD3, PE-CD3, and APC-H7-CD8. This

was followed by cell fixation using a specialized fixative,

permeabilization in a wash buffer, and staining with PerCp-Cy5.5-

IFN-g, APC-IL-4, BV421-IL-17, and PE-FoxP3 antibodies. Post-

staining, cell samples were processed on a FACSCanto II flow

cytometer. Data acquisition and analyses were conducted using the

FACSDiva software (BD, USA). Comprehensive details regarding the

reagents used can be found in the Supplementary Methods section.
2.8 Assay for LPS and inflammatory factors

Serum concentrations of LPS, LPS-binding protein (LBP), B-cell

activating factor (BAFF), a proliferation-inducing ligand (APRIL),

TNF-a, IL-17, IL-10, and IL-6 were accurately measured using

human enzyme-linked immunosorbent assay kits provided by

Cusabio Biotech (Cusabio, China) and Multi Science (Multi

Science, China), following the manufacturer’s recommended

protocols. Specifically, the assays used were CSB-E09945h for

LPS, CSB-E09629h for LBP, CSB-E11912h for BAFF, CSB-

E15012h for APRIL, CSB-E09315h for TNF-a, CSB-E12819h for

IL-17, CSB-E04593h for IL-10, and 70-EK106/2-96 for IL-6.

Additionally, cytokine levels in supernatants from both

stimulated and non-stimulated PBMC cultures were analyzed using

a multi-analyte microsphere-based flow immunofluorescence assay

kit (Ruisikeer Biotechnology, China). This process involved

incubating each supernatant with antibody-conjugated microbeads

for two hours at room temperature, followed by a 30-minute

incubation with PE-conjugated secondary antibodies to form a

sandwich complex. After washing the microbeads, the fluorescence

intensity spectrum was assessed via FACSCanto II flow cytometry

(BD, USA), in adherence to the manufacturer’s guidelines.
2.9 Statistical analysis

Data processing and statistical analyses were conducted using

SPSS Statistics 20.0 (IBM, New York, USA). Continuous variables

adhering to a normal distribution are expressed as mean ± standard

deviation, while non-normally distributed data are presented as
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medians with interquartile ranges. For the comparison of two

groups, Student’s t-test was applied to normally distributed

continuous variables, and the Mann–Whitney U test was used for

those not following a normal distribution. The Bonferroni test was

employed to evaluate the differences among four stimulation groups.

Categorical data were analyzed using the chi-square test. Correlational

evaluations were performed using the Spearman rank correlation test.

Statistical significance was set at a P-value < 0.05, with significance

levels indicated as *** P < 0.001, ** P < 0.01, and * P < 0.05.
3 Results

3.1 Demographics and clinical
characteristics of participants

Table 1 provides a comparative overview of the clinical and

demographic parameters between GD patients and HCs. There

were no statistically significant differences in terms of sex, age, and

body mass index (BMI) between the two groups. However, serum

levels of FT3, FT4, TgAb, TPOAb, and TRAb were notably elevated

in the GD group compared to the HCs, with the differences reaching

statistical significance (P < 0.05).
3.2 Distinct immune profiles characterize
GD patients

A comprehensive assessment of the immune status was

undertaken. While all participants underwent the cytokine
TABLE 1 Demographics and clinical characteristics.

Healhty
controls
(n = 45)

Graves’ disease
patients
(n = 52)

P

Sex (M/F) 5/40 9/43 0.386

Age (years) 33.0 (27.0-52.0) 37.0 (27.3-48.8) 0.769

BMI
(kg/m2)

22.2 ± 2.6
21.5 ± 2.6 0.140

FT3
(pmol/L)

4.8 ± 0.6
27.7 ± 12.2 < 0.001

FT4
(pmol/L)

16.4 (14.6-17.8)
70.7 (46.5-100.0) < 0.001

TSH
(mIU/mL)

2.1 (1.7-2.8)
< 0.01 < 0.001

TgAb
(IU/mL)

0.2 (0.2-0.2)
11.2 (2.3-110.6) < 0.001

TPOAb
(IU/mL)

0.7 (0.5-1.2)
220.0 (5.0-774.1) < 0.001

TRAb
(IU/L)

0.3 (0.3-0.8)
10.0 (5.8-19.3) < 0.001
Data on BMI and FT3 were expressed as the means ± standard deviations. Data on age, FT4,
TSH, TgAb, TPOAb and TRAb were expressed as the medians (25th–75th percentile). BMI,
body mass index; FT3, free triiodothyronine; FT4, free tetraiodothyronine; TSH, thyroid-
stimulating hormone; TgAb, thyroglobulin antibody; TPOAb, anti-thyroid peroxidase
antibody; TRAb, thyroid stimulating hormone receptor.
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analysis, flow cytometry assessment was completed for 33 GD

patients and 32 HCs. In GD patients, there was a noticeable

elevation in the percentage of naïve B cells compared to the

HCs. Conversely, the percentages of conventional memory B

cells, preswitched memory B cells, and Th1 and Tc2 cell

subsets were diminished in the GD group (all P < 0.05,

Figures 1A, C, Supplementary Figure S1, S2). Notably, the

expression of CD32b, a pivotal immune checkpoint molecule,

was markedly diminished in GD patients relative to HCs (P <

0.05, Figure 1B).

In parallel, relative to HCs, GD patients exhibited elevated

serum concentrations of LPS, LBP, TNF-a, APRIL and BAFF. On

the other hand, IL-10 levels were distinctly lower in GD patients (all

P < 0.05, Figure 1D).
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3.3 Distinct gut microbial and serum SCFA
profiles in GD patients relative to HCs

An assessment of ASV diversity—encompassing both richness

and evenness—indicated no significant disparity between GD patients

and HCs (Figure 2A, Supplementary Figure S3). To appraise the beta

diversity of the gut microbiota, we employed the Unweighted UniFrac

distance. PCoA discernibly differentiated the gut microbiota structure

between the two groups (Adonis, R2 = 0.022, P < 0.05, Figure 2B).

We subsequently delved into the taxonomic architecture and

variations of the gut microbiome. The bacterial community’s

composition and relative abundance in each specimen at the phylum

and genus levels are elucidated in Supplementary Figure S4. At the genus

level, notable variations in relative abundance between the two groups
B C

D

A

FIGURE 1

GD patients present abnormal immune status compared with HCs. (A) The percentages of peripheral blood B-cell subsets, including naive B cells
(CD27- IgD+), pre-switched memory B cells (CD27+ IgD+), double-negative memory B cells (CD27- IgD-) and conventional memory B cells (CD27+

IgD-), were compared between GD patients and HCs. (B) The percentage of B cells expressing CD32b and the mean MFI values of CD32b on B cells
were compared between GD patients and HCs. (C) The percentages of Th1 cells (CD4+ IFN-g+) in CD4+ T cells and Tc2 cells (CD8+ IL-4+) in CD8+ T
cells were compared GD patients and HCs. (D) The levels of serum LPS and inflammatory factors were compared between GD patients and HCs.
GD, Graves’ disease; HCs, healthy controls; MFI, mean fluorescence intensity. * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1349397
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2024.1349397
were observed for genera such as Blautia, Bifidobacterium, Bacteroides,

Lactobacillus, Streptococcus, Enterococcus, Dialister, and Pediococcus

(Supplementary Figure S5). LEfSe analysis highlighted an augmented

representation of Blautia, Bifidobacterium, Lactobacillus, Streptococcus,

and Enterococcus in the GD patients relative to HCs, while genera like

Bacteroides, Dialister, and Alistipes were subdued (Figure 2C).

Further, a total of 11 divergent ASVs were identified in the GD

group compared to HCs. These included ASV263(Bacteroides),
Frontiers in Cellular and Infection Microbiology 06
ASV1451(Dial i s ter ) , ASV503(Coprococcus) , ASV1007

(Bifidobacterium), ASV1172([Eubacterium]_hallii_group), ASV1586

(Streptococcus), ASV1315(Streptococcus), ASV354(Streptococcus),

ASV675(Lactobacillus), ASV1584(Enterococcus), and ASV687

(Pediococcus) (Figure 2D).

Gut metabolites, with a specific emphasis on SCFAs, play a

pivotal role in facilitating interactions between intestinal flora and

the host immune system. In this context, we quantified salient
B

C

A

D

FIGURE 2

GD patients displayed alternation of gut microbiota compared with HCs. (A) Diversity, richness and evenness of gut microbiota were compared between
GD patients and HCs. (B) The principal coordinates analysis (PCoA) showing the beta diversity between GD patients and HCs using PERMANOVA based
on Bray-Curtis distances. (C) Linear discriminant analysis (LEfSe, LDA>3) column diagram. (D) Heatmap showing the relative abundance of the
discriminatory ASVs that drive the differences between GD patients and HCs. GD, Graves’ disease; HCs, healthy controls. * indicates P < 0.05.
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immunomodulatory SCFAs, including acetate, propionate, and

butyrate. Notably, acetate levels were markedly reduced in GD

patients compared to HCs (Figure 3).
3.4 Association of gut microbiota dysbiosis
and metabolites with immune markers and
clinical indices

To elucidate the possible links between specific bacterial taxa,

metabolites, and immune disturbances observed in GD, a correlation

analysis was performed. As depicted in Figure 4, serum TRAb levels

exhibited a positive association with ASV354(Streptococcus), ASV1586

(Streptococcus), ASV1007(Bifidobacterium), and ASV1584
Frontiers in Cellular and Infection Microbiology 07
(Enterococcus). In contrast, negative correlations were observed with

ASV1451(Dialister), ASV503(Coprococcus), and acetate. Notably,

acetate levels inversely correlated with ASV354(Streptococcus) but

showed a positive association with conventional memory B cells and

the expression of CD32b. Furthermore, ASV1584(Enterococcus)

demonstrated a positive correlation with LPS and pro-inflammatory

markers, including TNF-a, APRIL and LBP.
3.5 In vitro modulation of cytokines by LPS
and SCFAs

To further decipher the implications of LPS and SCFAs in

immune aberrations observed in GD, PBMCs were treated with
FIGURE 3

Comparison of serum short-chain fatty acids between GD patients and HCs. The levels of serum acetate, propionate, butyrate and their cumulative
mix were compared between GD patients and HCs. GD, Graves’ disease; HCs, healthy controls. * indicates P < 0.05.
B C

A

FIGURE 4

Correlation network of key ASVs, metabolites, immune indicators and clinical phenotypes. (A) Correlation in the key ASVs, metabolites and clinical
phenotypes. (B) Correlation in the key ASVs, metabolites and immunocytes. (C) Correlation in the key ASVs, metabolites and inflammatory factors.
Red connections indicate the positive correlation (FDR < 0.05), whereas blue connections show correlations that were negative (FDR < 0.05). ASV,
amplicon sequence variant; FT3, free triiodothyronine; FT4, free tetraiodothyronine; TSH, thyroid-stimulating hormone; TgAb, thyroglobulin
antibody; TPOAb, anti-thyroid peroxidase antibody; TRAb, thyroid stimulating hormone receptor; NB,native B cells; PB, preswitched memory B cells;
DB, double-negative memory B cells; CB, conventional memory B cells; PC, plasma cells; LPS, lipopolysaccharide; LBP, LPS-binding protein; BAFF,
B-cell-activating factor; APRIL, a proliferation-inducing ligand.
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both LPS and SCFAs. LPS stimulation in healthy individuals

resulted in a notable increase in the the percentage of naive B

cells, accompanied by a reduction in the conventional memory B-

cell population. Nevertheless, this LPS-induced shift in B-cell

subsets was not mitigated by SCFAs (Figure 5A). Conversely,

such changes were absent in individuals with GD.

Moreover, LPS exposure markedly augmented the production

of TNF-a, IL-6, and IL-10. This enhancement was notably

suppressed when acetate was combined with propionate and

butyrate. However, acetate on its own did not yield this inhibitory

effect (Figure 5B). Interestingly, the extent of cytokine response

differed between GD patients and HCs upon LPS exposure. GD

patients exhibited a higher propensity for IL-6 production, whereas

HCs showed a greater increase in TNF-a levels (Figure 5B),

highlighting the differential immune response dynamics in GD

compared to healthy states.
4 Discussion

In prior research, fecal microbiota transplantation from GD

patients was shown to notably elevate the incidence of GD in mice

and increase serum thyroid hormone and proinflammatory cytokine
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levels (Su et al., 2020). This underscores the pivotal role of gut

microbiota aberrations in GD’s pathogenesis, suggesting they act as

more than mere secondary effects or concomitant phenomena. As

delineated previously, autoimmunity primarily drives GD

pathogenesis. Yet, the exact factors instigating the immune

imbalance in GD remain elusive. It is thus imperative to probe

whether gut dysbiosis is central to GD’s autoimmune pathogenesis.

In this study, we adopted the ASVsmethodology, in lieu of OTU,

as our clustering algorithm to gauge bacterial relative abundances.

Our findings revealed a marked alteration in the microbial

community structure of GD patients compared to HCs. Echoing

previous research (Yan et al., 2020; Yang et al., 2022), we discerned

elevated abundances of ASV675(Lactobacillus) and ASV1007

(Bifidobacterium) in GD, with ASV1007(Bifidobacterium)

manifesting positive correlations with FT3, FT4, and TRAb levels.

An animal-based study similarly identified a positive association

between Lactobacillus and FT4 (Masetti et al., 2018). Such

observations insinuate a potential pathogenic influence of these

two genera in GD. Furthermore, specific strains of Lactobacillus

and Bifidobacterium possess amino acid sequences mirroring those

of TPO and Tg (Kiseleva et al., 2011). Consequently, the augmented

prevalence of these potentially pathogenic strains could initiate

autoimmune reactions via molecular mimicry mechanisms.
B

A

FIGURE 5

Effects of LPS and short-chain fatty acids on B-cell subsets distribution and cytokines production in GD patients and HCs. (A) Quantifies the
distribution of B-cell subsets in PBMC cultures stimulated with LPS alone, LPS combined with Ace, LPS with Ace, Pro, and But, compared to
unstimulated PBMC cultures. (B) Evaluates the production of inflammatory cytokines under the same conditions. LPS, lipopolysaccharide; Ace,
acetate; Pro, propionate; But, butyrate; PBMC, peripheral blood mononuclear cell. GD, Graves’ disease; HCs, healthy controls. * indicates P < 0.05,
** indicates P < 0.01, *** indicates P < 0.001.
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Additionally, a primary cluster of bacterial genera—including

ASV1584(Enterococcus), ASV1586(Streptococcus), ASV1315

(Streptococcus), and ASV354(Streptococcus)—exhibited enrichment in

GD patients. Notably, these ASVs exhibited correlations with thyroid

hormones, thyroid autoantibodies, cytokines, and lymphocyte subsets,

hinting at their possible immunomodulatory properties. Elevated

Enterococcus prevalence has been documented in rheumatoid

arthritis and systemic lupus erythematosus studies (Kim et al., 2019;

Mena-Vázquez et al., 2020). Particularly, Enterococcus gallinarum has

been shown to transgress the gut barrier, colonizing internal organs

and stimulating autoimmunity in hosts (Fine et al., 2020), pointing

towards the potential pathogenic role of ASV1584(Enterococcus) in

GD. Streptococcus has been implicated in compromising epithelial

integrity and inciting inflammatory responses (Cui et al., 2020).

Though its role in GD’s pathogenesis remains unelucidated,

heightened Streptococcus levels were associated with APRIL over-

expression. Conversely, abundances of ASV263(Bacteroides) and

ASV1451(Dialister) witnessed a notable decline in GD. Previous

research noted diminished Bacteroides spp. in European GD patients

(Biscarini et al., 2023), while an opposing trend was observed in GD

patients from eastern China (Jiang et al., 2021). Such discrepancies can

be attributed mainly to regional variations and clustering algorithm

methodologies. Nonetheless, these genera are universally

acknowledged as SCFA-producing microbes, and their decreased

prevalence is observable in disorders like depression and

atherosclerosis (Yoshida et al., 2018; Yu et al., 2023). Moreover, these

genera exhibited negative correlations with thyroid autoantibodies. In

summary, it is compelling to delve into whether microbial production

and metabolites dictate the immune profile of GD.

In our study, we observed a significant elevation of LPS, an

endotoxin derived from gram-negative bacteria, in GD patients.

Prior studies have indicated that LPS can trigger proliferation and

differentiation of murine B-cells (Lu and Munford, 2016).

Furthermore, following the intravenous administration of LPS,

memory B cells experienced partial depletion from the circulatory

system in healthy male subjects (Brinkhoff et al., 2019). Our in vitro

findings align with these in vivo observations, showing a reduction

in conventional memory B-cell subsets in healthy individuals

following LPS exposure, mirroring the immune status seen in

GD. This alteration can be partially ascribed to Fas-induced

apoptosis, steered by the LPS/TLR4 signaling pathway (Chang

et al., 2016). Collectively, these insights underscore LPS’s pivotal

role in the skewed distribution of B-cell subsets.

Moreover, we evaluated the expression of CD32b, a key

inhibitory receptor, to ascertain the B cells’ immune status within

our study group. There was a noticeable reduction in CD32b

expression in GD patients. Interestingly, in our in vitro

experiments, LPS stimulation did not markedly alter CD32b

expression (data not presented). This indicates that the diminished

expression of inhibitory receptors in GD might operate

independently of LPS. Complementing this, Swanson-Mungerson

et al. (Swanson-Mungerson et al., 2017) highlighted that LPS prompts

B-cell activation by enhancing the expression of MHCII and CD86.

In summary, LPS seems to instigate B-cell activation primarily by

augmenting the expression of co-stimulatory molecules, rather than

by suppressing inhibitory receptor expression.
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Numerous investigations have documented anomalous cytokine

production in GD patients. In line with these findings, our data

indicated elevated levels of TNF-a in GD patients relative to HCs,

while there was a decrease in IL-10 expression. Even though IL-10 is

typically regarded as an anti-inflammatory molecule, we observed its

upregulated production in vitro upon LPS stimulation. This is

congruent with prior research (Schildberger et al., 2013). The

pronounced induction of IL-10 might suggest an initiation of

counteractive, anti-inflammatory reactions. Thus, the compromised

serum IL-10 in GD patients may contribute to the observed immune

dysregulation. Pivotal inflammatory mediators, including IL-17,

TNF-a, and IL-6, are integral to GD pathophysiology. IL-17, a

notable proinflammatory cytokine, instigates the NF-kB signaling

cascade, resulting in the subsequent release of TNF-a and IL-6 (Lu

et al., 2023). Concurrently, heightened activity of the TNF-a/TNFR or

IL-6/STAT3 pathways also promotes Th17 differentiation and IL-17

production (Pesce et al., 2022). This culminates in a self-amplifying

loop, further intensifying immune-mediated damage to the thyroid.

Consequently, mitigating these pro-inflammatory cytokines emerges

as a pivotal strategy in averting GD progression. Previous studies have

shown that acetate reduces IL-17 production and the proportion of

Th17 cells (Wibowo et al., 2021). In our experiments, the increase in

IL-17 production following LPS exposure was not significant, casting

uncertainty on the protective role of SCFAs. As for TNF-a and IL-6,

the inhibitory impact of sodium acetate on their release was not

marked. However, both propionate and butyrate have demonstrated

potential in curtailing their synthesis (Segain et al., 2000; Lang et al.,

2022). Remarkably, we discerned a substantial decline in the release of

these proinflammatory cytokines when exposed to a combination of

sodium acetate, propionate, and butyrate. Such multifaceted findings

suggest that acetate collaborates synergistically with other SCFA

components in countering inflammation.

The present study is not without limitations. Firstly, while we

employed 16S rRNA analysis to delineate the microbial composition,

this approach did not enable us to discern at the species level. Future

investigations leveraging metagenomic techniques could further

refine our understanding and pinpoint specific pathogens

associated with GD. Secondly, our immune profiling was based on

samples derived from peripheral blood. It is noteworthy that

circulating lymphocytes might exhibit differences from immune

cells procured from the thyroid or lymphatic tissues.

Our research uncovered a correlation between gut dysbiosis and

various aspects of thyroid health, including thyroid function,

autoantibodies, and overall immune status. Furthermore, gut

dysbiosis appeared to influence the distribution of B-cell subsets

and cytokine production, indicating a potential role in the

autoimmunity associated with GD. These insights contribute to a

growing body of evidence on the involvement of gut microbiota in

GD, suggesting that further exploration into its role could

significantly deepen our understanding of GD’s pathogenesis.
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