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Understanding precipitation extremes over Monsoon Asia is vital for water resource

management and hazard mitigation, but there are many gaps and uncertainties in

observations in this region. To better understand observational uncertainties, this study

uses a high-resolution validation dataset to assess the consistency of the representation

of annual daily precipitation maxima (Rx1day) over land in 13 observational datasets

from the Frequent Rainfall Observations on Grids (FROGS) database. The FROGS

datasets are grouped into three categories: in situ-based and satellite-based with

and without corrections to rain gauges. We also look at three sub-regions: Japan,

India, and the Maritime Continent based on their different station density, orography,

and coastal complexity. We find broad similarities in spatial and temporal distributions

among in situ-based products over Monsoon Asia. Satellite products with correction to

rain gauges show better general agreement and less inter-product spread than their

uncorrected counterparts. However, this comparison also reveals strong sub-regional

differences that can be explained by the quantity and quality of rain gauges. High

consistency in spatial and temporal patterns are observed over Japan, which has a dense

station network, while large inter-product spread is found over the Maritime Continent

and India, which have sparser station density. We also highlight that while corrected

satellite products show improvement compared to uncorrected products in regions of

high station density (e.g., Japan) they have mixed success over other regions (e.g., India

and the Maritime Continent). In addition, the length of record available at each station

can also affect the satellite correction over these poorly sampled regions. Results of

the additional comparison between all considered datasets and the sub-regional high

resolution dataset remain the same, indicating that the overall quality of the station

network has implications for the reliability of the in situ-based products derived and also

the satellite products that use a correction to in situ data. Given these uncertainties in

observations, there is no single best dataset for assessment of Rx1day in Monsoon

Asia. In all cases we recommend users understand how each dataset is produced in

order to select the most appropriate product to estimate precipitation extremes to fit

their purpose.
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INTRODUCTION

Asia is home to about 60% of the world’s population and is the
largest and most populous continent in the world (Hijioka et al.,
2014). The extensive Asian monsoon system which spans South
Asia, Southeast Asia, and East Asia plays an important role in
large scale climate variability over much of the globe. This region
is vulnerable to extreme weather, notably extreme precipitation
(Fujibe et al., 2006; Jung et al., 2011; Zhao et al., 2014; Ren et al.,
2015; Roxy et al., 2017). To monitor and understand the change
and risk from precipitation extremes in Asian countries, accurate
and reliable precipitation observations are required.

Numerous observational products are now available in a
consistent format from the Frequent Rainfall Observations on
GridS (FROGS) database (Roca et al., 2019), enabling easier
intercomparisons. The FROGS database contains a variety of
observational daily gridded precipitation datasets that have all
been interpolated onto a common 1◦x1◦ grid. These products
differ in their data sources (e.g., in situ, satellite and blended
sources) and the methods by which they are produced, and
they have different spatial coverage (regional to global). In
situ precipitation products have been developed solely from
station (gauge) observations, which are typically used to measure
precipitation at a point. Many stations have very long records,
and this is an advantage for detecting climate trends. However,
in situ data have disadvantages, including incomplete spatial
coverage, deficiencies over most oceanic regions and sparsely
populated areas (Kidd et al., 2017) and they are not normally
representative of rainfall (especially convective rainfall) over
a broader area. As discussed in the data section, there are
also complexities associated with gauge undercatch correction
(Legates andWillmott, 1990). Satellite observations, on the other
hand, offer advances in terms of spatial coverage and temporal
completeness for vast areas of the globe, but have records
that are much shorter and inhomogeneous due to different
instruments used through time and potential algorithm changes
in how estimates are calculated. In addition, precipitation from
satellite-based products are instantaneous and indirect measures
inferred from infrared (IR) or passive microwave (PMW).
IR observations can see clouds but not precipitation, and IR
estimates must link cloud-top temperature or reflectivity to rain
rates through empirical relationships. PMW observations, on
the other hand, can detect the radiation from hydrometeors,

but PMW observations are sparse and intermittent. Both IR

and PMW data streams rely on changing constellations of

satellites that require additional data processing and calibration.

These factors are major sources of uncertainty and error
(Iguchi et al., 2009; Tapiador et al., 2012). Many attempts
have been made to merge different sources of information
to utilize the advantages of individual types of products. For
example, multiple satellite fields are merged and/or scaled
with rain gauge analyses over land, which helps improve the
accuracy of precipitation measurements (Sun et al., 2018).
Popular products used in climate studies, such as the Global
Precipitation Climatology Project (GPCP) precipitation analysis,
merge gauge observations with satellite microwave data and
infrared radar (IR). The launch of precipitation radars in

some satellite measurements, for example over the Tropical
Rainfall Measuring Mission (TRMM) (Huffman et al., 2007)
helps capture the three-dimensional structure of rain. In
particular, the long-term TRMM on-board radar had obvious
advantages for detecting the heavy precipitation that is associated
with distinct orographic features and coastal effects (Shige
et al., 2013, 2015, 2017). Other products such as CMORPH
(Xie et al., 2017) and version 6 of the Global Precipitation
Mission (GPM) Integrated Multi-Satellite Retrievals for GPM
(IMERG) (Huffman et al., 2019, 2020) use a “morphing” based
approach to estimate precipitation. Sparse and intermittent
PMW observations are used to derive instantaneous rain
rates, which are then combined with motion vectors to derive
a detailed two-dimensional rain rate structure that covers
every location.

Precipitation extremes estimated from these numerous
datasets present a heterogeneous picture at both regional [e.g.,
Australia (Contractor et al., 2015), Europe (Prein and Gobiet,
2017), the United States (Beck et al., 2019), South-East Asia
(Kim et al., 2018), and global (Herold et al., 2016a,b; Alexander
et al., 2020; Bador et al., 2020)] scales owing to their different
data sources, quality control schemes, and procedures in how
precipitation estimates are calculated. At the global scale, in situ
products are most similar to each other in their representation
of extreme precipitation compared to other product types
(Herold et al., 2016b; Sun et al., 2018). In addition, and as
expected, satellite products that use rain gauge corrections
show a better agreement with in situ-based observations than
uncorrected satellite products (Alexander et al., 2020; Bador
et al., 2020). The specific details of the gauge-satellite blending
process, however, can have important ramifications for product
performance. Satellite estimates having relatively low mean bias
are less likely to experience non-stationary systematic errors
and spurious trends associated with shifts in gauge network
(Maidment et al., 2015).

Very few studies, however, have examined the consistency
in how different observational products represent precipitation
extremes over the Asian domain. One exception is Kim et al.
(2018) who conducted an intercomparison of precipitation
across different observational products (and in an ensemble of
models) with only a minor focus on extremes. They examined
the spatial-temporal characteristics of rainfall exceeding the
95th percentile threshold across 7 gridded in situ, satellite and
reanalysis daily precipitation products. Their results revealed
small differences among the datasets over India, Korea and
Japan but large differences over Southeast Asian countries and
the Maritime Continent. In addition, they found that decadal
trends in extreme precipitation are consistent over some parts
of South Asia (e.g., India) and East Asia (e.g., South Korea,
Japan) while no trend in precipitation extremes was found over
Southeast Asia (e.g., the Maritime Continent). However, the
study focused on only a small subset of available products and
on a limited aspect of “moderate extremes” of precipitation.
Therefore, there are still many gaps in our understanding
of the representation and analysis of observed precipitation
extremes over Monsoon Asia. These better understanding
will help to better inform data development and others
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research activities like model evaluation, monitoring, and
projections etc.

For this study, we conduct an intercomparison of various
existing observational products to evaluate their consistency in
terms of representing the annual maxima of daily precipitation
(Rx1day) over Monsoon Asia, in terms of their climatology
and trends. We chose to focus on Rx1day because this metric
represents an annual extreme value that is often used to infer
potential flooding events (Lestari et al., 2019). Supplemental
results examine the annual wettest 5-days period (Rx5day), the
annual sum of precipitation on wet days (PRCPTOT), the simple
daily intensity index (SDII) and the annual total count of days
when daily precipitation exceeds 10mm (R10mm). Our objective
is to better understand observational uncertainties from different
data sources and over different sub-regions of Monsoon Asia.
We do this by investigating the influence of the underlying
station density and correction methods that satellites use to
estimate precipitation on the consistency of annual maxima of
daily precipitation. Finally, we make recommendations for the
regional assessment of precipitation extremes overMonsoonAsia
and its sub-regions.

The remainder of the paper is organized as follows. Section
data and methods describes the observational datasets used in
this study along with the definition of precipitation extremes and

the description of the methods used. Results on the comparison
of precipitation extremes from different datasets is presented in
section results, followed by our discussion of results in section
discussion and our conclusions in section 5.

DATA AND METHODS

Observational Datasets and Domain
At present, there are many precipitation datasets available,
including those from the FROGS database (Roca et al., 2019).
This database has been developed recently to provide a variety
of gridded observational precipitation datasets from in situ,
satellite, blended and reanalyses sources on a common daily
1◦x1◦ latitude/longitude grid format mostly covering global land
and/or ocean. Here we utilize 13 products from FROGS (Table 1)
which have sufficient coverage over our chosen Asian domain
(600E-1500E; 150S-500N) and a suitable length of record for
this analysis (see below). We do not include reanalyses, which
generally have uncertainties that are too large to support the
analysis of precipitation extremes (Alexander et al., 2020; Bador
et al., 2020). Besides, they are not purely observations, but
observation data assimilated into numerical models. Therefore,
precipitation information in reanalysis is of questionable quality
since it relies, almost entirely, on the parameterization of

TABLE 1 | List of observational datasets of daily precipitation used in this study.

Cluster No Product name Short name Input data Temporal

coverage

Original

resolution

References

Reference 1 APHRODITE APHRODITE GTS, local organization and

own APHRODITE

1951–2015 0.5◦ × 0.50 Yatagai et al. (2012)

In situ (3) 2 REGEN_ALL_v2019 REGEN_ALL GPCC, GHCN 1950–2016 1◦× 1◦ Contractor et al.

(2020)

3 GPCC_FDD_v1.0 GPCC_FDD GPCC 1988–2013 1◦× 1◦ Schamm et al.

(2014)

4 CPC_v1.0 CPC CPC 1979–2017 0.5◦ × 0.50 Xie (2008)

Satellite with

correction to rain

gauge (6)

5 GSMAP-gauge-

RNLv60

GSMAP-RNL IR, PMW, sate_radar, CPC

gauges

2001–2013 1◦ × 1◦ Okamoto et al.

(2005)

6 GPCP_CDR_v1.3* GPCP_CDR IR, PMW GPCC gauges 1997–2017 0.25◦/8 km Huffman et al. (2001)

7 CMORPH_v1.0_CRT CMORPH_CRT IR, PMW CPC gauges 1998–2017 0.25◦ × 0.25◦ Xie et al. (2017)

8 IMERG_V6_FC* IMERG_FC IR, PMW GPCC gauges,

sate_radar

2001–2018 0.25◦ × 0.25◦ Huffman et al. (2019)

9 3B42_v7.0 3B42 IR, PMW sat_radar, GPCC

gauges

2001–2013 0.1◦ × 0.10 Huffman et al. (2007)

10 CHIRPS_v2.0 CHIRPS2 IR, TMPA 3B42, gauges

(GHCN and other sources),

CFS2, CHPclim

1981–2016 0.1◦ × 0.1◦ Funk et al. (2015)

Satellite without

correction to rain

gauge (4)

11 CMORPH_v1.0_RAW CMORPH_RAW IR, PMW 1998–2017 0.25◦/8 km Xie et al. (2017)

12 IMERG_v6_FU IMERG_FC IR, PMW, sate_radar 2001–2018 0.25◦ × 0.25◦ Huffman et al. (2019)

13 3B42_IR_V7.0 3B42_IR IR 1998–2016 0.25◦ × 0.25◦ Huffman et al. (2007)

14 CHIRP_V2 CHIRP IR 1981–2016 0.1◦ × 0.10 Funk et al. (2015)

*Gauge under-catch correction; IR, thermal infrared; PMW, passive microwave; sate_radar: satellite radar; CSF2, Coupled Forecast System (CFS) version 2; CHPclim, Climate Hazards

group Precipitation climatology; GHCN, the Global Historical Climate Network; TMPA 3B42, Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis version 7.
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FIGURE 1 | Climatology of the annual daily precipitation (mm/day) extracted

from APHRODITE. Black boxes show the regions used in this document:

Japan (129◦E-146◦E, 30◦N-46◦N), India (70◦E-92◦E, 5◦N-25◦N), and the

Maritime Continent (95◦E-150◦E, 10◦S-10◦N).

convection and simulation of rainfall in numerical models and is
not constrained by precipitation observations (Bosilovich et al.,
2011; Dee et al., 2011). In addition, some product “families”
include more than one dataset, but we select only one dataset
from each product family where we believe that either the best
quality control has been applied or where one dataset is deemed
preferable for the purposes of this study.

To intercompare datasets with respect to product types, we
cluster the 13 products into three groups organized by data type:
in situ-based (three datasets); satellite with (six datasets) and
without (four datasets) a correction to rain gauges. The products
range in the time period covered, from 13 years (GSMAP-RNL)
to 67 years (REGEN_ALL). All products share the common
overlapping period of 2001–2013, which is therefore used to
intercompare climatologies between the different datasets.

Additionally, we include the 0.50 × 0.50 gridded precipitation
dataset: Asian Precipitation—Highly Resolved Observational
Data Integration Towards Evaluation of Water Resources
(APHRODITE) (Yatagai et al., 2012). This continental-scale daily
product contains a dense network of daily rain gauge data for
Asia obtained from different sources: Global Telecommunication
System (GTS) based data, data precompiled by other projects
or regional organizations and APHRODITE’s own collection.
Various versions of the product have been developed including:
V1101, V1101_EXR1, V1801, and V1901. Note that the newest
version of APHRODITE, V1901, that applies updated algorithms
has been released, but it only covers the period 1998–2017.
Therefore, for this study we merged version V1101 (covering
1950-2007) and V1101_EXR1 (covering 2008–2015) to get as
long a record as possible. Two versions of this dataset were
merged to get the longest covered period (1950–2005). We
acknowledge that this regional dataset is not necessarily “the

truth,” but with the extensive exchange of real time data
from these national hydrological and meteorological services,
APHRODITE has a substantially improved station precipitation
network in many parts of Asia, notably around the Himalayas,
Southeast Asia, and mountainous regions compared to other
available global precipitation datasets (see Figure 2 and further
discussion on this in section climatology of the mean daily
precipitation). Therefore, in this study we use APHRODITE as
a reference dataset with which to compare the 13 precipitation
products we have accessed from FROGS. In order to enable a fair
comparison, the daily precipitation data fromAPHRODITEwere
interpolated using a first-order area-conservative remapping
method (Jones, 1999) to the same 1◦x1◦ resolution as the other
datasets. This interpolation method conserves the integral of
precipitation that does not necessarily hold for other remapping
methods. Then extreme precipitation indices outlined in the next
section were then calculated.

Wind and evaporation effects on gauge measurements,
typically resulting in gauge undercatch is one of the dominant
errors in precipitation estimates over high-latitude and
mountainous areas (Prein and Gobiet, 2017). Several
observational datasets are corrected for gauge-precipitation
undercatch (see Table 1). The applied correction method,
however, varies from one product to another. For example, a
bulk correction factor (Legates and Willmott, 1990) usually
was applied to monthly climatological means in GPCP_CDR
(Huffman et al., 2001) and IMERG_FC (Huffman et al., 2019).
Note that APHRODITE does not apply a gauge-undercatch
correction, but rather uses an improved quality-control method
and orographic correction of precipitation.

Our domain covers a large area with a heterogeneous
distribution in the number of gauges per 1◦x1◦ grid, as extracted
fromAPHRODITE (Figure 2e and also Supplementary Figure 1

for a zoom in). We also defined different station density (s)
following categories: rare (0 <s <1); low (1 ≤ s < 5), medium
(5≤ s <10), and high (s ≥ 10) to try to better quantify
this heterogeneity. To account for spatial-temporal variations
in the characteristics of precipitation extremes, we investigate
several sub-regions in more detail, namely: Japan (1290E-1460E;
300N-460N); the Maritime Continent (950E-1500E;100S-100N);
and India (700E-900E; 50N-250N) (Supplementary Figure 1) for
further analyses. These three sub-regions cover a large area of
land with very different station density and spatial characteristics
such as orography and coastal complexity. We chose these
regions because they provide a good representation of different
extreme rainfall estimation challenges. Japan has a very dense
in situ gauge network. Indian and the Maritime Continent are
poorly instrumented.

APHRODITE lacks good station coverage over India and the
Maritime Continent (Supplementary Figure 1). At more local
scales, the Southeast Asian Climate Assessment and Dataset
(SACA&D) (Van Den Besselaar et al., 2017) and the high
resolution long-term India Meteorological Department (IMD)
(Pai et al., 2014) dataset might provide better precipitation
estimates in these regions since they have much more station
information than the products we have assessed over the
wider region. Therefore, we conduct additional comparison
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FIGURE 2 | Upper panel: Climatological values (over the period of 2001–2013) of the annual wettest-day (Rx1day; in mm) for (a) APHRODITE and the relative

difference to APHRODITE (in %) of climatological Rx1day for the in situ-based products (blue labels): (b) REGEN_ALL (c) GPCC_FDD, (d) CPC. The number inserted

on each panel indicates the regional average of these relative differences. Middle panel: Climatological station density in each in situ-based dataset: averaged number

of rain gauges per 1◦x1◦ grid cell over the 2001–2013 period in (e) APHRODITE, (f) REGEN_ALL, (g) GPCC_FDD, (h) CPC. Note that the light gray color indicates no

station and the dark color indicates very sparse-station regions (i.e., have station density <1 station per grid cell). Bottom panel: (i) Time evolution of station density:

daily total number of rain gauges over the Asian Monsoon area in (black) APHRODITE, (orange) REGEN_ALL, (red) GPCC_FDD, and (blue) CPC.

between all the products from Table 1 and these local datasets
(Supplementary Part). Note that the local datasets are at 0.25◦

× 0.25◦ resolution and contain only precipitation information
for Indonesia and India. To enable a fair comparison with
the other products analyzed here, SACA&D and IMD were
interpolated into a common 1◦ × 1◦ grid using a conservative
remapping method.

Precipitation Extremes
Note that most regional precipitation extremes of monsoon
Asia are associated with Asian summer monsoon circulation

features. However, to characterize extreme precipitation, we
select the annual maximum 1-day precipitation (Rx1day) as
recommended by the Expert Team on Climate Change and
Detection Indices (ETCCDI) (Zhang et al., 2011) from each
10x10 grid box. This index represents the type of extreme event
that might lead to flooding for example (You et al., 2011; Liu
et al., 2014). In addition, most the annual daily precipitation
maxima do actually mostly reflect the summer precipitation
maxima [whether that is Northern Hemisphere summer (June,
July, August, and September for the “mainland” of monsoon
Asia) or Southern Hemisphere summer (December, January,
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and February for Southeast Asia)] (Figure not shown). We also
extract other precipitation indices [i.e., the maximum 5-days
precipitation (Rx5day), the simple daily intensity (SDII), the total
annual wet-day precipitation (PRCPTOT) and the annual counts
of day when precipitation exceeds 10mm (R10mm)]. Analysis of
these are found in the Supplementary Material.

We use some basic statistics including an assessment of
the climatology over the longest overlapping period of data
(i.e., 2001–2013); and time series of regional averages for the
whole period of available data (which varies by observational
product—see Table 1). Note that time series of regional averages
are calculated relative to the Rx1day annual average over the
1961–1990 baseline period in APHRODITE. Only areas that
have common data between all datasets are used to calculate
area-averaged time series. In order to draw conclusions about
inter-product spread, the coefficient of variation (cov) (i.e.,
standard deviation normalized by the multiproduct mean of
climatology for each cluster is calculated over the common period
of 2001–2013).

Finally, we compare trends and temporal correlations over
1988–2013 for each product that covers this (longer) period and
has a sufficient amount of non-missing data (i.e., 70% of data has
to be present for an annual value to be calculated). Therefore, all
satellite products are excluded except the CHIRP2 family, which
have temporal coverage from 1981 to 2016 (see Table 1). Since
some annual extremes do not follow a Gaussian distribution, we
use a non-parametric linear trend estimator, Sen’s slope (Sen,
1968). Trend significance is estimated using a Mann-Kendall test
at the 5% level of significance (Kendall, 1975).

RESULTS

Climatology of the Mean Daily Precipitation
Figure 1 illustrates the spatial distribution of the 13-years mean
(2001–2013) of daily precipitation in the APHRODITE dataset
over different regions of monsoon Asia. Clearly, the precipitation
pattern is strongly dependent on orography. In particular, large
amounts of precipitation are located in the western Ghats of
India, central and northeast of India (South Asia), the coastline
of Myanmar (Southeast Asia), and parts of Japan. This heavy
orographic rainfall is on the windward side of high-elevation
regions and the rapid decrease of rainfall is observed on the
leeward side of these regions. This feature has been mentioned
in previous literature (Krishnan et al., 2012; Pai et al., 2014;
Priya et al., 2016; Kim et al., 2018). In addition, there is heavy
rainfall over Eastern China, Korea while lower intensities of daily
precipitation are observed over the Tibetan Plateau and higher
latitudes of Asia.

Climatology, Inter-Product Spread, and
Trends in Rx1day
Precipitation in in situ-based products are directly estimated
from surface stations and therefore different datasets often share
similar underlying data (Sun et al., 2018). For this reason,
we start with a comparison among in situ-based products to
see whether there is consistency in their representation of
precipitation extremes. Figure 2a shows a 13-years climatology

(2001–2013) for Rx1day (mm) in the APHRODITE dataset
(taken as reference; see section observational datasets and
domain) and the relative difference (%) for three of the available
in situ-based products from the FROGS database compared
with APHRODITE (Figures 2b–d). Intense extreme rainfall
(i.e., Rx1day > 150mm) is found in Japan, South Korea, and
the western coastal part of India while lower intensities of
extreme precipitation are observed over the Tibetan Plateau
and higher latitudes of Asia (Figure 2a). Overall, in situ-based
products tend to show spatially coherent patterns of extreme
precipitation difference compared to APHRODITE, that is, they
are consistently wetter almost everywhere. This feature can not
only be seen in other intensity-based indices such as Rx5day,
PRCPTOT, and SDII but also in frequency-based indices like
R10mm (Supplementary Figures 3–6).

Some exceptions are found over Japan, Korea and Pakistan
where all global in situ datasets are drier than APHRODITE in
their extremes (see Supplementary Figures 2A–D for a zoom in
over Japan). It is worth noting that over Japan, APHRODITE
has at least an order of magnitude more stations than any of
the other in situ-based datasets so it could be picking up more
severe local storms contributing to the wetter Rx1day. This
extremely dense gauge network may also be capturing events
in remote mountainous regions with orographic enhancement.
Precipitation gauges tend to be preferentially located in valleys
and low-lying areas. REGEN_ALL and GPCC_FDD have
very similar spatial patterns with regional means wetter than
APHRODITE (27.67 and 29.96%, respectively). This is expected
as these two products utilize the rain gauges from GPCC_FDD
(Schamm et al., 2014; Contractor et al., 2020) although
REGEN_ALL also includes other sources. Meanwhile, CPC has
higher estimates of Rx1day on the whole than APHRODITE
(39.96%) (and the other two products) but regions clearly stand
out as having drier extremes. It is easy for example to see the
borders of Myanmar, Pakistan, and Laos highlighting that there
are data availability issues over these particular countries in CPC.
The considered period of 2001–2013 exhibits a strong decrease
in the number of total ground-based measurements globally due
to migration and abandonment of sites and operational costs,
particularly for CPC and GPCC_FDD as mentioned in Sun et al.
(2018). A common feature among the three in situ-based datasets
is that the Himalayas stand out as having consistently wetter
Rx1day than APHRODITE.

The newest version of APHRODITE, V1901, applied
some improvements to quality control and used an updated
interpolation algorithm to represent “extreme” values. To
test the sensitivity of the above results to the choice of
version of APHRODITE, we conduct the same analyses with
APHRODITE_MA version V1901 (Supplementary Figure 7).
Our main conclusions remain the same whatever version of
APHRODITE is used.

The differences among gauge-based products may come
largely from the different gauge networks used to derive each
dataset, as well as differences in the background climatologies
used to interpolate these gauge observations. Figures 2e–h

also highlight the heterogeneous distribution of rain gauges
in the overlapping period of 2001–2013. Note that the light
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gray color indicates no stations present in a grid box while
the gray color indicates a very sparse station network (i.e.,
with averaged station density less than one station per grid
cell). APHRODITE has the highest number of stations overall
(Figure 2e) although this might not always hold regionally
[e.g., REGEN_ALL has more stations over China (Figure 2f)].
GPCC_FDD and CPC have fewer stations than REGEN_ALL
and APHRODITE (Figures 2g–h). Some regions are well-
covered by stations in all the in situ products such as Japan,
South Korea and Thailand while Myanmar is a data-sparse
region for all products. As a result, estimates of precipitation
extremes over the dense-station regions usually show a consistent
spatial pattern e.g., over Japan with slightly drier extremes
compared to APHRODITE (see also– Supplementary Figure 2).
On the contrary, the representation of the annual maxima
precipitation over the data-sparse regions (i.e., station density
<1) e.g., Myanmar is largely different among in situ products.
Interestingly, the Himalayas has lots of stations (station density
is >5, some locations are >10) in APHRODITE (Figure 2e) but

no stations in the other in situ-based products (Figures 2f–h).
In addition, APHRODITE applied the orographic precipitation
correction over high-elevation regions like the Himalayas which
other in situ-based products do not apply. These features might
help to explain the consistently wetter pattern compared with
APHRODITE in all in situ-based products over the Himalayas.

Focusing on the time evolution of station density across
the in situ-based products (Figure 2i), it is interesting to
note that there is a large decrease in the total number of
stations used in APHRODITE and REGEN_ALL around 1970,
which relates to a substantial reduction of rain gauges over
India in each product (Supplementary Figure 7). APHRODITE
station numbers recover over subsequent decades, which
is explained by the significant increase in gauges over
Japan (Supplementary Figure 9), though this increase does
not occur for REGEN_ALL (Supplementary Figure 9). These
changes in the total number of available rain gauges are
expected to impact inter-product differences, which is further
investigated hereafter.

FIGURE 3 | The relative difference to APHRODITE (in %) of the climatological (over the period of 2001–2013) annual wettest day (Rx1day) for corrected satellite

products (black labels, two upper panels) (a) GSMAP_RNL, (b) GPCP_CDR, (c) CMORPH_CRT, (d) IMERG_FC, (e) 3B42, (f) CHIRPS2, and uncorrected satellite

products (green label, lower panel) (g) CMORPH_RAW, (h) IMERG_FU, (i) 3B42_IR, (j) CHIRP2. The number inserted on each panel indicates the regional average of

these relative differences. The in situ products that satellite products used for their correction to rain gauges are also mentioned at the top of the figure.
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Satellite products could potentially reduce issues associated
with the lack of in situ precipitation observations. For this
reason, we next evaluate the consistency of extreme precipitation
among satellite products. Figure 3 compares the representation
of Rx1day among all of the satellite products as the relative
difference to APHRODITE over the common 2001–2013 period.
Interestingly, the annual wettest day estimated from satellites
tends to be more spatially inhomogeneous, with regions of
underestimation and overestimation compared to APHRODITE
for each dataset. This is different to the in situ datasets that mostly
show wetter estimates of climatological Rx1day (Figures 2b–d).
We find different estimates across satellite products both with
and without correction to rain gauges over Pakistan, the Tibetan
Plateau, and Western China. Meanwhile, satellite products with
corrections are more consistent with in situ-based products
over regions that have a higher number of stations (e.g.,
Eastern China).

We now focus on the overall differences between the corrected
and uncorrected satellite products. Generally, the differences
fromAPHRODITE are amplified among the uncorrected satellite
products (Figures 3g–j) in comparison to the corrected products
(Figures 3a–f). The diversity of Rx1day estimates among the
uncorrected satellite products is clear with relative differences
in regional means ranging from 92.59% in 3B42_IR (Figure 2i)
to −0.05% in CHIRP2 (Figure 3f). CHIRP2 is the closest to
APHRODITE (Figure 3f) in terms of regional average but this
hides some regional contrasts (e.g., the Tibetan Plateau and parts
of the Maritime Continent are wetter while Pakistan and eastern
China are drier than APHRODITE). In a global study of extreme
precipitation, Alexander et al. (2020) also showed CHIRP2 to
be the driest dataset in terms of extremes over global land
areas while 3B42_IR belongs to a group of products with wetter
estimates. Ongoing analysis by the Climate Hazards Center
suggests that the systematic dry bias of CHIRP2 is related to the
fixed intercept terms used to translate thermal infrared satellite
observations into estimates of rainfall rates. While CHIRP2
consistently tends to capture well mean precipitation rates, the
fixed intercepts used to translate IR data into rainfall rates
suppresses the variance of the CHIRP2 product. On the other
hand, corrected satellite estimates tend to be consistently wetter
than APHRODITE, ranging from the lowest relative difference
of 29.95% in GPCP_CDR (Figure 3b) to the highest of 57.7% in
3B42 (Figure 3e). In addition, by comparing pairs of corrected
and uncorrected products for each satellite dataset (which is
further explored in section climatology, inter-product spread
and trends in Rx1day), we cannot be confident whether the
corrections using in situ data makes the corrected product overall
better over Monsoon Asia (i.e., closer to APHRODITE). For
example, both the CMORPH and CHIRP2 family of products are
drier (and closer to) APHRODITE in their uncorrected versions
compared with their corrected versions, while the opposite is true
for products from the 3B42 and IMERG families.

The difference among satellite products can probably partly
be explained by the differences in how algorithms are used
to estimate precipitation and the techniques used to apply
rain gauge corrections, and we now explore this. In particular,
among uncorrected satellite products, 3B42_IR and CHIRP2

TABLE 2 | Coefficient of variation (cov) (in percentage (%); see section

precipitation extremes) calculated over the 2001–2013 period for each product

cluster: in situ, corrected satellite, and uncorrected satellite.

Cluster Monsoon Asia Japan India Maritime Continent

In situ 2.87 3.76 6.65 9.56

Corrected satellite 9.25 16.32 14.07 16.66

Uncorrected satellite 19.35 21.18 19.12 16.35

The cov is calculated for Monsoon Asia and its sub regions: Japan, India, and Maritime

Continent based on extracted time series of regional averages in Figure 4.

TABLE 3 | Temporal correlation of regionally averaged relative differences (in %)

for the annual wettest day (Rx1day) for each considered products with

APHRODITE, calculated for each product covering the period of 1988–2013.

Dataset name Monsoon Asia Japan India Maritime Continent

REGEN_ALL 0.57 0.51 −0.03 0.30

GPCC_FDD 0.54 0.71 −0.17 0.33

CPC 0.67 0.64 −0.26 0.42

CHIRPS2 0.21 0.65 0.23 0.49

CHIRP2 0.17 0.52 0.07 0.12

The temporal correlation is calculated from extracted time series of regional averages in

Figure 4. Products are selected if they have<2 years of missing values during this period.

See also Supplementary Figure 6 for additional information.

utilize information from infrared radar (IR) measurements while
others integrate information from passive microwave (PMW)
measurements (e.g., CMORPH_RAW, IMERG_FU; see Table 1
for details). These uncorrected satellite products are blended
with information derived from rain gauges, forming the rain
gauge-enhanced satellite products. It is interesting to note that
the choice of the underlying stations used for the rain gauge-
enhanced satellite estimates impacts the final product. For
instance, the imprint of the underlying CPC in situ data that is
used to correct them can be clearly seen in some of the spatial
patterns of the GSMAP-RNL and CMORPH family of products
(e.g., dry bias over Myanmar, Pakistan and Laos; see panels in the
left column of Figure 3). This is not systematic and indeed other
products sharing the same underlying stations (e.g., GPCP_CDR,
3B42, and IMERG product families) show limited similarity in
their spatial distribution of differences to APHRODITE although
they all utilize GPCC_FDD (Figure 3; middle panels).

Monsoon Asia is a vast area and we highlight above that
although we can extract some conclusions (e.g., in situ and
satellite products are generally wetter than APHRODITE),
important differences remain at the regional scale. Therefore, we
also consider three sub-regions that have been selected because
they are characterized by different station density, orography
and coastal complexity (see section observational datasets and
domain). The consistency among precipitation products over
Monsoon Asia and the three sub-regions (namely Japan, India,
and the Maritime Continent) are examined through time series
of regionally averaged relative differences in Rx1day (Figure 3),
the coefficient of variation (cov; i.e., Rx1day standard deviation
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divided by mean) taken as a measure of the inter-product spread
within each cluster (Table 2) and the temporal correlation with
APHRODITE taken as a measure of inter-annual variability
(Table 3).

We first focus on the Monsoon Asia region as a whole.
In situ-based products (Figure 4A) show some robustness with
less inter-product spread compared to the other two classes
of product (Figures 4B,C), as further shown by smaller cov
values for the in situ-based products compared to the corrected
and uncorrected satellite products (2.87% compared to 9.25
and 19.35%, respectively; Table 2). Note that three particular
years of CPC (i.e., 1983–1985) contain a lot of missing grid
cells over whole Monsoon Asia and its sub-regions, therefore
these three years were excluded in the calculation of Rx1day.
Corrected satellite products are more closely aligned with
in situ-based products (Figure 4B) compared with uncorrected

versions. Focusing on inter-annual variability, we find relatively
high temporal correlations with APHRODITE for in situ-based
products (from 0.54 to 0.67; Table 3) compared to CHIRPS2
(0.21; Table 3) and its uncorrected counterpart CHIRP2 (0.17;
Table 3). While we cannot extract general conclusions based on
these temporal correlations for the corrected and uncorrected
satellite clusters due to their limited time coverage, this further
tends to show that in situ-based products are generally more
reliable than satellite data over the whole region studied.

We then further investigate the consistency in the
representation of Rx1day over the three sub-regions (Japan,
India, and the Maritime Continent; second, third and last rows
of Figure 4 respectively). First, we focus on the in situ cluster.
As over Monsoon Asia, we find relatively strong consistency
among in situ-based datasets over the high-station density
region of Japan (cov value of 3.76 %, Table 2). We also find high

FIGURE 4 | Time series of regionally averaged relative differences (in %) for the annual wettest day (Rx1day) for each considered product compared to the baseline

period (1961–1990) of APHRODITE. Products are clustered into three groups: in situ (the left column), corrected satellite (the middle column), and uncorrected satellite

(the right column). Four regions are considered: (A–C) Monsoon Asia (60◦E-150◦E, 15◦S-50◦N), (D–F) Japan (129◦E-146◦E, 30◦N-46◦N), (G–I) India (70◦E-92◦E,

5◦N-25◦N), and (J–L) the Maritime Continent (95◦E-150◦E, 10◦S-10◦N). Regionally averaged Rx1day is calculated over the common area across all datasets (as

shown by the inserted maps in the middle panel of each row).
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consistency in terms of inter-annual variability for in situ-based
products in estimating Rx1day over Japan (ranging from 0.51
to 0.71; Table 3). It is also worth noting that in situ data are
generally closer to each other and temporally more consistent
to APHRODITE over Japan compared to the whole Monsoon
Asia region (Figures 4A,D). On the other hand, we find reduced
consistency over the Maritime Continent where only a few
gauges are available (temporal correlations among in situ
products vary from 0.30 to 0.42), as well as larger differences to
APHRODITE compared to that in other regions (Figure 4J).
Interestingly, India, which is also a region of poor station
density like the Maritime Continent, shows better agreement
among in situ products with smaller inter-product spread (0.14
%, Table 2) compared with the Maritime Continent (0.25%,
Table 2). Therefore, the station network alone does not account
for all uncertainties in each dataset. Other factors like geography
and climate can lead to these observational uncertainties.
Surprisingly, all considered in situ-products show negative
temporal correlations with APHRODITE over India (ranging
from −0.26 to −0.03), revealing some important issues in the
data that will be further discussed later.

Next, we focus on the representation of Rx1day among the
satellite products, with and without a correction to rain gauges
(middle and right columns of Figure 4). Compared to the in situ
inter-product spread described above, the inter-product spread
for satellite data is generally higher. This is particularly true for
uncorrected products and applies to all four regions investigated
here. In addition, we generally find a similar bias to APHRODITE
for satellite data compared to in situ data, with an overestimation
of Rx1day over Monsoon Asia, the Maritime Continent and
India (to a lesser extent) and estimates closer to APHRODITE
over Japan. The inter-product spread in the uncorrected satellite
cluster is the largest and relatively similar across all four regions
(last column of Figure 3), with cov values between 16.35 and
21.18% (Table 2). The inter-product spread is reduced in the
corrected satellite cluster compared to uncorrected products
cluster and in particular over Monsoon Asia and Japan, with
a reduction in cov values from 19.35 to 9.25% and from 21.18
to 16.32%, respectively (Table 2), whereas little difference is
seen over the Maritime Continent. Interestingly, higher temporal
correlation is found for the regional average of Rx1day between
APHRODITE and CHIRPS2 compared to its uncorrected
counterpart CHIRP2 for all four regions and in particular for
the Maritime Continent and India (Table 3). However, we find
low temporal correlations (ranging from 0.12 to 0.49, Table 3)
over the Maritime Continent, which highlights inconsistencies
in inter-annual variability across different precipitation products
and strongly limits the confidence that can be associated with
these observational datasets over this region when assessing
the annual daily precipitation maxima. It is also striking
to see that temporal correlations over India are not only
very low but also negative for satellite products. This is
a major problem and again demonstrates that observations
over India should be considered with care, in particular
for studies focusing on inter-annual variations. This can
partly be explained by the instability of the total number of
observational stations in all considered in situ-based products

TABLE 4 | Trends per decade in the annual Rx1day (mm/decades and %/decade)

for each product that has data covering the period of 1988–2013.

Dataset Monsoon Japan India Maritime

name Asia Continent

APHRODITE 1.12 (2.8%) 3.06 (3%) −3.1 (−5.0%) 6.01 (12%)

REGEN_ALL 0.71 (1.8%) −6.03 (−6%) −1.67 (−2.7%) 1.30 (2.6%)

GPCC_FDD 0.71 (1.8%) −2.35 (−2.2%) 0.82 (1.3%) −1.23 (−2.7%)

CPC 2.93 (7.3%) 3.1 (3.1%) 6.07 (9.6%) 6.20 (12.4%)

CHIRPS2 0.61 (1.5%) 0.61 (0.6%) −2.40 (−3.8%) 3.15 (6.3%)

CHIRP 0.08 (0.2%) 0.08 (0.08%) −0.67 (−0.5%) 1.31 (2.6%)

Products are selected if they have <2 years of missing values during this period. Trends

are calculated using Sen slope estimation and significant test at the 5% level using Mann-

Kendall test (see section precipitation extremes). Dark (light) background colors indicate

significant (non-significant) trends, with blue referring to an increase and orange to a

decrease in Rx1day. Note that trends are calculated over the common area across all

considered datasets for each sub-region (see inserted maps in Figure 3).

(APHRODITE, REGEN_ALL, GPCC_FDD, andCPC) over India
(Supplementary Figure 10B). For example, India experienced
a major variation in available station coverage using in
APHRODITE with a sudden increase during 1998–1999 and
decrease during 2004–2006 (Supplementary Figures 11B–D).

The time series (Figure 4) also indicate there might be trends
over the observational record in some products. We further
quantify whether temporal trends are present in the regionally
averaged Rx1day values and how robust these trends are across
the different observational products for Monsoon Asia and its
sub-regions. We consider here only products having at least 25
years of data available between 1988 and 2013 (Table 4), which
covers the same time period as for the temporal correlations
in Table 3 and gives us a sufficient record length for analysis.
We find coherent (positive) trends across all products over the
entire Monsoon Asia although only GPCC_FDD and CPC show
a significant intensification, but with quite different magnitudes
(0.71 mm/decade and 2.93 mm/decade, i.e., 1.8%/decade and
7.3%/decade, respectively). Focusing on the three selected sub-
regions of Monsoon Asia, we find that four products out of
six agree on a significant increase in the annual wettest day
over the Maritime Continent, but the magnitude of their trend
varies quite substantially (from 1.31 to 6.20 mm/decade, i.e.,
2.6%/decade to 12.4%/decade). There is no consensus between
observational products over India, with only APHRODITE and
CPC showing significant trends yet of opposite signs (−3.10
and 6.07 mm/decade, i.e., −5.0%/decade and 9.6%/decade,
respectively). Japan has non-significant trends in all products.

Corrected Satellite and Uncorrected
Satellite Comparison
Our results show substantial differences in how observational
datasets represent Rx1day. It is clear that how well products
agree depends on the region of interest, and in particular
the agreement between the corrected and uncorrected satellite
product estimates. Therefore, we further focus on how the
satellite data with and without correction to rain gauges compare
to each other for the representation of climatological Rx1day
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FIGURE 5 | Upper panel: relative difference to APHRODITE (in %) of the climatological (over the period of 2001–2013) annual wettest day (Rx1day) for corrected

satellite products (black labels, two upper rows): (a) GSMAP_RNL, (b) GPCP_CDR, (c) CMORPH_CRT, (d) IMERG_FC, (e) 3B42, (f) CHIRPS2; uncorrected satellite

(Continued)
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FIGURE 5 | products (green label, the third row): (g) CMORPH_RAW, (h) IMERG_FU, (i) 3B42_IR, (j) CHIRP2; and the differences between the corrected and

uncorrected products (k–n). The number inserted on each panel indicates the regional average of these relative differences. The in situ products that satellite products

used to correct are also mentioned at the top of the figure. The last two panels also show the percentage of data available for each grid cell during the 2001–2013

period in these in situ-based datasets [(o) GPCC_FDD, (p) CPC] used for correction of satellite products.

(over the 2001–2013 period) over the three sub-regions of
Monsoon Asia (Figures 5–7).

Figures 5a–j show the spatial map of relative differences
(to APHRODITE) in the climatology of Rx1day for corrected
satellite products (Figures 5a–f) and uncorrected versions
(Figures 5g–j) over Japan. The difference between pairs of
datasets from the same family are also presented (Figures 5k–n).
Three uncorrected satellite products (CMORPH_RAW,
3B42_IR, and CHIRP2; Figures 5g,i,j) tend to be drier
than APHRODITE whereas IMERG_FU is generally wetter
(Figure 5h). The corrected satellite versions of these four family
products usually show reduced bias spatially (Figures 5c–f),
in particular for IMERG products (as seen in Figures 5e,f).
Note that the direction of correction among product families
is different (Figures 5k–n). Hence, a strong correction is
applied over Japan that shifts the satellite products closer to
APHRODITE (and therefore to each other). This highlights
that the dense rain gauge network presents other benefits
than simply a better estimation of precipitation extremes in
in situ-based datasets as it also leads to improvement (i.e., closer
to APHRODITE) in Rx1day estimates in satellite products when
a correction to in situ data is applied. Figures 5o,p indicates the
percentage of station data available during the 2001–2013 period
for each grid box in the in situ datasets used to correct these
satellite products. Stations from CPC cover the whole of Japan
with almost all station information being fully available (nearly
100%) during the considered period. On the other hand, station
networks from GPCC_FDD only partly cover Japan and in
which the length of available data for some grid boxes is <50%,
However, it is interesting that the imprint of underlying station
networks among corrected satellite-products (as mentioned in
section climatology of the mean daily precipitation) does not
appear to have a strong impact over Japan. This is likely because
there are enough stations in the underlying rain gauge networks
over Japan to produce corrections that shift the satellite products
closer to APHRODITE.

Figure 6 focuses on India which covers a large area of
land only partially covered by in situ stations. Overall, both
satellite products with and without rain gauge correction tend to
overestimate climatological Rx1day compared to APHRODITE,
overmost areas of India except a thin band on the west coast. This
excludes CHIRPS2 and CHIRP2 that are closer to APHRODITE
(Figures 6f,j). Contrary to the results for Japan, the correction
to rain gauges has smaller impacts (Figures 6k–n) and each
pair of corrected and uncorrected products presents a relatively
similar distribution of climatological Rx1day, except over the
western coast of India where the correction to in situ data
makes precipitation extremes slightly closer to APHRODITE.
This interesting feature can be probably explained by the fact
that over the west coast of India in situ stations used for the

correction generally have a nearly complete temporal coverage
(i.e., greater than 95%) during 2001–2013 period (Figures 6o–p).
Meanwhile, in other parts of India, the percentage of data
available through time in each grid box varies (from 1 to 70%).
Another possible explanation might be related to lower station
density over India compared with that over Japan. This seems to
limit the improvement in the representation of Rx1day from the
correction of satellite products to in situ data.

Finally, we focus on the Maritime Continent in Figure 7.
Conclusions similar to those drawn for India can be made
for the Maritime Continent. Generally, both satellite products
with and without correction to rain gauges are much wetter
compared with APHRODITE. In addition, almost all products
are fairly similar to each other (both spatially and in their regional
averages; Figures 7a–j) in terms of representing Rx1day. Some
notable exceptions include the highest elevation regions of New
Guinea and the island of Sulawesi, which both have positive
differences in some datasets (GSMAP-RNL and CMORPH_CRT;
Figures 7a,c) and negative in others. Comparing both corrected
and uncorrected satellite clusters reveals some potential issues
related to the rain gauge networks that satellite products use to
correct their precipitation estimation. The issues might be related
to the lack of stations across different rain gauge networks and
also emphasize the dubious quality of available stations over the
Maritime Continent.

Generally, the gauge-based correction applied to satellite
estimates acts differently from region to region and product to
product, and we show here that this also depends on the station
network utilized in addition to the method itself (for instance
some products have stronger corrections than others even when
using the same underlying network). We find a clear distinction
in the impact of the correction between regions of high and sparse
station density, for instance over Japan where there are a lot of
stations with good temporal coverage, it brings satellite estimates
closer to APHRODITE and reduces inter-product spread. Over
regions poorly sampled by stations, how well the correction
to in situ acts depends on the length of record available and
this can lead to regional contrasts but generally we find minor
improvements in the representation of climatological Rx1day
between the corrected and uncorrected version of the satellite
products over such regions, which implies that not only does
poor station coverage affect the representation of precipitation
extremes in in situ-based datasets but it also has clear impact in
most satellite products that rely on ground networks.

DISCUSSION

We find that the estimation of Rx1day is generally wetter in
in situ-based products compared to APHRODITE. This wet
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FIGURE 6 | Same as Figure 5 for India. Upper panel: relative difference to APHRODITE (in %) of the climatological (over the period of 2001–2013) annual wettest day

(Rx1day) for corrected satellite products (black labels, two upper rows): (a) GSMAP_RNL, (b) GPCP_CDR, (c) CMORPH_CRT, (d) IMERG_FC, (e) 3B42, (f)

(Continued)
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FIGURE 6 | CHIRPS2; uncorrected satellite products (green label, the third row): (g) CMORPH_RAW, (h) IMERG_FU, (i) 3B42_IR, (j) CHIRP2; and the differences

between the corrected and uncorrected products (k–n). The number inserted on each panel indicates the regional average of these relative differences. The in situ

products that satellite products used to correct are also mentioned at the top of the figure. The last two panels also show the percentage of data available for each

grid cell during the 2001–2013 period in these in situ-based datasets [(o) GPCC_FDD, (p) CPC] used for correction of satellite products.

FIGURE 7 | Same as Figure 5 for the Maritime Continent. Upper panel: relative difference to APHRODITE (in %) of the climatological (over the period of 2001–2013)

annual wettest day (Rx1day) for corrected satellite products (black labels, two upper rows): (a) GSMAP_RNL, (b) GPCP_CDR, (c) CMORPH_CRT, (d) IMERG_FC, (e)

3B42, (f) CHIRPS2; uncorrected satellite products (green label, the third row): (g) CMORPH_RAW, (h) IMERG_FU, (i) 3B42_IR, (j) CHIRP2; and the differences

between the corrected and uncorrected products (k–n). The number inserted on each panel indicates the regional average of these relative differences. The in situ

products that satellite products used to correct are also mentioned at the top of the figure. The last two panels also show the percentage of data available for each

grid cell during the 2001–2013 period in these in situ-based datasets [(o) GPCC_FDD, (p) CPC] used for correction of satellite products.

“bias” is also apparent in other precipitation indices [e.g., Rx5day
(Supplementary Figure 3), SDII (Supplementary Figure 4),
PRCPTOT (Supplementary Figure 5), and R10mm
(Supplementary Figure 6)]. One source of these differences
is that APHRODITE contains substantially more rain gauges
than any other in situ-based product (Figure 2i). This could
be related to the “central limit theorem,” which explains that
averaging more observations in each grid cell can lead to
lower variance weighted averages of original station values.
For instance, three considered in situ-based products have
a wetter bias compared with APHRODITE over Thailand

which (Figure 2a compared with Figures 2b–d). However, this
“central limit theorem” cannot be applied over Japan, Korea, and
Pakistan with being slightly drier in other products compared to
APHRODITE (Supplementary Figure 2). The potential reason
might be related to a very high-density station network over
Japan and Korea in all in situ dataset. Other possible sources of
difference could be related to the quality control procedures and
interpolation method applied in APHRODITE [see Yatagai et al.
(2012) for details]. Particularly, Yatagai et al. (2012) recognized
that there are some features in APHRODITE that don’t exist
in other products such as narrower rainbands. The authors
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show that this is a result of the Mountain Mapping technique
[see Schaake et al. (2004) for more details] they employed
and which allows better estimates of precipitation averages in
the merging algorithm over data-sparse areas. This technique
avoids the false penetration of precipitation from wet areas
into adjacent and relatively drier areas, which can hence induce
narrower rainbands in APHRODITE than in other datasets.
The Maritime continent combining both dry and wet regions
illustrates this nicely with generally much wetter estimates in
all other datasets compared to APHRODITE, and in particular
over the mountainous regions of Indonesia and Malaysia
(Supplementary Figures 2F–H).

We note that CPC has a drier bias compared with
APHRODITE in regions with little or no stations and that
such regions coincide well with country borders (e.g., Myanmar,
Pakistan) (Figure 2d). According to Xie (2008) and Chen et al.
(2008) the dry bias can also potentially be explained by the
fact that GTS values are used everywhere outside of China
and missing values can sometimes be reported incorrectly as
zero precipitation.

Our results indicate the limitations in estimating precipitation
extremes in gridded precipitation products, especially in in situ-
based products over poorly sampled regions with few (e.g., the
Maritime Continent, Myanmar) or no stations (e.g., the Tibetan
Plateau). These in situ products have been used in many model
evaluations studies as the observational reference (“ground
truth”). Therefore, our recommendation is to carefully apply
these datasets, notably over data-sparse regions like the Maritime
Continent. We find better agreement among sole gauge-based
products over high station density (i.e., >10 station per grid)
regions like Japan. These results are perhaps not surprising and
are consistent with the findings of Kim et al. (2018), although
we observe large differences in the quantity of observational
stations over Japan (Supplementary Figure 8A) in APHRODITE
compared to other considered in situ-based products. Thatmakes
us question whether there is a minimum number of stations
required to obtain good agreement in the representation of
rainfall extremes.

The regional high-resolution datasets (e.g., IMD for India and
SACA&D for the Maritime Continent) might provide a better
precipitation information than APHRODITTE as they have
higher resolution and include many more stations compared
to APHRODITE. Therefore, additional comparison between all
the products from Table 1 and local datasets are conducted to
get better views in terms of the uncertainties among different
observational products regrading to various references datasets.
Supplementary Figures 12, 13 show the differences between
IMD and SACA&D and other observation products respectively.
All products are drier than IMD in their estimates of Rx1day.
This “drier bias” is consistent with the spatial pattern found over
Japan and Korea, which can be explained by a very dense station
density in IMD compared with other products. The pattern over
theMaritime Continent for SACA&D is similar to APHRODITE,
with all products generally wetter than SACA&D. Although
different bias patterns are observed when adding these two local
high-resolution datasets, our main conclusions remain the same
in that there is high consistency among in situ-based products

irrespective of the station density. Satellite products with gauge-
corrections show better agreement with each other in estimating
Rx1day than those that are uncorrected.

Due to insufficient observational evidence and/or spatially
varying trends, the Fifth Assessment Report (AR5) of IPCC
(2013) stated only low to medium confidence in the trends in
extreme precipitation over various regions of Asia (see IPCC
AR5 Table 2.13). Since AR5, more attempts have been made to
examine changes in different aspects of precipitation extremes
over Asian countries. To date, significant decadal trends in
precipitation extremes have been identified over India (Prakash
et al., 2015; Rana et al., 2015), Japan (Fujibe et al., 2006;
Duan et al., 2015), but not over Southeast Asia [including the
Maritime Continent e.g., Kim et al. (2018)]. However, all these
studies have been limited either in the number of observational
products they used and/or the time period they covered [e.g.,
seven datasets used and 10 years considered in Kim et al.
(2018)], or the different definitions of extreme precipitation
used. Here, we have considered 13 observational datasets that
cover 25 years (1988–2013) for the estimation of observed trends
in the annual 1-day precipitation maxima across the different
considered sub-regions. There is low confidence in the presence
of a trend in Rx1day over India during 1988–2013 because of
a lack of agreement between products, which is likely linked
to a lack of in situ data. This inconsistency still exists when
considering the IMDdataset (Supplementary Table 5). Note that
there have been significant increasing trends in frequency and
intensity of extreme heavy rainfall over central and southern
India since 1950 where regional climates are controlled by the
Asian monsoon system (Krishnan et al., 2015; Roxy et al.,
2017; Venkata Rao et al., 2020) (i.e., the core monsoon zones).
Interestingly, despite a poor station coverage over the Maritime
Continent, we find significant positive trends in four out of six
datasets. On the other hand, Japan is a region of very high
station density and yet we do not find significant trends in any
of the considered datasets. Other studies found a significant
increasing trend in Rx1day over Japan (Fujibe et al., 2006;
Duan et al., 2015) but in these cases a much longer period
was studied (1901–2004 and 1901–2012, respectively) which
might explain these differences. Further results based on different
extreme indices [e.g., Rx5day (Supplementary Table 1), SDII
(Supplementary Table 2), PRCPTOT (Supplementary Table 3),
and R10mm (Supplementary Table 4)] show little differences in
terms of trends depending on regions and indices over 1988–
2013. In particular, we find significant trends in SDII over Japan
with three datasets including: REGEN_ALL, GPCC_FDD and
CHIRPS but opposite signs (−0.82mm/decade, 0.67mm/decade,
and −0.57 mm/decade respectively; Supplementary Table 2).
On the other hand, coherent positive significant trends in
Rx5day, SDII, PRCPTOT, and R10mm are found over India
in at least two out of five considered products (the third
column; Supplementary Tables 1–4). Similar results on decadal
trends are obtained for different extreme indices over the
Maritime Continent.

Comparing inter-annual variability in different products, we
highlighted the reliability of in situ products over Monsoon
Asia. In addition, we also found high consistency over
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dense-station areas like Japan, whereas very low temporal
correlation was found over India in all considered products.
This is likely due to the instabilities in time-varying station
networks in APHRODITE, for example over India during 1988–
2013 (Supplementary Figures 8B, 9). Note that a substantial
international “reporting crisis” has been recorded in many
regions of the world, referring to either a substantial decrease
in observations or major variations in station networks over
time (Funk et al., 2015; Alexander et al., 2019). These temporal
changes in network distribution can lead to very different
climatologies from year to year and hence inconsistencies in
inter-annual variability, simply because of differences in spatial
coverage from year to year.

Further issues in how satellite products ingest data, use
algorithms to bias adjust or merge input data together to produce
final products (see Table 1) also add to the uncertainties in
our results. This could lead to the uncertainties we see in the
representation of extremes, especially among the corrected and
uncorrected satellite datasets over sub regions, where we found
the performance of satellite correction is different between data-
sparse (e.g., Indonesia and India) and high station density regions
(e.g., Japan). Understanding the method behind the creation of a
rainfall product is the best way to know how robust it is and to
which extent one can trust it. Some diagrams from Le Coz and
Van De Giesen (2020)-the review on how products are developed
can facilitate such understanding. It also acknowledged that the
“reporting crisis” mentioned above might also affect products
differently. For example, satellite estimates that start with lower
bias are more resilient to changes in the gauge networks.

We do not have all of the required information to be able
to better quantify the reasons behind the uncertainties among
precipitation products and to reduce these uncertainties because
of the inhomogeneities in precipitation records and the lack
of station information from regional products like IMD and
SACA&D. Efforts still need to be pursued on how to reduce
the uncertainties in observed precipitation extremes. However,
this study does indicate some inherent types of uncertainties
in datasets through the employed station network and applied
satellite correction over Monsoon Asia. The idea of this research
is not to recommend any single observational dataset but rather
to highlight the commonalities and differences among different
products and product clusters when they are compared within a
common framework. This can be used to better inform research
activities like model evaluation, monitoring, and projections
etc. Previous studies suggested that there is no single best
observational dataset for global assessment of annual wettest
day precipitation (Alexander et al., 2020; Bador et al., 2020).
However, as we focus on a whole of Monsoon Asia regional
scale study, APHRODITE could be considered as being better
than any other existing global datasets because this regional data
product often has access to much more data than any of its
global dataset counterparts. However, if we consider smaller sub-
regions, most develop their own high-resolution datasets which
should generally be considered as the first choice for evaluation
purposes since they employ the most rain gauges and the most
effort has gone into their development for applications in the
specific region.

CONCLUSIONS

This study focused on the robustness of 1-day precipitation
annual maxima (Rx1day) over Monsoon Asia by comparing
the climatological value of Rx1day across multiple observational
precipitation products and exploring the influence of the
underlying station density and the correction methods that
satellites use to estimate precipitation. To explore how different
data sources represented observed precipitation extremes, all
considered products were clustered into three groups based on
their data sources: in situ, corrected satellite and uncorrected
satellite. We investigated their consistency in the representation
of precipitation extremes across themultiple products principally
through their spatial and temporal distribution of Rx1day, the
inter-product spread, temporal correlation and trends over the
1988–2013 period. We further investigated three sub-regions
of particular interest: Japan (a region of high station density
and strong spatial contrast), India (a large region covered
by a sparse station network with orographic contrasts), and
the Maritime Continent (a poorly sampled region with strong
coastal complexity).

We find that there are broad similarities in the spatial and
temporal distributions among in situ-based products compared
to satellite products (with or without a correction to in situ).
Better general agreement in climatology and less inter-product
spread and higher temporal correlation is found for satellite
estimates with correction to rain gauges than for the uncorrected
versions of the satellite products. These findings are generally
true over Monsoon Asia and are consistent with results from
quasi-global studies [e.g., Bador et al. (2020)].

These general results also contain strong sub-regional
differences, and we show in this study that these differences
can partly be explained by the quantity and quality of the rain
gauges over the considered region. First, focusing on in situ
datasets only, we find a better agreement among in situ-based
products over dense data regions like Japan. Conversely, regions
with no stations (e.g., Myanmar, Tibetan Plateau) or sparse
station networks (e.g., the Maritime Continent) stood out over
other regions as having the largest differences in precipitation
extreme estimates. Secondly, over the data dense region of Japan,
corrected satellite products show similar spatial and temporal
patterns between themselves and compared to the in situ-based
products that are used to correct them. In addition, the inter-
product spread among corrected satellite estimates is closer to
the spread for in situ-based products than for their uncorrected
counterparts despite the larger number of satellite products. On
the contrary, over poorly sampled regions (e.g., India and the
Maritime Continent), both uncorrected and corrected satellite
clusters are similar to each other and have much larger spread
compared with in situ-based products. In addition, we also
showed that the length of record available at each station can also
affect the satellite correction over these poorly sampled regions.

Clearly, the quantity and quality of the station network have
implications for the reliability of the in situ-based products
derived and also the satellite products that use a correction to in
situ data over Monsoon Asia. We showed that satellite products
can have the spatial imprints of the underlying in situ data.
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Therefore, they cannot be considered as the “perfect solution” to
replace the lack of in situ data over data-sparse regions.

Finally, and based on our results, we would like to make
some recommendations for data selection for the study of the
annual wettest day over the three sub-regions studied here. First,
we found large observational uncertainties among uncorrected
satellite products over all considered regions, so preference
should be given to the corrected version over the uncorrected
version of each product family. There might potentially be
areas where the uncorrected products could be better than their
corrected counterparts e.g., where stations are not representative
of the region and therefore the correction to in situ does not lead
to an improvement for precipitation extreme estimates. However,
such conclusions did not arise from our analyses and therefore
we only consider the satellite products from the corrected cluster
in addition to in situ-based products for some recommendations
that we detail for each region individually:

Japan has a dense network of stations with good completeness
in terms of length of record in APHRODITE. We recommend
the selection of in situ-based observations as they tend to
have very similar spatial and temporal patterns. Furthermore,
satellite products can also be recommended as they show good
agreement with in situ-based products and slightly larger inter-
product spread than in situ-based products. However, it should
be noted that there is some inconsistency in long-term extreme
precipitation trends among in situ-based products.

Over India, we recommend using in situ-based datasets with
great care. Indeed, this large region suffers from a substantial
reduction in the station density and some inconsistencies in
its station network over the last few decades. This leads
to differences among in situ products for both spatial and
temporal patterns of precipitation extremes, and also affects trend
estimates that cannot be extracted with confidence. This might
also have a negative impact on satellite datasets that also show
large inter-product spread over India. Therefore, we suggest
a careful selection of both in situ and satellite products over
this region. Note that India does have its own high-resolution
gridded datasets which might provide better local precipitation
extremes estimates.

The Maritime Continent, which features highly complex
terrain, is sampled by only a few rain gauges for which data
quality is also questionable. This causes substantial differences
in climatology and inconsistency in inter-annual variability
among in situ products. There is also a little satellite correction

applied over the Maritime Continent due to data spare networks.
We recommend users are knowledgeable of data issues when
choosing in situ products.

Our research focuses on uncertainties among different
observational products in estimating precipitation extremes by
understanding the impact of the underlying station networks and
satellite corrections. It is important to acknowledge that these
factors do not account for the full range of uncertainties in each
dataset. Other factors like geography and climate might also
contribute. Therefore, we recommend understanding how each
dataset is produced in order to make the best decision about what
products are fit for purpose in estimating precipitation extremes
for individual regions.
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