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Land cover has been designated by the Global Climate Observing System (GCOS) as

an Essential Climate Variable due to its integral role in many climate and environmental

processes. Land cover and change affect regional precipitation patterns, surface energy

balance, the carbon cycle and biodiversity. Accurate information on land cover and

change is essential for climate change mitigation programs such as UN-REDD+. Still,

uncertainties related to land change are large, in part due to the use of traditional land

cover and change mapping techniques that use one or a few remotely sensed images,

preventing a comprehensive analysis of ecosystem change processes. The opening of

the Landsat archive and the initiation of the Copernicus Program have enabled analyses

based on time series data, allowing the scientific community to explore global land cover

dynamics in ways that were previously limited by data availability. One such method

is the Continuous Change Detection and Classification algorithm (CCDC), which uses

all available Landsat data to model temporal-spectral features that include seasonality,

trends, and spectral variability. Until recently, the CCDC algorithm was restricted to

academic environments due to computational requirements and complexity, preventing

its use by local practitioners. The situation has changed with the recent implementation

of CCDC in the Google Earth Engine, which enables analyses at global scales. What is

still missing are tools that allow users to explore, analyze and process CCDC outputs in a

simplified way. In this paper, we present a suite of free tools that facilitate interaction with

CCDC outputs, including: (1) time series viewers of CCDC-generated time segments; (2)

a spatial data viewer to explore CCDC model coefficients and derivatives, and visualize

change information; (3) tools to create land cover and land cover change maps from

CCDC outputs; (4) a tool for unbiased area estimation of key climate-related variables

like deforestation extent; and (5) an API for accessing the functionality underlying these

tools. We illustrate the usage of these tools at different locations with examples that

explore Landsat time series and CCDC coefficients, and a land cover change mapping

example in the Southeastern USA that includes area and accuracy estimates.

Keywords: land cover, land cover change, Landsat, Google Earth Engine (GEE), Continuous Change Detection and
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INTRODUCTION

Remote sensing of the land surface can contribute to our

understanding of the climate system in a variety of ways. The
land surface represents the boundary conditions for atmospheric
circulationmodels, providing essential information on exchanges

of mass, energy and momentum between the surface and
the atmosphere (Sellers et al., 1997). The Global Climate

Observing System (GCOS) has identified Essential Climate
Variables (ECVs), which include a suite of land surface products
related to the cryosphere, biosphere, and hydrosphere that are
“needed to understand and predict the evolution of climate, to
guide mitigation and adaptation measures, to assess risks and
enable attribution of climate events to underlying causes, and
to underpin climate services” (WMO, 2020). In this paper, we
focus on one of these Climate ECVs, land cover, with particular
attention to change in land cover as it has been a primary
driver of increases in atmospheric CO2. Historically, more than
half of the CO2 added to the atmosphere by humans can be
attributed to land use and land cover change, which releases large
amounts of carbon, often from burning of biomass (Houghton
and Nassikas, 2017). Land use and land cover change remain as
important sources of greenhouse gases, and for this reason the
REDD+ program was created. By the time the REDD+ program
started, ∼12% of the annual carbon emissions were due to land
use practices, including deforestation and forest degradation
(Houghton et al., 2012; Goetz et al., 2015). The REDD+ Program,
an abbreviation of Reducing emissions from deforestation and
forest degradation and the role of conservation, sustainable

management of forests and enhancement of forest carbon stocks
in developing countries, was designed to reduce greenhouse
gas emissions from the land sector by providing economic
incentives. The program stipulates that developing countries will
receive economic compensation for measuring, verifying, and
reporting on reductions of greenhouse gas emissions from one
or more of the five REDD+ activities: (1) deforestation, (2) forest
degradation; (3) conservation, (4) sustainable management, and
(5) enhancement of forest carbon stocks (GFOI, 2016). Thus,
land cover change monitoring and reporting by participating
countries is at the heart of the REDD+ Program.

Monitoring land surface change has been one of the primary
uses of remote sensing over the past several decades. The most
common approach has been to compare images from before
and after the changes of interest to map the location, extent
and kinds of change. This approach can be thought of as using
satellite images as “endpoints” to monitor change. There are
many examples in the literature, most of which have used data
from the Landsat Program (Coppin and Bauer, 1996; Hansen
and Loveland, 2012; Zhu, 2017). The Landsat Program has been
collecting global data since 1972, and since 1982 a series of four
satellites have collected data at 30m spatial resolution, providing
an archive of imagery valuable for monitoring land change over
decades. Many other sensors have also been used for monitoring
land change. The MODIS sensors on Terra and Aqua have been
frequently used for monitoring change, particularly fires (Giglio
et al., 2018). However, the relatively coarse spatial resolution of
MODIS (250m for the NIR and red bands and 500m for the

other “land bands”) has limited its utility for monitoring land
use change, which often occurs over much smaller areas. More
recently, the Copernicus Program has launched the Sentinel-1
(2014 and 2016) and Sentinel-2 (2016) series of satellites, which
have begun collecting data suitable for monitoring land change.
Sentinel-1 is a C-Band Synthetic Aperture Radar that has four
operating modes, which collect data at spatial resolutions that
range from 5 to 25m. The Sentinel-2 satellites collect visible
and near infrared data at 10m spatial resolution and shortwave
infrared and several specialized bands (e.g., red edge) at 20m.
There are also spectral bands at 60m spatial resolution, that are
primarily used for atmospheric characterization.

Since the advent of free data from the Landsat Program in
2008, new methodologies for mapping land cover change based
on analysis of many observations (or time series) have emerged.
Rather than rely on a pair of observations before and after
to detect a change, algorithms can now be used to monitor
land change in a more continuous fashion (Woodcock et al.,
2020). The first time-series approaches used a single observation
for each year, enabling the detection of changes on an annual
basis (Huang et al., 2010; Kennedy et al., 2010; Hughes et al.,
2017). These algorithms were usually based on a single spectral
index and were designed to find specific types of change, often
change in forests. Other methods that used MODIS data (usually
NDVI, the Normalized Difference Vegetation Index) composited
to 16 or 32 day time periods to look for land change were
developed simultaneously (Verbesselt et al., 2010). Over time,
more emphasis has been placed at Landsat resolutions on using
more than annual observations to better understand the timing
and dynamics of land change. One approach that attempts to
use all good quality observations is CCDC [Continuous Change
Detection and Classification (Zhu and Woodcock, 2014)], which
is intended to be a general-purpose algorithm for finding many
kinds of changes in a continuous manner and mapping the land
cover before and after. Parallel efforts have attempted to study
and characterize land surface phenology using the information
contained in time series of remote sensing observations directly,
rather than deriving land cover data from them. Some examples
include the study of trends in spring onset and fall phenology
(Schwartz et al., 2006; Dragoni and Rahman, 2012), crop yield
forecasting (Bolton and Friedl, 2013), global phenology products
and intercomparisons (Ganguly et al., 2010; Moon et al., 2019),
among other applications (Morisette et al., 2009; Henebry and
Beurs, 2013). Land surface phenology is an important but
extensive research topic that is beyond the scope of this paper.
For this reason, we will focus exclusively on land cover and land
cover change mapping.

The relationship between REDD+ and Landsat is essential
because Landsat is frequently the most viable data option for
REDD+. For example, countries are required to establish a Forest
Reference Level (FREL) against which more recent emissions
can be compared, often requiring multiple decades of images
to contribute to the establishment of FRELs and monitoring
thereafter. For many of those countries, using Landsat data is
the most plausible option due to its relatively high resolution,
availability since the 1980’s for many regions in the world,
and consistent pre-processing and archival in collections that
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allow the delivery of high-quality surface reflectance products
(Olander et al., 2008; USGS, 2018). Additionally, the Landsat
Program has improved the processing and consistency of their
datasets by including atmospheric correction, cloud and cloud
shadowmasking and improved multitemporal registration, while
providing the data at no cost to the user (Zhu and Woodcock,
2014; Vermote et al., 2016). Furthermore, the development
of algorithms to harmonize Landsat and Sentinel-2 surface
reflectance products is expected to augment these collections
with data of similar characteristics (Claverie et al., 2018).
However, providing the necessary satellite data is just the first
step – subsequent steps include determining the best use for the
data to monitor REDD+ activities in ways compliant with the
Intergovernmental Panel on Climate Change criteria and also
useful for decision- and policy-making.

To achieve compliance, effective and comprehensive
monitoring in countries where it is needed the most, capacity
building efforts have been sponsored and organized by various
organizations including SilvaCarbon, USAID, UN-FAO,
NASA-SERVIR, and GOFC-GOLD. As direct and active
participants in these efforts, we have witnessed a dramatic
reduction in the technical steps required to obtain end products
of land cover change of adequate quality. Initial training
and capacity building workflows in support of REDD+ that
involved teaching participants how to register images, remove
clouds and cloud shadows from datasets, and correct images
for atmospheric effects have been replaced by streamlined
applications or preprocessing done by the Landsat Program.
These developments, combined with the growing adoption of the
Google Earth Engine (GEE; Gorelick et al., 2017), have alleviated
much of the preprocessing and allowed the community to instead
focus on increasing precision, accuracy and comprehensiveness
of remote sensing studies.

A key advantage of GEE is the close connection between
data and the algorithms, both of which can be accessed
through an application programming interface (API). With
the exception of BFAST (Verbesselt et al., 2010), all of
the temporal segmentation algorithms mentioned previously
have been natively implemented in GEE (But a recent user
implementation of BFAST monitor in GEE has been made
available by Appel, 2020). The CCDC algorithm, originally
developed in MATLAB and later implemented as a Python
package by USGS-EROS as part of the LCMAP initiative (Brown
et al., 2020), has been recently implemented as a temporal
segmentation algorithm inGEE byNoel Gorelick, Zhiqiang Yang,
and the Earth Engine Team and will be formally described
by their authors in an upcoming publication (Google, 2020).
Therefore, the CCDC description included here is intended only
as a quick overview of the algorithm to aid in the understanding
of the concepts mentioned in this paper but does not constitute
the official description of CCDC in GEE.

CCDC is an “online” time series algorithm, meaning it starts
at the beginning of the time series and is updated as new
observations become available. Thus, at the beginning, once there
are sufficient observations a time series model is fit. If new
observations added to the time series do not diverge widely from
the model, the new observations are added to the time series

and an updated model is fit. When the new observations no
longer follow the expected values from the existing model, a
“break” is inserted. The time between breaks (or the beginning
of the time series and the first break) define “time segments.”
The breaks indicate that the spectral/temporal behavior of a
pixel is different than in the past, presumably due to a change
in land cover or a change in condition. A break is detected
when the residuals, normalized by the model root-mean-square
error (RMSE), exceed a threshold for a number of consecutive
observations. Parameters for defining the critical region and the
number of observations to confirm a change can be tuned by
the user to control the sensitivity of the change detection. The
RMSE for a model is an indication of the typical variability of
observations relative to that model. Details of the inner workings
of CCDC are beyond the scope of this paper and can be found in
Zhu and Woodcock (2014).

The CCDC algorithm is well-suited for the needs of REDD+,
as it allows for continuous monitoring of change, enabling
analysis of trends in land cover and even land use through
time, such as changes in rates of deforestation (Arévalo et al.,
2020). The time segments fit by the algorithm can be classified
into land cover classes that are consistent over time, making
them particularly useful for understanding land cover change.
Additionally, the time segment coefficients can be used on their
own to study land surface phenomena that exhibit variable trends
and seasonality (Pasquarella et al., 2018). While the availability of
the algorithm in GEE has removed the significant computational
requirements that restricted the use of CCDC to academic
environments, improving the ability of users to interact with
the outputs of the algorithm is essential for a broader use of
the algorithm, particularly by countries hoping to participate
in REDD+.

The goal of this paper is to facilitate the use of CCDC even
more by providing tools that will help users (countries in the
case of REDD+) to get the benefits of processing the entire
archive of Landsat data for studying land cover and change. We
present a series of tools and educational materials designed to
support all steps from training data to maps and area/accuracy
estimates, without the need to preprocess data, write complex
code or construct statistical estimators. The tools presented
in this paper are designed to interact with the outputs of
the Continuous Change Detection and Classification algorithm
(CCDC) as implemented in GEE. We believe that the tools we
have developed in the GEE platform will greatly facilitate the use
of remote sensing data in support of climate change mitigation
by enabling a comprehensive analysis of change on the surface of
Earth while following the best practices in the field.

METHODS

The tools and code repository presented here (Arévalo and
Bullock, 2020) allow the users to interact with time series of
Landsat observations and the outputs of the GEE implementation
of the CCDC algorithm, as well as to create products from
them. The tools were implemented as Earth Engine Apps when
possible and are accompanied by an API built atop the GEE
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JavaScript API. The tools to display and interact with time series
and CCDC results for a pixel were inspired by the legacy of
the TSTools plugin for QGIS2 (Holden, 2017). Documentation
for using the tools and API with access to a sample dataset,
as well as up to date links to access them and the source code
can be found at https://gee-ccdc-tools.readthedocs.io. A curated
copy of the source code suitable for suggestions, comments and
contributions is hosted at https://github.com/parevalo/gee-ccdc-
tools. Exploratory tools that make use of the Earth Engine Apps
platform can be used directly in an internet browser without
requiring a GEE account. In order to use other tools, and access
the API and its source code, users need to have an active GEE
account, which can be created here: https://earthengine.google.
com/signup/.

CCDC Algorithm
The current description of CCDC is intended to provide a general
understanding of the algorithm, and primarily serves the purpose
of helping users understand the tools presented in this paper.
In this regard, the concepts of time segments and breaks are
fundamental, as well as the coefficients for the various elements
in the harmonic regression models: an intercept (similar to the
mean); a slope (indicative of a trend); coefficients for the sines
and cosines of the 12, 6, and 3-months harmonics. Figure 1
illustrates the use of multiple harmonics to fit a model to a time
series of observations with no breaks. In turn, Figure 2 shows
an example of CCDC results for a single pixel where multiple
breaks have been detected. All the examples presented in this
paper have been obtained from running the CCDC algorithm
using these Landsat bands as inputs: blue, green, red, Near
Infrared (NIR), Shortwave Infrared 1 and 2 (SWIR1, SWIR2),
and thermal.

Another construct made possible through the use of CCDC
results is a “synthetic image.” Once the harmonic regression
models (i.e., time segments) have been fit by the CCDC
algorithm, we can use them to estimate a value for a pixel
at any time within the input data time range. This capability
can be used for the creation of a “synthetic” image, which is
simply the predicted value for all pixels for a given date (Zhu
et al., 2015). For example, in Figure 2, an observation for a
single pixel from a real Landsat image is represented by any of
the blue dots, whereas the synthetic value for the same pixel
would correspond to any value along the harmonic models,
or their predicted value for the gaps between models. The
use of synthetic images is discussed below in Section spatial
data viewer.

The GEE implementation of the CCDC algorithm is data
agnostic, meaning that in principle it can be applied to other
multitemporal datasets other than Landsat, such as Sentinel-1
and -2. However, the algorithm was originally created to use
Landsat observations, and most of the published research using
CCDC has been applied to Landsat observations. For this reason,
the applications shown here are demonstrated using Landsat-
derived results and allow the user to interact with Collection 1
Landsat imagery and the products derived from the coefficients
for the time segments fit by CCDC.

Graphical Interface Tools
The graphical interface tools we present here can be categorized
in three groups:

1) Visualization and exploration tools.
2) Classification and mapping tools.
3) Area estimation and accuracy tools.

The tools were designed as standalone applications that can be
used independently from each other, except for the Land cover
tool, which requires the output of the Classification tool. Still,
certain processes can be streamlined if all the apps are used
together. For example, a user may be interested in generating a
land cover map for a geographical area they are not familiar with.
In this scenario the visualization tools could be used to explore
the spatio-temporal land dynamics in that area. Once those are
better understood, the user may collect training data and use it
in the classification and mapping tool to produce maps of land
cover change. Finally, the user may need to quantify the accuracy
of such maps, or estimate areas of change with quantifiable
uncertainty, for which they may use the last set of tools. However,
considering that users may have different purposes for the tools
that are not exclusively related to land cover mapping, only the
core usage of each tool is described below, and independent case
examples are presented in the results section.

Time Series Viewers
The time series viewers are simple interactive Earth Engine Apps
that allow the user to explore series of Landsat observations for
any pixel on the globe where such data are available. Cloudy or
shadowed observations are filtered from the time series using the
quality data flags contained in the Landsat collection images. The
user can select the spectral band and time range to visualize and
click on any point in the time series to load the corresponding
image into themap viewer. The tools also show the time segments
detected on-the-fly by the CCDC algorithm. Two versions of the
tool are available. The first is the simple viewer (Figure 3), which
can be found in this link: https://parevalo_bu.users.earthengine.
app/view/quick-tstools. In this version, the options that the user
can modify are minimal (i.e., time range and spectral band
to visualize), as it was designed for use in mobile devices to
facilitate the analysis of the landscape history directly in the
field. The tool works on any mobile or desktop browser that
is supported by Earth Engine Apps and runs CCDC using
the default parameters. The second version of the tool is the
“advanced” time series viewer (Figure 4), created for users who
want to have more control on the parameters used for running
CCDC and visualization. In addition to the capabilities described
for the simple viewer, it is possible to modify the parameters to
run the CCDC algorithm. The image visualization parameters
or the range of spectral indices may also be modified. The
tool also allows adding ancillary data stored as public assets to
the map. The tool can be found here: https://parevalo_bu.users.
earthengine.app/view/advanced-tstools.

Spatial Data Viewer
The spatial data viewer tool (Figure 5) expands the capabilities of
the time series viewers by allowing the user to spatially explore
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FIGURE 1 | Landsat time series (dots) for the SWIR1 band, and the corresponding time segments detected by the CCDC algorithm, using different numbers of

harmonics. (A) Time segment using only one harmonic (annual harmonic), (B) two harmonics (annual and six-month harmonics), and (C) three harmonics (annual, 6-,

and 3-months harmonics). The pixel corresponds to a stable forest in the Blue Hills Reservation, in the commonwealth of Massachusetts, USA. Only a single spectral

band is shown here, but CCDC fits harmonic models to all bands included in the analysis, which are specified by the user.

the coefficients of the time segments and the detected changes,
as well as creating various Landsat derivatives. To use the core
functionality of the tool, the user needs to specify the path to
existing CCDC coefficients saved as GEE assets, either as the
Earth Engine image that is created as the algorithm output, or as
an Image Collection that contains one or more of those images.
Once loaded, the tool enables the exploration of the following:

1) Model coefficients: as explained in Section CCDC algorithm,
each time segment is defined by a set of coefficients: the
intercept; the slope; and the harmonic terms of the regression
model. These coefficients, as well as the RMSE, and the
amplitude and phase of the harmonics, can be visualized using
this tool. The user can add individual coefficients or color
composites of coefficients to the map. Model coefficients, and
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FIGURE 2 | Time series for a pixel of Landsat observations (blue dots) for the SWIR1 band, and the corresponding time segments detected by the CCDC algorithm.

Each shift of a time segment to the next depicts a detected change in the surface and can be characterized either as a change in land cover, land use, or land

condition. This example from Rondônia, in Brazil, depicts a stable primary forest converted to agriculture circa 2006, and captures recurrent seasonal patterns of

agricultural cycles that persist until today.

quantities derived from them like the phase and amplitude
of the harmonic models, can be used in a variety of
ways. The most common use is in the classification step
of CCDC where time segments are used as an input to
the classification process. The classification process and the
tool for its implementation are discussed below in Sections
classification and spatial data viewer. However, coefficients
and their derivatives have intrinsic value. For example, the
amplitude of the harmonic regression is indicative of the
magnitude of the changes in spectral bands seasonally, which
could be related to deciduousness.

2) Synthetic images: the time segments can be used to predict
the surface reflectance for any point in time within the time
range of the input data. Imagery that is composed of predicted
surface reflectance is referred to as “synthetic” imagery (Zhu
et al., 2015), and can be generated using a color combination
specified by the end user. Synthetic imagery can be generated
for any day within the time range of the input data even in
the absence of Landsat observations. These data represent a
new kind of “derived” data product, as they are based on past
Landsat observations, but are not themselves observations.
They can be valuable and easy-to-use images as, by definition,
they are free of the effects of clouds, cloud shadows, and snow.
Additionally, they can capture the seasonality of locations
when produced for multiple times of year, which can improve
applications like image classification (Pasquarella et al., 2018).

3) Change information: for each pixel there is a variety of
change information available. If changes (“breaks”) have been
detected by the CCDC algorithm, there is information about
the timing of the break, the magnitude of the break and the
number of breaks. The magnitude of the break is calculated
internally by the CCDC algorithm as the difference between
the mean of the last five observations before the break and
the mean of the first five observations after the break in any
spectral band or index. The user can display the number of
changes for a selected time period, the change with the largest
magnitude (e.g., deforestation) and the time of the most recent
or largest change.

The tool can be found at this link: https://parevalo_bu.users.
earthengine.app/view/visualize-ccdc.

Classification
For classification, we provide two tools that can be used together
for land cover and/or land use classification using the CCDC
model parameters as predictor variables. The tools allow the
creation of categorical maps, and the testing of input parameters
without writing any code. The first tool, referred to here as the
Classification Tool, allows users to classify the time segments
created using the CCDC function in GEE. The user provides
the path to the CCDC results (stored as Earth Engine Assets),
training data (stored as an Earth Engine Feature Collection), and
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FIGURE 3 | Screenshot of the Simple viewer tool displaying time series of Landsat observations (blue dots) for a given pixel (black arrow) and the associated time

segments (“fit” lines) as detected by the CCDC algorithm. The time series captures a deforestation event in western Brazil in 2004 for that pixel and the surrounding

areas, followed by the establishment of croplands.

FIGURE 4 | Screenshot of the Advanced time series tool showing the controls in the left panel. The time series of the clicked pixel represents long term agricultural

cycles in California.
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FIGURE 5 | Screenshot of the spatial data viewer interface, showing the amplitude of the temporal models for the SWIR1 band for the first day of 2001. Brighter

values (yellow) represent locations with a more pronounced seasonality in the surface reflectance of the first Landsat SWIR band. At the bottom, the time series and fit

temporal model for a clicked pixel in southeastern Australia. The right panel is used to load model coefficients, synthetic images or change layers. The left panel is

used to change the parameters to run CCDC on-the-fly in a clicked pixel, and to control the visualization of Landsat images loaded by clicking on the time series chart.

selects the machine learning classifier, predictor variables and
study area to use. The user can select a country boundary to use as
the study area or can draw the study area on the map. A list of the
available predictor variables can be found in Table 1. The result is
anN-band image corresponding toN time series segments. Since
CCDC operates on the time series of every individual pixel, the
start and end dates for the segments vary by pixel accordingly.
Therefore, to extract a categorical map for a specific date, or
change between multiple dates, a separate tool is required.

The second tool, referred to here as the Land Cover Tool,
allows users to create land cover or land use maps from the
classified segments produced by theClassification Tool at any date
in the study period. In addition, the Land Cover Tool allows users
to specify a change layer, corresponding to conversion between
one or multiple classes at a specific date to one or multiple
other classes at a later date. The result is an N-band image
corresponding to N-number of dates specified by the user, which
can be visualized “on-the-fly” or exported as an image to an Earth
Engine Asset, Google Cloud, or Google Drive (Figure 6). Unlike
the tools described previously, the Classification and Land cover
tools allow exporting the results as GEE assets. However, the
Earth Engine App platform does not support exporting to GEE
assets directly and therefore these tools cannot be distributed
as “standalone” Earth Engine Apps but must be distributed as
GEE scripts. For this reason, static links to the tools cannot be
generated and need to be regenerated every time the code is

updated. Up-to-date links to the tools can be found at https://
gee-ccdc-tools.readthedocs.io.

AREA2: Area Estimation and Map Accuracy

Assessment
Land cover and land change are important climate variables, and
analyses of remote sensing data are often the only feasible way
to determine the extent of these variables. Traditionally, maps
constructed by classification of remote sensing data were used
to quantify such variables by summing map units assigned to
map classes (i.e., pixel counting). However, as emphasized in
the literature, areas obtained in this way may be subject to bias
due to classification errors (McRoberts, 2011; Olofsson et al.,
2014; GFOI, 2016). Instead, a sample-based approach in which
an unbiased estimator is applied to sample data for estimation
of areas of interest is recommended. In this context, “unbiased”
refers to a property of an estimator: the bias of an estimator µ̂

of a population parameter µ is the difference between µ and
the expected value of µ̂ over all possible samples. Expressed
mathematically, µ̂ is unbiased if Bias

(

µ̂

)

= E
(

µ̂

)

− µ = 0
(Casella and Berger, 2002, p. 330).

Designing surveys, determining reference conditions on the
land surface, and selecting, constructing and using appropriate
estimators are all important but complex steps and decisions. To
assist users navigating such choices, we have developed a toolkit
titled AREA2 (ARea Estimation and Accuracy Assessment;
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TABLE 1 | List of currently available predictors for classification in the graphical user interface tool when all the Landsat bands are used.

Input type Options Description

Spectral bands BLUE, GREEN, RED, NIR, SWIR1, SWIR2,

THERMAL

Spectral bands to be used for each selected model

coefficient

Coefficients INTP (Intercept), SLP (Slope), SIN, COS, SIN2,

COS2, SIN3, COS3, RMSE

Model parameters to be used for each selected

spectral band

Derivatives AMPLITUDE, PHASE, AMPLITUDE2, PHASE2,

AMPLITUDE3, PHASE3

Seasonal metrics derived from harmonic coefficients

Ancillary data ELEVATION, SLOPE, ASPECT, RAINFALL,

TEMPERATURE

Topographic data from the 30m SRTM digital

elevation model and climate variables from

WorldClim (Hijmans et al., 2005)

“area two”). AREA2 (Bullock et al., 2020a) provides support for
the three major components of an estimation protocol: sampling
design, response design, and analysis (Stehman and Czaplewski,
1998).

The first component, sampling design, refers to the protocol
for selecting a subset of population units (i.e., a sample) in the
study area. AREA2 supports simple random (SRS) and systematic
(SYS), stratified random (STR), and two-stage sampling. An
important part of designing a survey is determining the sample
size. With AREA2 we have implemented support for sample
size determination using the variance estimators for SRS/SYS
and STR designs [Equations 4.2 and 5.25 in Cochran (1977)] by
specifying a target precision and then calculate the sample size
required to achieve that precision.

Following the sampling design, the reference land surface
condition needs recorded at each sample unit location by
examining reference data. Good reference data have traditionally
been commercial high-resolution data, aerial photos and field
inventories but such data are costly and less than ideal for
observing changes on the land surface through time. Reference
data based on time series of observations have proven a powerful
dataset for observing reference change conditions, especially
when combined with high resolution imagery [e.g., Olofsson
et al. (2016), Arévalo et al. (2020)]. Traditionally, compiling
time series of Landsat data for sample locations was demanding
as whole images in a series needed downloading and stacking
before a time series could be extracted. Attempts were made to
mitigate these issues, the best example being TimeSync which
extracted annual “best image” chips of Landsat data at sample
locations (Cohen et al., 2010). The viewer in AREA2 extracts
time series of Landsat surface reflectance and various spectral
indices from Google Earth Engine during a user specified time
period (1982 at earliest). Clicking an observation in the series
displays the associated Landsat image. The last step corresponds
to the analysis, which includes protocols for estimating area,
map accuracy and uncertainty (Olofsson et al., 2014). Central to
the analysis is the estimator (preferably an unbiased estimator),
which is a formula by which an estimate of a population
parameter is calculated from the sample data (Cochran, 1977).
Even though the estimator must correspond to the sampling
design, there are usually more than one unbiased estimator to
choose from and selecting the most efficient estimator in a given
situation is often complex. Further, the implementation of the

estimator (and the associated variance estimator) is not always
straightforward, especially for complex designs such as two-stage
sampling. AREA2 provides tutorials guiding users through the
decisions, and supports the following estimators (the references
provide the underlying mathematical frameworks and proof
of unbiasedness):

• expansion estimators for simple random and systematic
sampling (Cochran, 1977).

• stratified estimator for stratified random sampling (Cochran,
1977).

• post-stratified estimator for simple random and systematic
sampling (Cochran, 1977).

• model-assisted regression estimator for stratified random
sampling (Särndal et al., 2003).

• ratio estimator for stratified random sampling when the map
classes that defined strata are different from the map classes in
the final error matrix (Stehman, 2014).

• ratio estimator for use with two-stage sampling (Särndal et al.,
2003).

AREA2 can be used with any categorical map, even if it was
not created with the CCDC algorithm. For this reason it was
created as a separate project, and the detailed documentation and
tutorials are available at https://area2.readthedocs.io/.

Case Study for Land Cover Mapping and Area and

Accuracy Estimation
We mapped land cover and land cover change due to expansion
of built land in southeastern United States as a case study
for using the classification tools and AREA2. We made use of
previously developed training data from the NASA GLANCE
project (http://sites.bu.edu/measures/) and reference data from
LCMAP (Brown et al., 2020) to perform classification and
assessment for the case study using the Classification tool. The
study area consisted of the states of Florida, South Carolina,
North Carolina, Louisiana, Mississippi, Georgia, Arkansas,
Kentucky, and Alabama. The CCDC results used for this exercise
correspond to preliminary CCDC outputs made available to us
that are currently unavailable to the general public. However,
a similar workflow can be carried out with any CCDC results
run by a user, or by other publicly available or shared CCDC
datasets. Following the steps of theClassification tool, we specified
the path to the CCDC results and the training data, selected the
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FIGURE 6 | Screenshots of the Classification Tool used to classify CCDC segments for the country of Ethiopia (A), the Land Cover Tool which allows users to extract

categorical maps, including maps of change, for any desired date or dates (B), and a subset of (B) that shows pixels classified as cropland gain due to displacement

of forest (C).
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features to be used in the classification (All of the inputs specified
in Table 1), the classifier to use (a Random Forest classifier)
and exported the resulting multi-band image containing a land
cover class per time segment per pixel. These results were used
as inputs to the Land Cover tool to map the expansion of the
built class, referred to from now on as the “New Built” class. The
change period selected for the creation of the change layer was
1999–2016, but any period between the original date range of the
classification results can be studied.

After the change map finished loading “on-the-fly” in the
tool map panel, we exported it as an asset to use in the AREA2
tool. Accuracy of the classification results were obtained using
the reference sample, which was created independent on the
training dataset. Since the reference sample was selected under
a simple random sample design, it can be used to estimate map
accuracy with AREA2 using the “direct estimator” available in the
subfolder “3. Estimation” of the AREA2 repository.

Application Programming Interface
An API was built atop the GEE JavaScript API to facilitate
custom operations with CCDC outputs and facilitate building the
graphical tools presented here. The API currently contains the
following modules:

1) Inputs: module to create Landsat, Sentinel 1 and 2 stacks
for time series plotting, as well as the computation of indices
derived from the optical sensors.

2) CCDC: module to manipulate the results from existing
model runs done using Landsat observations, enabling
the extraction of regression coefficients, the generation of
synthetic images, and the extraction of time, magnitude and
frequency of changes.

3) Classification: module to pre-process training data, classify
CCDC coefficients and obtain land cover maps from them.

4) Dates: module to interact with dates in the formats required
by the CCDC algorithm in Google Earth Engine.

5) Change: module to post-process the change results obtained
from CCDC. Currently it contains functions to evaluate the
presence of errors of omission and commission of change
(Bullock et al., 2019).

Up to date links to access the API, the documentation, and a brief
guide to use the core functions can be found in this link: https://
gee-ccdc-tools.readthedocs.io.

RESULTS

We illustrate the varied usage and multiple applications of
the tools presented above with three examples. The time
series viewers are demonstrated using a localized change
example in Quincy, Massachusetts. The CCDC visualization
tool is demonstrated using much larger fire events in northern
Argentina. Finally, an example of land cover and land cover
change mapping are shown for the Southeastern USA, followed
by the estimation of accuracies and change areas. The different
areas were selected to demonstrate how the tools can aid in the
understanding of land change at different scales, and how they

can be used in different geographical areas with varying levels of
data coverage and drivers of change.

Time Series Viewers
The Simple Time Series Viewer has been used in university courses
(at Boston University) to visualize the history of the landscape in
situ through a mobile phone. On field trips, students were able to
interact with Landsat time series plots, allowing them to address
questions related to the landscape history at their immediate
location. One of such locations was in Quincy, Massachusetts.
Students accessed the tool through their mobile phones, located
themselves in the map using the “User location” button, and
clicked on the map to reveal the Landsat time series, as well
as the time segments detected by CCDC on the fly. In the
example shown in Figure 7, two temporal segments are detected
by CCDC: one starting in 1997 and ending in 2004, and another
starting in 2005 and ending in 2020. The first segment represents
the forested area that was cleared to make space for housing,
represented by the second segment. The time range between
segments circa 2005 corresponds to the transition between these
two land cover classes, when the CCDC algorithm waits for more
stable observations to start fitting a new segment.

The ability to easily explore historical imagery on mobile
phones in-situ to make sense of the land changes over time
is a groundbreaking advancement made possible by Google
Earth Engine and its Apps platform. More complex temporal
dynamics are easier to investigate using the full time series
viewer on a larger browser, such as a tablet of laptop. Using
the same example presented before, the Advanced time series
viewer can be used to investigate other changes in the area in
more detail. Figure 8 shows the time series for a pixel located
in the golf course visible in the western side of Figure 7. This
area, formerly a covered landfill, was transformed into a golf
course during the early 2000’s using the material extracted from
a mega-construction project in the Boston area (commonly
referred to as the “Big Dig”). The time series in Figure 8 show
three segments representing these land covers and transitions:
grass vegetation (first segment), followed by a complete removal
and the landscape transformation that took place between 1998
and 2006 (second segment), and then the establishment of
permanent, irrigated grass for the golf course around 2007
(third segment).

Spatial Data Viewer
The spatial data viewer tool is demonstrated using an example
from northern Argentina. CCDC results for the period between
1985 and 2000 are loaded in the tool, and the “Create synthetic
image” section on the right panel is used to create a predicted
image for the date 1996-01-01, to use as a snapshot of the
landscape. Fire scars are evident in the image, showing non-
geometric patterns of change compared to nearby agriculture
and roads (Figure 9). After changing the band selection on the
left panel to “NBR” (Normalized Burned Ratio) and clicking
anywhere in the fire scar, the time series loaded in the bottom
panel show negative values circa 1996 that suggest the occurrence
of a fire event. To obtain a map that shows the approximate time
of change for the entire area, the “Visualize section” on the right
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FIGURE 7 | Left panel: interface of the Simple time series viewer as seen in a mobile phone. The smaller square shows the clicked location on the map, with the

corresponding Landsat time series and CCDC segments show below. Right panels: Multi-temporal high-resolution images of the area shown for reference,

highlighting the conversion from forested area to developed.

panel can be used to select a period centered in 1996 (e.g., 1994–
1997), a spectral band to visualize the magnitude of the change
detected by CCDC (i.e., SWIR1) and the desired change layer,
in this case, the “Time of maximum magnitude of change.” The
loaded image shows a clear fire even that happened circa 1994 for
this fire scar, as well as the timing for other change events in the
surrounding areas.

Classification and Estimation of Area and
Accuracy
The results consisted of: (1) Classified time segments between
2000 and 2016 for the study region, equivalent to land cover
maps at 30m resolution for any given date between that period,
(2) a single land cover change map showing stable classes and
the “New built” change class between 2000 and 206, and (3)
estimates of area and accuracy with standard errors for the classes
in the land cover change map. Figure 10 highlights the “New
Built” class for two subsets in North Carolina and Tennessee. The
results are displayed using a custom palette, defined manually
in the Visualization Parameters of the Land Cover tool and
represented in the map as a legend. The map contains seven
stable classes (Water, Snow/Ice, Built, Bare, Forest, Shrub, and
Herbaceous) and the change class of interest (New Built). It
should be noted that the results in Figure 10 are shown as created

“on-the-fly” in the Land cover tool but they must be exported
as assets to be used in the AREA2 tools. The runtime to export
the classified time segments as an Earth Engine asset from the
Classification tool was 5 h, while the runtime to export the change
map from the Land cover tool was 10 h, but these times will vary
depending on several factors, including the area extent, pixel size,
number of input features and time segments, and other factors
inherent to GEE.

Area and accuracy estimates produced by AREA2 are shown
in Tables 2, 3. The Overall accuracy of the map was 80% and the
Producer’s and User’s accuracies of the “New Built” class were
40 and 15%, respectively. The sample-based estimates revealed
507,000 ha of conversion to Built during the study period. The
predominant land cover class at the end of the study period
in 2016 was the Tree class, representing 60% of the study area,
or 71,142,000 ha.

DISCUSSION

The functionality of the tools presented in this paper is intended
to simplify user interaction with time series of Landsat data, and
to provide a system to explore and extract valuable information
from the data, such as multi-temporal metrics and long term
landscape change through the use of the CCDC algorithm.
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FIGURE 8 | Landsat time series showing the transformation from landfill to golf course. Hovering on the observations with the pointer shows their date and

corresponding value. Clicking on them will load the corresponding Landsat image, using the visualization parameters for Red-Green-Blue (RGB) composite in the left

panel.

The use of CCDC by the broader community has been
historically hampered by storage and preprocessing demands,
and computational complexity. With the emergence of cloud
computing and public repositories of satellite data, we have
an opportunity to expand user access to CCDC outputs. To
achieve broader access, we have developed a set of tools with
graphical interfaces that enable a range of workflows from simple
exploratory analysis to production of more complex products In
essence, the tools presented here provide a new way for the public
to interact with time series of satellite data with minimal effort.
Our hope is that these tools will lead to a broader understanding
of the way Earth is changing as well as an appreciation of the value
of sustained satellite measurements over long time periods.

The tools presented here facilitate the monitoring and
estimation of land change and associated carbon emission
by removing the challenges such as the processing of large
volumes of Landsat imagery, screening of noise and cloud/cloud
shadow, and demands on storage space and computational
power. Graphical user interfaces and API functionality, coupled
with tutorials and documentation, provide sufficient flexibility to
accommodate national and local circumstances and suit users
with different levels of technical expertise. For example, users
with little or no experience with the CCDC algorithm can
use the exploratory tools to get familiarized with the basic
concepts surrounding its use, such as the “time segments.” Users
that are more familiar with the outputs of the algorithm can
visualize model coefficients or interact with them without having
to process the CCDC results themselves. Similarly, countries
without national maps of land cover change can start by
exploring the time series data in their region to assess the

suitability of the CCDC algorithm to capture change patterns
of interest. Countries with higher image-processing capabilities
can make use of the API to extract CCDC-derived products
and process them with their own custom-made functionality.
Furthermore, the availability of tools to create stratifications,
assess the accuracy of map products, and estimate areas of
change can benefit both new users creating preliminary maps,
or experienced users with existing maps, even if created using
different algorithms and tools.

An example that illustrates the use of CCDC outputs for
monitoring, along with sample-based estimation, of multiple
land cover transitions in support of REDD+ reporting was
presented by Arévalo et al. (2020). The study was conducted
before the availability of the CCDC algorithm in GEE, and
required manual downloading and stacking of more than 5,000
Landsat images. Visualization of time series for a single pixel
was possible only after the stacking process was complete, and
the CCDC algorithm had to be run for each WRS-2 path and
row scene separately; this translated into running the model at
least 25 times to cover the Colombian Amazon. Once the time
segments were classified, each Landsat footprint was mapped
separately, resulting in the need to merge individual maps into
a coherent, seamless mosaic. This cumbersome workflow could
now be completely reproduced in GEE using the API and tools
presented here, without the need for extensive pre- and post-
processing. The gain in efficiency is illustrated in the example
presented in Section classification and estimation of area and
accuracy for the Southeastern USA. Even though the study area
was larger than the area mapped in Arévalo et al. (2020), the
process was completed in just 15 h. Furthermore, the ability to
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FIGURE 9 | Interface of the spatial data viewer (upper panel) showing the time of maximum magnitude of change between 1994 and 1997 in this area, revealing the

timing of fire events. The change layer was created using the “Visualize change” section on the bottom of the right panel. The time series in the bottom panel are

displayed following the settings on the left panel. Insets below the screenshot show: (A) The synthetic image for the first day of 1997; (B) A surface reflectance

Landsat image prior to the fire even (1994-02-07), loaded by clicking on the corresponding observation in the time series chart; (C) a surface reflectance Landsat

image after the fire event (1996-03-16) loaded in the same way as the prior image. Images are shown in RGB color combination corresponding to the SWIR1, NIR,

and Red bands, respectively, as set in the “Visualization params” section on the left panel.

inspect time series and visualize classification results on-the-fly
allows for time-efficient quality control that is likely to result in
improved maps.

Another example illustrating how the presented tools
can accelerate map creation, quality control, and assessment
processes is provided by a recent capacity-building collaboration
with the Government of Zambia via SilvaCarbon. In this
collaboration, we assisted Zambia’s forestry department in using
a set of existing training datasets to create land cover change
maps, and to assess and improve their accuracy. First, we used
the tools for time series visualization to determine if the land
cover changes of interest were readily captured by the CCDC
algorithm. This step was accomplished using the function in the
Advanced Spatial Data Viewer that allows visualization of the
breaks found by CCDC. Second, we wanted to test which of the
various training datasets produced the most accurate map. The
use of the CCDC and Classification modules in the API tools
enabled iterative production of temporally consistent maps of
land cover and land cover change for the entire country using
each of the training datasets (Figure 11). Finally, the accuracies
of the newly created maps were estimated using AREA2 to
determine which of the training datasets produced the most
accurate map. An important aspect of the Zambia example is
capacity building; all steps were completed in just a few days

of work with us the authors, using the tools in the beginning
of the workshop but after only a day or two, the participants
from the Zambia Forestry Department were producing the
maps, inspecting the results and estimating accuracy measures.
The example illustrates the potential of the presented tools to
enable local practitioners in tropical countries to use advanced
environmental remote sensing in support of climate science, and
ultimately climate mitigation.

The tools and functionality available in the API are currently
being used as part of the mapping and assessment procedures
for the Global Land Cover mapping and Estimation (GLanCE)
project, a NASAMEaSURES project at Boston University (http://
sites.bu.edu/measures/). GLanCE will provide a data record of
twenty-first century global land cover, land use and land cover
change at 30m resolution. The intent is to provide global maps of
land cover and land cover change with estimates of area and map
accuracy. A similar effort was carried out for the United States by
the USGS developed a system for operational monitoring of land
change as part of its LCMAP initiative. To implement CCDC at a
national scale, they built the computing infrastructure necessary
to process the entire Landsat archive for the United States using
CCDC, as well as implement similar kinds of tools to those
presented in this paper to convert CCDC results to a suite of 10
operational products related to land cover and land cover change
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FIGURE 10 | Screenshot of the Land Cover Tool used to display the land cover classification at the end of 2016 and conversion to Built land (“New Built”). Insets

detailing some of the largest change areas were manually overlayed for display in this figure.

(Brown et al., 2020). The resulting global maps produced by the
GlanCE project are expected to provide baseline characterization
of the ways the land surface is changing and will aid in the
characterization of biophysical properties of the Earth’s land
surface. We also expect the resulting products to contribute to
model-based investigations that require land cover and change
information, such as carbon balance models. The deliverables are
complex and can be thought of as a database of time segments
with a set of attributes in space and time. This complexity poses
a potential hurdle for users, but we envision that the presented
tools will allow the creation of maps of land cover and land
cover change for any region in the world where the required data
is available.

Once maps have been created, guidance is needed for how
to use maps in an inference framework to estimate areas and

map accuracy. AREA2 was designed to guide users through
the decisions involved in the estimation process and to relieve
users of the burden of constructing estimators. The tools in
AREA2 have been used for this purpose at capacity building
workshops in Costa Rica, Peru, and other countries, and for
sample interpretation and area estimation in Guatemala as part
of efforts to estimate forest disturbance in Guatemala’s protected
areas (Bullock et al., 2020b). As it becomes easier to create maps
with existing and new tools like the ones presented here, it is
crucial to assess and report the accuracy of such products. For this
reason, we envision AREA2 as an integrated part of a mapping
workflow that uses advanced remote-sensing products, such as
those derived from the CCDC algorithm.

Some considerations and limitations must be considered
when using the tools and functions presented in this paper. First,
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TABLE 2 | Confusion matrix expressed as sample counts with reference observations in the columns and map values in rows.

Water Snow/Ice Built Bare Trees Shrub Herbaceous New built Total

Water 82 0 0 1 2 0 3 0 88

Snow/Ice 0 0 0 0 0 0 0 0 0

Built 0 0 14 1 14 0 18 3 50

Bare 0 0 0 0 0 0 0 0 0

Trees 15 0 3 4 1,271 79 165 1 1,538

Shrub 0 0 0 0 1 1 15 0 17

Herbaceous 7 0 5 1 100 10 502 2 627

New Built 0 0 2 0 14 1 6 4 27

Total 104 0 24 7 1,402 91 709 10 2,347

TABLE 3 | Accuracies and estimated areas with standard errors (SE) as proportion of the total area (prop) and in units of ha.

Water Snow/Ice Built Bare Trees Shrub Herbaceous New built

User’s accuracy 0.93 0. 0.28 0.00 0.83 0.06 0.80 0.15

Producer’s accuracy 0.79 0. 0.58 0.00 0.91 0.01 0.71 0.40

Overall accuracy 0.80

Total area (ha) 119,094,000

Class area (prop) 0.044 0. 0.010 0.003 0.597 0.039 0.302 0.004

Class area SE (prop) 0.0042 0. 0.0021 0.0011 0.0101 0.0040 0.0095 0.0013

Class area (ha) 5,277,000 0. 1,218,000 355,000 71,142,000 4,618,000 35,977,000 507,000

Class area SE (ha) 506,000 0. 247,000 134000 1,206,000 475,000 1,129,000 160,000

FIGURE 11 | Screenshot of an example land cover and change map of the country of Zambia created iteratively with the tools and functions included in the API.

they are provided free of charge “as-is” without any warranty or
support, and they are subject to change at any time. We expect
to continue improving and adding functionality to the tools,

especially to the time series and classification tools, for at least
another year or as long as it is feasible. The AREA2 repository will
continue to be monitored for potential coding issues. Users are
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welcome to contribute to the development of new functionality
or provide suggestions. Due to the current limitations for multi-
user collaboration in a GEE repository, we have created a GitHub
repository with a copy of the most recent and stable version
of the API and tools and we will update it periodically to
ensure the proper archival of new functionality. The repository is
located at: https://github.com/parevalo/gee-ccdc-tools. Second,
while the Google Earth Engine team has been supportive of the
development of these tools, they are not produced or endorsed
by Google. Similarly, this paper does not intend to serve as
the official description of the GEE implementation of CCDC.
Finally, the tools in their current iteration have not been designed
or tested with CCDC results from sensors other than Landsat.
However, our end goal is to provide a set of tools that are sensor
agnostic. Web links to other tools designed to explore Sentinel
data will be published on the website referenced previously as
soon as they become available.

Finally, while a primary objective of the tools presented here is
to aid in land covermapping, various other applications of benefit
to users interested in land surface dynamics and their effect on
climate are possible. For example, the frequency and magnitude
of change events detected by the algorithm could be used to
determine the timing of forest loss events or agricultural cycles.
The variability in the surface reflectance could be visualized
via the RMSE of the time segments. Seasonality information
contained in the amplitude and phase of the harmonic terms
of the regression could be used to study vegetation phenology
as well as mapping of deciduousness. Long- and short-term
trends in land cover condition, as captured by the slopes of the
time segments, could be analyzed to identify vegetation recovery.
Cloud-free synthetic images could benefit studies of the land
surface, particularly in areas with low data density or high cloud
occurrence. Previously published studies and algorithms that
make use of CCDC outputs could be implemented for larger
study areas. For example, a carbon bookkeeping model recently
implemented to operate at the Landsat pixel scale using CCDC
results (Tang et al., 2020) could be implemented and applied
to a larger geographical area, such as the pantropics, using the
tools we present here. Furthermore, current efforts to use CCDC
results and the presented API to improve themapping of biomass
density in the Amazon basin by using the information contained
in the temporal and spatial domains are other examples of how
the tools could enable the study of land processes and properties
directly related to climate. We believe that the tools presented
in this paper will make these and other types of analyses more
accessible to a broader set of scientists.

CONCLUSION

We have created a set of tools that facilitate the exploration
of time series of Landsat observations and the time
segments identified by CCDC. We believe these tools
will simplify the visualization of time series of Landsat
observations, facilitate the exploration of CCDC coefficients
and derivatives, and streamline the creation of land cover
and land cover change maps, as well as the estimation of
areas and accuracies. By removing some of the barriers
that prevent users from tapping into the information
contained in time series of Landsat observations, we expect
that users will extract new useful information that can be
directly applied to climate science. Updated documentation
and current links to the tools and API are available
at https://gee-ccdc-tools.readthedocs.io.
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