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The large-scale removal of carbon dioxide from the atmosphere is likely to be important

in maintaining temperature rise “well below” 2◦C, and vital in achieving the most

stringent 1.5◦C target. Whilst various literature efforts have estimated the global

potential of carbon dioxide removal (CDR) for a range of technologies with different

degrees of certainty, regional bottlenecks for their deployment remain largely overlooked.

Quantifying these barriers, through national and local case studies, rather than with

aggregated approaches, would guide policy and research, as well as investments,

toward regions that are likely to play a prominent role in CDR deployment. Five CDR

technologies—including afforestation/reforestation, bioenergy with carbon capture and

storage, biochar, direct air capture and enhanced weathering—are compared in this

work. We discuss main technical, socio-economic and regulatory bottlenecks that have

been scarcely investigated at regional level, and provide directions for further research.

We identify the availability of accessible land, water, low carbon energy and CO2 storage

as key regional drivers and bottlenecks to most CDR technologies. We discuss the

caveats in CO2 accounting in assessing the performance of each technology, and the

need for an international regulatory framework which captures these differences. Finally,

we highlight the social, economic and political drivers which are central in unlocking the

large scale deployment of CDR technologies, in a cost attractive, socially acceptable and

politically achievable way.

Keywords: negative emissions, carbon dioxide removal, climate change mitigation, BECCS, DACCS

INTRODUCTION

Insufficient climate change mitigation action has led to the need for large-scale carbon
dioxide removal (CDR) from the atmosphere to meet the Paris Agreement target (IPCC,
2018). Several technologies have been identified as capable of delivering CDR at scale:
afforestation/reforestation (AR/RE), bioenergy with carbon capture and storage (BECCS),
biochar, direct air carbon capture and storage (DACCS), and enhanced weathering of minerals
(EW) (Minx et al., 2018). Other technologies, such as ocean fertilization exist, but were
excluded from the study because of their limited potential, particularly when compared to
alternative portfolio options (Fuss et al., 2018). The global and regional deployment potentials
of these technologies—often in isolation—have been quantified, with different degrees of
certainty. A recent review quantifies annual technical and sustainable CDR potentials in
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2050 at 0.5–7 GtCO2 for AR/RE, 0.5–5 GtCO2 for BECCS,
0.3–2 GtCO2 for biochar, 0.5–5 GtCO2 for DACCS, and 2–
4 GtCO2 for EW (Fuss et al., 2018). These estimates are
conservative and account for both physical limits—land, water,
CO2 storage, suitable minerals and energy availabilities—
and broader environmental risks—biodiversity loss and albedo
effects. Integrated Assessment Models (IAMs) represent the
world in aggregated regions, consequently they are incapable of
identifying the extent to which these factors represent regional
bottlenecks for CDR deployment. Instead, CDR potentials are
quantified in a rather coarse manner, by focusing on standalone
CDR options (Azar et al., 2010; Klein et al., 2014; Popp et al.,
2014), or by investigating two options (generally afforestation
and BECCS) at the same time (Humpenöder et al., 2014;
Harper et al., 2018). Case studies accounting for a compressive
portfolio of CDR technologies and adopting a regional or
national approach are currently scarce. The presence of such
literature gaps has a 2-fold implication: (1) limited guidance
toward implementation of CDRs at national or regional scale (2)
difficult identification of key regions for CDR deployment based
on site-specific factors.

In the following sections, we highlight regional enabling
factors of CDR deployment that have received minimal
investigation in the literature, and need further research.

FROM GLOBAL TO REGIONAL
BOTTLENECKS OF CDR DEPLOYMENT

Land and Water
The effectiveness of land-basedmitigation technologies—AR/RE,
BECCS, Biochar and EW—are inherently dependent on land
availability, and the quality and accessibility (here considered
as proximity to infrastructure) of that land will impact the
regional implementation of the CDR options differently. While
largely unaffected by land accessibility issues, land availability and
quality are critical to AR/RE potential. A key regional limitation
for afforestation is also the potential reduction of the earth albedo
effect in boreal/northern hemisphere areas (Smith et al., 2016a).
Tropical regions are therefore the most attractive places for
forest growth practices, because the combined effect of carbon
sequestration and albedo change are assumed to lead to a net
cooling (Kreidenweis et al., 2016). Whilst some authors have
warned against potential side effects, such as food price increase
and land use change (Calvin et al., 2014; Kreidenweis et al., 2016)
of intense afforestation in such regions, case studies detailing
such socio-economic impacts at the local level, are still scarce in
the literature (Stoy et al., 2018).

In many regional approaches, the role of water and land for
BECCS deployment is relatively nuanced, because of the 2-fold
flexibility of biomass feedstock supply. Indeed, BECCS plants can
rely on imported biomass feedstock (Fajardy et al., 2018), and
opt for biomass feedstock, such as wastes (Pour et al., 2018),
residues from forestry and agriculture (Creutzig et al., 2015),
pulp and paper industry biomass (Onarheim et al., 2017), and
algae biomass (Beal et al., 2018), which do not require dedicated
plant growth. Similarly, biochar can be derived form a wide

range of feedstock, with properties and utility differing with
feedstock type and production condition, including pyrolysis
temperature (Kwak et al., 2019). However, large scale deployment
of BECCS and biochar will likely require dedicated bioenergy
crops, hence the importance of land productivity in regions likely
to contribute to bioenergy production. In addition to biomass
production, BECCS also requires water at the CO2 capture
level, which is mainly a function of the cooling technology.
However, BECCS total water requirement is largely driver by the
biomass water footprint (Fajardy and Mac Dowell, 2017). Water
requirements for DACCS and EW are typically lower than that of
BECCS or biochar by an order of magnitude (Smith et al., 2016a).

Assumptions underlying IAMs typically feature a land
productivity increase of a 1 to 3% over time (Fisher et al.,
2012; Winchester and Reilly, 2015). Since these assumptions are
based on historical trends of conventional (e.g., wheat/corn)
crops, the extent of which these increases will be applicable
to second generation bioenergy crops, is uncertain. Regional
quantifications of actual and potential yields for bioenergy crops
is therefore crucial, especially considering that some high yielding
and resilient types (e.g., perennial grasses) could remediate
set-aside/low productivity land, thus reducing the overall land
requirement for BECCS (Smith et al., 2013; Liu et al., 2014).
Quantifying the regional availability of such land parcels, and
determining to which extent they will be accessible and used by
energy producers will enable further evaluations on sustainable
bioenergy potential.

Other key drivers for BECCS deployment include land
accessibility, for biomass transport and CO2 infrastructure roll-
out, and water requirement at the plant gate (Smith et al., 2016a;
Fajardy and Mac Dowell, 2017), which needs to be factored to a
smaller extent when deciding on the location of a BECCS plant.

Biochar and minerals for EW can be applied on agricultural
lands, in conjunction with conventional farming, which means
than there is no direct competition with other uses of the land.
Furthermore, potential yield increase in the land from biochar
and minerals application could be an added benefit of CDR
deployment (Lenton, 2010; Jeffery et al., 2011).

Low Carbon Energy and Energy Systems
Integration
A key enabling factor for CDR technologies deployment is the
possibility to access low carbon energy sources: whilst BECCS
produces energy, its life cycle energy requirement can be high
and regions with low carbon fuels and electricity will be favored
to produce sustainable biomass (Fajardy et al., 2018). EW,
biochar and afforestation also require some form of potentially
energy-intensive steps—the total energy requirement typically
decreasing in this order—such as material grinding and transport
for EW (Renforth, 2012), biochar production via pyrolisis,
transport and application for biochar (Smith, 2016), and forest
management (e.g., fertilizer application) for afforestation. The
availability of low carbon energy becomes even more important
when considering DACCS, which process requires ∼9–10 GJ
of thermal energy per ton of CO2. Such energy requirement
has three main implications: (1) high running costs of DACCS
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facilities compared to other CDRs options, (2) carbon efficiency
requirement (de Jonge et al., 2019), and (3) implications on the
energy system configuration (Daggash et al., 2019).

CDRs options implying energy production (BECCS) or
consumption (DACCS), face the challenge of being efficiently
integrated into the energy systems, especially considering their
anticipated role in climate stabilization scenarios. A recent study
calculated that, if emission reductions in line with the 2◦C
target are to be met by 2100, high rates of end-use energy
produced by BECCS and consumed by DACCS (8 and 20%,
respectively) would be needed (Creutzig et al., 2019). Given
such a prominent role in both energy generation and load, the
deployment of these options needs to account for future energy
systems configurations, especially considering that the rate of
energy systems decarbonization has important consequences for
the scale of CDR adoption.

However, studies attempting to understand how CDR
technologies will integrate into future energy systems are
currently scarce in the literature. Especially crucial are energy
systems modeling efforts with high spatiotemporal and
technological resolution, to understand: (1) the role of CDR
deployment in regional energy demand (DACCS) and energy
supply (BECCS) curves, and (2) potential feedback loops
between energy market prices and cost/carbon efficiencies of
CDRs options.

CO2 Storage
Accessible CO2 storage capacity is ultimately the main regional
driver of BECCS and DACCS deployment. Few regions (e.g., the
USA, UK and Norway) have performed a thorough geological
survey to assess its CO2 storage capacity and quality. When
surveys have been carried out, the data is not always publicly
available and/or exploitable (e.g., China and Europe) (Dahowski
et al., 2009; Geological Survey of Denmark Greenland, 2009;
Li et al., 2009). Other regional studies have been performed,
but they often consist in qualitative assessments at the country
level (e.g., India, Brazil) (Holloway et al., 2008; Ketzer et al.,
2014) or quantitative assessment at the basin level (e.g., China).
Furthermore, differences in assumptions from one survey to
another render them difficult to compare. An open-access and
consistent database gathering regional geological storage quality
and capacity is mandatory to further explore which role will a
region play—if any—in deploying BECCS and DACCS. Table 1
summarizes the relative importance of regional bottlenecks for
each CDR method.

Tracking CO2 Removal in Space and Time
Common to all CDR technologies is the requirement to track
the CO2 along the value chain in both space and time. The CO2

negativity—howmuch CO2 is actually removed when accounting
for life cycle emissions, or the CO2 efficiency—ratio of CO2

removed to CO2 absorbed by the biomass (Renforth, 2012;
Fajardy and Mac Dowell, 2017; de Jonge et al., 2019; Tanzer
and Ramirez, 2019) including land use change emissions in
particular (Searchinger et al., 2008; Harper et al., 2018)—are key
metrics that need to be carefully assessed. This is particularly
important when comparing different CDR technologies, as

illustrated in a recent work comparing BECCS and AR at the
global level (Harper et al., 2018), highlighting the relative success
of BECCS when accounting for changes on the land total carbon
budget. Implementing sustainability criteria and supply chain
certification frameworks are central to this endeavor.

Forest certification, a practice that recognizes responsible
management via verified compliance with underlying
criteria and indicators (CIFOR, 2013), represent a useful
tool in biological carbon offsets projects. However, the
lack of policy related to certification guidelines and
the absence of a universal accreditation framework has
resulted in large discrepancies between the claims of
different projects (CIFOR, 2013). This, in turn, leads to
uncertainty, which might discredit AR as a valid CDR
practice and contributes to the growing concern about carbon
neutrality of forestry-based biomass sources used in BECCS
projects (Searchinger, 2012).

Tracking CO2 emissions becomes particularly challenging
when CDR value chains are potentially international and
multipolar, which is specific to BECCS (Fajardy et al., 2018).

Time matters differently for each CDR technology, when it
comes to tracking CO2 removal, hence the need for different
metrics to measure their performances. The rate of CO2 removal
represents a crucial factor for biological or mineral sinks, i.e., in
BECCS, AR, EW, and biochar, and remain a point of uncertainty
for EW in particular (Renforth, 2012).

Specific to land-based CDR potentially involving land use
change, i.e., BECCS in this case, high initial land use change
emissions—also referred to as the carbon debt (Fargione et al.,
2008)—as compared to the technology CO2 removal rate,
can lead to delayed carbon removal: a CDR system only
becomes net negative after several years of operation, if at all
(Fajardy and Mac Dowell, 2017).

Natural sinks reach their maximum capacity within decades,
as compared to centuries for geological underground storage.
Therefore, when CO2 is stored in biological sinks (trees, land,
oceans), the issue of sink saturation, i.e., the fact that CO2 removal
is limited in time, is a major limitation. In case of AR, this relates
to the fact that trees reachmaturity, and therefore the net removal
of greenhouse gases from the atmosphere decline to zero (Smith
et al., 2016b; Alcalde et al., 2018). Its direct implication is that
forest sinks need to be managed and monitored to maintain
the optimal CO2 uptake over time. Finally, monitoring CO2

sequestered is also key to ensure permanence CO2 removal.
Whilst long term geological storage raises questions of liability
and insurance (Bui et al., 2018), monitoring CO2 storage sites
represent more of a legal and financial challenge than a technical
one. In the case of afforestation however, natural (for e.g., decay)
and accidental (for e.g., forest fires, land use change) degradation
of the carbon stock, both above ground and below ground, put
the permanence of CO2 removal at risk.

The relative difficulty for each CDR option of tracking CO2

removal in space and time, could ultimately impact: 1) the
complexity of the regulation/certification frameworks required
to ensure the performance and sustainability of each option
and 2) the economic potential of the technology—by deterring
investors with high upfront financial risks and high regulation,
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TABLE 1 | The comparative importance of regional bottlenecks to the deployment of different CDR technologies.

Land Water Low carbon energy

(fuel and electricity)

Geological CO2

storage

Misc.

Availability Quality Accessibility

AR/RE ++++ +++ + +++ + (Management) Albedo +++

BECCS ++ ++ ++ ++ ++ (Supply chain) ++ Wastes/other feedstock

++

Biochar ++ + +++ + (Supply chain) + Variable impact on yield

DACCS + + + +++ (Process) +++

EW ++ +++ ++ (Supply chain) + Variable impact on yield

and therefore need to be included in comparative assessments.
These observations are summarized in Table 2.

Socio-economic Issues and the Need for a
Landscape Approach
Much of the controversy about CDR methods to date is
directed at BECCS, emerging as the key technology for cost-
effectively limiting global warming to the level set by the
Paris Agreement. Studies applying global IAMs indicates a
global potential deployment of biomass for BECCS in the
range of 1.3–1.6 GtCO2/yr by 2050 (Huppmann et al., 2018;
Rogelj et al., 2018). It is well-recognized that such a high
deployment of biomass would require a massive transformation
of agricultural systems worldwide, with implications for both
environmental and social change. Outcomes from IAM studies,
have extensively investigated the widespread ecological impacts,
such as biodiversity loss, food security along whit access to
energy and water (Müller et al., 2008; Popp et al., 2011, 2014)
that would occur if BECCS is extrapolated to the required
scale. However, case study evidence detailing the societal impacts
of bioenergy and BECCS deployment is currently missing in
climate actions debates. When the socio-economic dimension is
accounted for, this is generally done by considering economic
growth or food prices. Other dimensions of human well-beings,
such as employment opportunities or change in socio-economic
conditions of local communities, remain largely overlooked.

In the attempt to narrow this gap, Creutzig et al. (2013) have
analyzed the factors shaping the interaction between bioenergy
and livelihood, highlighting how global competition for land use
emerging from IAMs scenarios, would directly affect 1.5 billion
smallholders. The authors concluded that, because calculation
of bioenergy potentials is often presented at aggregated level,
impacts of bioenergy schemes on local communities remain
systematically underexplored.

The argument of global scale as an inadequate dimension to
see potential social impacts at work, has been recently brought
up by other authors (Buck, 2018; Lenzi, 2018). While conducting
structured interviews and site visits to examine the challenges
of the deployment of CDR technologies (Buck, 2018) have
identified, in the landscape level, larger than a farm but smaller
than a region, the crucial dimension in designing the governance
of CDR technologies. A landscape approach, the author argues,
would promote a paradigm shift in the way CDR is perceived,

TABLE 2 | The comparative importance of life cycle analysis to the performance

of different CDR technologies in space and time.

Space Time

AR/RE ++

Mapping of sustainable

management zones is

required

++++

Rate of CO2 capture

Sink saturation

Permanence

needs management

BECCS +++

Careful life cycle is challenging

especially with biomass

international BECCS value

chains

++

Potential delayed CO2 removal

if high land use change

Biochar +

Biomass processing and

transport needs to be

monitored, usually local

+++

Rate of CO2 capture

Sink saturation

DACCS + Carbon footprint of energy

needs to be monitored

EW + Rock collection, grinding,

and transport need to be

monitored, usually local

++ Rate of CO2 capture,

monitoring due to sink

evolution over time (from

minerals to groundwater and to

ocean)

as a valuable practice that creates jobs, rather than artifacts
being deployed. Hence, adopting a landscape/local prospective,
would not only address distributional issues associated with the
production model underlying CDR schemes, but also help to
resolve some narrative issues around CDR technologies.

The value of the societal dimension is also crucial to quantify
potential local co-benefits, such as employment opportunities
(Patrizio et al., 2018) and income growth. This is particularly
relevant for BECCS and afforestation projects in developing
countries, where large areas of land are still unregistered, and
surrounding communities must obtain benefits from forest and
be actively involved in their management (Greve et al., 2013).
Accounting for such elements may influence geographic
priorities and serve as a useful initial decision-making tool to
maximize the overall benefits of CDR projects.

Financing CDR
The literature on CDR has focused on techno-economic
assessments of CDR methods at scale (Fuss et al., 2018).
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The economic costs of deploying these technologies have been
evaluated, albeit with significant uncertainty owing to the lack
of demonstration and commercial-scale projects. It has been
repeatedly highlighted that regional carbon prices are insufficient
to incentivize CDR deployment. More relevant to note is
that, should carbon prices be sufficient, mainstream carbon
pricing schemes often only penalize CO2 emissions and do
not remunerate removal. CDR is a public good as it furthers
climate changemitigation, so its value needs to be recognized and
appropriately remunerated. Failing regulatory/policy changes to
carbon pricing mechanisms to incentivize CDR and an increase
in carbon prices, a negative emissions credit—a payment for
net CO2 removal from the atmosphere—is necessary. Financing
mechanisms that can deliver these incentives in a socially-
acceptable manner (i.e., without disproportionately affecting
some segments of society e.g., fuel tax hikes) have not received
enough attention. It has been shown that CDR deployment
can allow for the continued utilization of existing CO2-emitting
assets, thereby avoiding stranded assets (Daggash et al., 2019).
The revenue generated by some of these assets which would have
been otherwise constrained from productive utilization should
accrue to the providers of CDR. The market and governance
mechanisms that allow for the verification and trading of such
negative emissions credits (as discussed earlier), however, are
currently non-existent and need to be designed.

Enhanced oil recovery and merchant CO2 markets have
been proposed as routes to CDR commercialization. However,
CO2 utilization processes generally do not contribute to climate
change mitigation as they only delay emissions1. Commercial-
scale CDR which also contributes to mitigation is only possible if
a stable revenue stream is available for the service of permanently
sequestering atmospheric carbon. Additionally, the volumes of
these CO2 markets are small relative to the scale of CDR needed
to meet the Paris Agreement.

Majority of the CDR options interact, to different extents,
with the energy system. Since the 1990s, energy markets have
been increasingly liberalized, such that investment in energy
technologies is largely private sector-driven. Private investment
seeks the greatest economic return, therefore incentives (both
policy and financial) offered to CDR need to make the
technologies not just economically-viable but the most attractive
destination for investment.

International Diplomacy
The ability to deliver CDR at scale is contingent on the availability
of several bio-geophysical resources—land, CO2 storage capacity,
rocks, ocean, etc.—, all of which are scarce and unevenly
distributed geographically. In addition to quantity, the nature
and quality of each resource will determine the carbon removal
potential of the CDR technique pursued. Economic factors,
such as labor costs and taxation rates will influence local CDR
costs. Owing to geographic and economic factors therefore,
the physical and economic efficiency of CDR technologies
for climate change mitigation will be location-dependent. The

1Conversion of CO2 into building materials (e.g., concrete) is one of the few CCUS

processes that result in the permanence of stored CO2.

Paris Agreement—and climate policy, in general—has sought
to distribute the burden of climate change mitigation based
on “the principle of equity and common but differentiated
responsibilities and respective capabilities, in the light of different
national circumstances.” To achieve both a cost- and politically-
optimal distribution of CDR burden, therefore, will require
mechanisms that allow for cross-border trade/exchange of
resources (e.g., of sustainable biomass, or energy) and emissions
(should it prove cheaper for a country to pay for CDR to be
done elsewhere). This, in addition to the dominant market-based
approach to development of energy infrastructure, means multi-
region, multi-stakeholder supply chains and market/governance
systems will manifest.

Whilst these socioeconomic and political challenges
surrounding CDR have been acknowledged (Honegger and
Reiner, 2018; Nemet et al., 2018), there has not been an attempt
to quantify what, firstly, a cost optimal distribution of CDR
burden globally is. If that involves cross-border biomass trade
(in the case of BECCS deployment) as has been suggested
(Fajardy et al., 2018; Daggash et al., 2019), then the development
of international biomass sustainability certification standards
is critical. The development of such frameworks, particularly
in countries without pre-existing expertise of sustainability
certification, will require cooperation between expected trading
partners so as to align verification and monitoring methods.
Although several regional emissions trading schemes (ETS)
and carbon offsetting mechanisms exist globally, they have
failed to incentivize real and verifiable storage of CO2–and
consequently, CDR—by encouraging short-term CO2 utilization
instead (Haszeldine et al., 2018). Adapting carbon offsetting
mechanisms to incentivize CDR and include negative emissions
in trading permits, and further expansion of emissions trading
zones will facilitate the deployment of CDR at scale. Through the
nationally-determined contributions (NDCs), commitments to
the Paris Agreement are assessed at country-level. If cross-border
financing and bio-geophysical resources are used to deliver CDR,
a framework needs to be developed to determine to whom the
emissions reduction is ascribed. The aforementioned present
significant regulatory and political barriers, both locally and
internationally, to efficient CDR deployment. However, they have
received insufficient investigation, indicated by their absence in
the literature. Failure to fully understand these challenges within
different socioeconomic and geopolitical contexts, and design
appropriate policy solutions to address them will stifle necessary
climate change mitigation action.

Knowledge Transfer
IAMs estimate that the largest cumulative contributions of
CDR are made by six regions: China, the USA, India, the EU-
28, Brazil and Russia (Peters and Geden, 2017). Discussions
surrounding CDR, and more broadly, CCS, deployment have
centered on these regions, principally the USA and Northwestern
Europe. Accordingly, there has been an abundance of research
quantifying the bio-geophysical limitations to CDR deployment,
often by publicly-funded bodies, such as the countries’ geological
surveys or energy/environment ministries. High-quality data
enables accurate quantification of CDR potential within these
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regions—crucial in understanding how the rest of the energy
system and society is required to transition to meet the
Paris Agreement.

With the exception of India, the centers of population and
economic growth in the coming decades are expected outside
the aforementioned regions—mostly in Sub-Saharan Africa and
South East Asia. Increasing population leads to increased energy
demand, and economic development (hence more affluent
lifestyles) will lead to higher per capita demand. The rate and
scale of energy supply expansion needed to accommodate these
demographic explosions means majority of developing countries
continue to pursue largely fossil fuel-powered development.
Prolonged use of fossil fuels may lead to an increasing reliance
on CDR (and CCS) to meet emissions reductions commitments.
However, typically, the expertise needed to gather knowledge
on CDR/CCS potential is lacking and budgetary constraints
limit resource availability to undertake RD&D within those
environments. Climate equity—as interpreted in the Paris
Agreement—warrants that developed countries provide finance,
technology transfer and capacity-building to “assist developing
country Parties with respect to both mitigation and adaptation in
continuation of their existing obligations under the Convention.”

This is ongoing via special funds under the Global Environment
Facility but financing has thus far eluded CDR/CCS projects and
focused on alternative mitigation/adaptation solutions. Focus

and financing must be re-channeled if the necessary expertise
is to be developed, so that it is available when CDR/CCS
deployment become necessary. How much and to whom this
financing should be given—that is the countries for which
CCS/CDR is likely to be a necessity—need to be identified
through further research.
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