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The majority of people in East Africa rely on the agro-pastoral system for their livelihood,

which is highly vulnerable to droughts and flooding. Agro-pastoral droughts are endemic

to the region and are considered the main natural hazard that contributes to food

insecurity. Drought begins with rainfall deficit, gradually leading to soil moisture deficit,

higher land surface temperature, and finally impacts to vegetation growth. Therefore,

monitoring vegetation conditions is essential in understanding the progression of

drought, potential effects on food security, and providing early warning information

needed for drought mitigation decisions. Because vegetation processes couple the land

and atmosphere, monitoring of vegetation conditions requires consideration of both

water provision and demand. While there is consensus in using either the Normalized

Difference Vegetation Index (NDVI) or evapotranspiration (ET) for vegetation monitoring,

a comprehensive assessment optimizing the use of both has not yet been done.

Moreover, the evaluation methods for understanding the relationships between NDVI

and ET for vegetation monitoring are also limited. Taking these gaps into account we

have developed a framework to optimize vegetation monitoring using both NDVI and

ET by identifying where they perform the best by using triple collocation and cross-

correlation methods. We estimated the random error structure in Moderate Resolution

Imaging Spectroradiometer (MODIS) NDVI; ET from the Operational Simplified Surface

Energy Balance (SSEBop) model; and ET from land surface models (LSMs). LSM ET and

SSEBop ET have been found to be better indicators for vegetation monitoring during

extreme drought events, while NDVI could provide better information on vegetation

condition during wetter than normal conditions. The random error structures of these

variables suggest that LSM ET is most likely to provide important information for

vegetation monitoring over low and high ends of the vegetation fraction areas. Over

moderate vegetative areas, any of these variables could provide important vegetation
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information for drought characterization and food security assessments. While this study

provides a framework for optimizing vegetation monitoring for drought and food security

assessments over East Africa, the framework can be adopted to optimize vegetation

monitoring over any other drought and food insecure region of the world.

Keywords: triple collocation, East Africa, vegetation monitoring, evapotranspiration, normalized difference

vegetation index

INTRODUCTION

East Africa, with around 330 million inhabitants (Gebremeskel
et al., 2019), is one of the chronically food insecure regions of
the world. Most of the people, around 80%, live in rural areas
and depend on subsistence agriculture and livestock for their
livelihood (IGAD, 2020). The agro-pastoral system of the region
heavily depends on the prevailing weather conditions, especially
rainfall, and is highly vulnerable to extreme weather and climate
events such as droughts (high climate variability). Agro-pastoral
droughts are endemic to the region and are considered the main
natural hazard that contributes to food insecurity (Gebremeskel
et al., 2019; Qu et al., 2019). However, the onset of droughts
is often slow, providing opportunities for interventions (Funk
et al., 2019). Drought begins with rainfall deficit, which leads to
soil moisture deficit, higher land surface temperature, and finally
impacts to vegetation growth. Vegetation plays an important role
in many Earth system processes. Its growth and productivity
couple the land and atmosphere as they are active components

of the water cycle, energy cycle, and other biogeochemical

processes (Lanning et al., 2019). Furthermore, plants provide

a wide range of important goods and services to humans,

ranging from forest products and fodder to food production.
Therefore, monitoring vegetation, among other variables, is
essential to understanding drought’s progression, potential effects
on food security, and early warning and information needed for
mitigation decisions. Remote sensing and land surface models
are playing an increasingly important role in assisting large-
scale land surface monitoring, by providing comprehensive
information about the dynamics of Earth’s physical, chemical,
and biological processes (Biggs et al., 2015; Zhao and Li, 2015).
The Normalized Difference Vegetation Index (NDVI), developed
with the remote sensing measurements of Near-infrared and
Red reflectance by sensors on board satellites, has been used
extensively for vegetation monitoring and drought assessments.
Earlier studies have utilized NDVI from spectral measurements
from the Advanced Very High Resolution Radiometer (AVHRR)
on board National Oceanic and Atmospheric Administration
(NOAA) satellites in monitoring vegetation and food security
assessments over Africa (Justice et al., 1986; Townshend and
Justice, 1986; Sannier et al., 1998; Anyamba and Tucker,
2005). With the launch of the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument on board National
Aeronautics and Space Administration’s (NASA) Terra and Aqua
satellites, more recent studies have developed different methods
utilizing MODIS-NDVI for monitoring vegetation dynamics,
drought progression, and food security assessments (Brown,

2016; Klisch and Atzberger, 2016; Zewdie et al., 2017; Mbatha
and Xulu, 2018). These studies take advantage of the higher
spatial resolution and more accurate geolocation data provided
by MODIS sensors over AVHRR (Townshend and Justice,
2002). Many other indices have also been developed based on
relative changes in NDVI and land surface temperature such
as Vegetation Condition Index (VCI), Vegetation Health Index
(VHI), and Temperature Condition Index (TCI) for vegetation
monitoring and drought assessment at large scales (Kogan, 1995;
Du et al., 2013). It has been observed over East Africa that the
start of growing period is advancing with an elongated growing
season, while drought’s impact on vegetation is enhancing with
a concomitant decline in gross primary productivity (Workie
and Debella, 2018; Robinson et al., 2019). Using MODIS-NDVI
and its derivatives (VCI, TCI, VHI), Qu et al. (2019) observed
significant long-term increases in temperature and decreases in
crop health over the major growing period and associated them
with the impacts of drought events over the greater horn of
Africa. Using MODIS-NDVI, among other variables, Robinson
et al. (2019) demonstrated the negative response of vegetation
growth to the 2010–2011 drought in East Africa.

Land surface evapotranspiration (ET) is the sum of water
surface evaporation, soil moisture evaporation, and plant
transpiration from Earth’s surface to the atmosphere (Biggs et al.,
2015). ET has been used in monitoring vegetation and drought
progression. Because of ET’s dependence on land cover and soil
moisture and its direct link with carbon dioxide assimilation
in plants, ET becomes an important variable in monitoring
and estimating crop yield and biomass for decision makers
interested in food security assessments (Bastiaanssen et al., 2005).
The changes in vegetation conditions have been successfully
associated with changes in ET over the Nile basin by Alemu
et al. (2014). Baruga et al. (2019) demonstrated a connection
between agricultural droughts and high heatwaves in Uganda
using ET. Vegetation water stress has been mapped using ET
by Chirouze et al. (2013). Kimosop (2019) used ET to define
onset, duration, severity, intensity, and frequency of agricultural
drought in Kenya.

While ET can be measured directly using a variety of methods
ranging from weighing lysimeter devices to eddy covariance
and scintillometry, their applications are limited to field scale
(Allen et al., 2007). But using remote sensing measurements, ET
can be estimated both at field and regional scales. However, as
ET is the sum of multiple processes that transfer liquid water
from the surface to vapor phase into the atmosphere using heat
energy, satellite sensors cannot measure ET directly. Rather, the
spectral radiance measures they provide are used in models or

Frontiers in Climate | www.frontiersin.org 2 January 2021 | Volume 3 | Article 589981

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pervez et al. Vegetation Monitoring Optimization Over East Africa

retrieval algorithms to estimate ET. Most of the methods that
use remote sensing data to estimate ET can be categorized into
two groups: (a) vegetation-based methods and (b) surface energy
balance methods. In vegetation-based methods, remotely sensed
vegetation indices such as NDVI or Leaf Area Index (LAI) are
used with surface resistance determined from meteorological
data in Penman-Monteith (Mu et al., 2007) or Priestly-Taylor
(Fisher et al., 2008) equations to project ground-estimated ET
to a larger scale. The energy balance methods are based on the
fact that ET is a change of state of water that uses energy for
vaporization. The vaporization reduces the surface temperature,
suggesting a tight coupling between water availability and surface
temperature under water stress conditions (Biggs et al., 2015).
This allows estimating ET by using remotely sensed surface
temperature data in solving the energy balance by partitioning
net radiation between sensible, latent, and soil heat flux. The
methods of estimating ET from remote sensing inputs are well-
documented in the literature (Glenn et al., 2007; Biggs et al.,
2015); more specifically, Kalma et al. (2008) reviewed energy
balance methods that utilize surface temperature to estimate ET.
ET can also be estimated with land surface models (LSM) that
are parameterized with remote sensing inputs. LSMs yield global
estimates of the land surface states and fluxes by incorporating
global-scale, ground-based, and/or remote sensing–derived soil
moisture, vegetation, and atmospheric forcing data (Xu et al.,
2019). The advantage of LSM ET over ET from remote sensing
measurements is that it overcomes some of the shortcomings
of remote sensing measurements of land surface temperature
because of the low signal-to-noise ratio and signal saturation in
an optical sensor (Senay et al., 2013).

Vegetation monitoring using NDVI emphasizes the
vegetation conditions from a water provision perspective as
it is a measurement of vegetation vigor driven primarily by land
surface water availability, whereas the use of ET emphasizes the
vegetation conditions from a water demand perspective as it
incorporates surface and soil evaporation and plant transpiration
driven primarily by atmospheric conditions (Meza, 2005; Van
Beek et al., 2011). As the vegetation growth and productivity
processes couple the land and atmosphere, monitoring of
vegetation condition will require consideration of both
water provision and demand over any region. While there is a
consensus in using either NDVI or ET for vegetation monitoring,
drought characterization, or food security assessments, a
comprehensive assessment optimizing the use of NDVI and
ET by location has not yet been done. Moreover, the three-
way evaluation methods for understanding the relationships
between NDVI, ET from remote sensing measurements, and
ET from land surface models for vegetation monitoring are also
limited. Taking these gaps into account, this research focused
on developing a method for optimizing vegetation monitoring
by using NDVI and ET from remote sensing and land surface
models as well as exploring the relationships between them in
a three-way format (between the three variables). The specific
objectives are to (1) develop a process to estimate random errors
in NDVI, ET from remote sensing, and ET from land surface
models, (2) evaluate the spatial-temporal correlations between
these variables, and (3) assess the performance of each of these

variables in optimizing vegetation monitoring in East Africa.
To achieve these objectives, we employed Triple Collocation
(TC) analysis. We incorporated ET from two sources and NDVI
into the TC analysis. We opted for TC analysis because in TC,
random error structure of the variables can be determined
independently without treating any as perfectly observed truth in
a three-way format assuming errors in the variables are random
and uncorrelated between each other (Gruber et al., 2016). We
also used a traditional statistical measure of cross-correlation to
evaluate agreements between these variables.

MATERIALS AND METHODS

Study Area
Geographically, East Africa encompasses areas from both
northern and southern hemispheres, including Sudan, South
Sudan, Eritrea, Ethiopia, Djibouti, Somalia, Kenya, Uganda,
Rwanda, Burundi, and Tanzania, and is located between the
latitudes of 11◦S and 23◦N and longitudes of 21◦E and 51◦E.
The climate and topography vary from wet highlands covering
Ethiopian Highlands and parts of Kenya and Tanzania to arid
lowlands of eastern Ethiopia, Djibouti, and Somalia (Dinku
et al., 2011). Agriculture is the primary source of livelihood
complemented by crop production and livestock rearing. The
agro-pastoral system primarily responds to rainfall. The rainfall
regime varies from north to south. The annual mean rainfall
ranges from 800 to 1,200mm, with higher rainfall over the
Ethiopian Highlands and lower rainfall over northeastern Kenya
and Somalia (Fenta et al., 2017). Figure 1 shows the map of the
study area along with the monthly Climate Hazards Infrared
Precipitation with Stations (CHIRPS) mean rainfall computed
over the period 2000–2018 over three different administrative
boundaries in the region. Amap of CHIRPSmean annual rainfall
over the East Africa region can also be found in Figure 2A of
Fenta et al. (2017). CHIRPS is an infrared-based rainfall product,
bias corrected with climatology and gauge station observed
rainfall records. Details on the CHIRPS rainfall are provided in
Funk et al. (2015). The rainfall distribution near the equator is
typically bimodal over Kenya with the main rainy season (long
rains) between March and June followed by the second season
(short rains) in October to December. The rainy season over 5◦

north and south of the equator is typically unimodal, and most
of the rain occurs between May and October in the north (over
Sudan and South Sudan) and between November and April of
the following year in the south (Tanzania). In this study, while
compiling rainfall, NDVI, and ET time series over the wetter
half of the year, we considered two regimes: May to October for
Sudan, South Sudan, Ethiopia, Eritrea, Djibouti, and Somalia,
Kenya, and Uganda; and November to April for Kenya, Uganda,
Rwanda, Burundi, and Tanzania.

NDVI and ET From Remote Sensing
Measurements
Since 2003, NDVI and actual ET data have been produced
by the U.S. Geological Survey (USGS) Famine Early Warning
Systems Network (FEWS NET) using the operational simplified
surface energy balance (SSEBop) model (Senay et al., 2013).
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FIGURE 1 | Geographical location of East Africa and average (2000–2018) rainfall over three level 1 administrative districts, (A) Kitui in Kenya, (B) South Darfur in

Sudan, and (C) Mbeya in Tanzania. Rainfall source: Climate Hazards Infrared Precipitation with Stations.

SSEBop is one of many energy balance–based approaches for
estimating ET using remote sensing measurements. The SSEBop
setup is based on the Simplified Surface Energy Balance (SSEB)
approach (Senay et al., 2013) with a unique parameterization
for operational applications. It combines ET fractions generated
from remotely sensed MODIS thermal imagery, acquired every
10 days at 1 × 1 km spatial resolution, with reference ET using
a thermal index approach. The unique feature of the SSEBop
parameterization is that it uses pre-defined, seasonally dynamic,
boundary conditions that are unique to each pixel for the
“hot/dry” and “cold/wet” reference points (FEWSNET, 2019).
The original formulation of SSEB is based on the hot and cold
pixel principles of SEBAL (Bastiaanssen et al., 1998) andMETRIC
(Allen et al., 2007) models. While there are many NDVI and
ET products from remote sensing measurements available, the
use of MODIS NDVI (Jenkerson et al., 2010) and SSEBop ET
in this research is primarily determined by the consistency in
their method and production and their long history of readily
available data. Furthermore, SSEBop ET estimates were found
to be in good agreement with observed FLUXNET ET (Velpuri
et al., 2013).

ET From Land Surface Models
Utilizing NASA’s state-of-the-art Land Information System (LIS)
(Kumar et al., 2008) framework, FEWS NET Land Data
Assimilation System (FLDAS) incorporates multiple LSM and

produces multi-forcing estimates of land surface states and
fluxes such as ET and soil moisture. The output variables are
driven by the CHIRPS rainfall product that performs well over
data sparse regions. CHIRPS is available over a long historical
record, and complements other remote sensing products used
by FEWS NET for vegetation, drought, and food security
monitoring (McNally et al., 2017). We included ET from
three LSMs to better understand their usefulness in monitoring
vegetation and drought over East Africa. The ET from the
LSMs used in this study include Noah, Variable Infiltration
Capacity (VIC), and Catchment Land Surface Model (CLSM).
The meteorological forcing data for the LSMs come from NASA’s
Modern Era Reanalysis for Research and Applications, version 2
(MERRA 2) (Bosilovich et al., 2015). Other parameters include
GTOPO 30 elevation, MODIS International Global Biosphere
Project (IGBP) land cover for Noah, University of Maryland
(UMD) land cover for VIC (Hansen et al., 2000; Friedl et al.,
2010), National Centers for Environmental Prediction (NCEP)
monthly greenness fraction, albedo (Gutman and Ignatov, 1998;
Csiszar and Gutman, 1999), and STATSGO/FAO soil texture.
These LSMs use monthly climatology of greenness fraction
or leaf area index (LAI) derived from composites of NDVI
dataset (Myneni et al., 1997; Gutman and Ignatov, 1998;
Dirmeyer et al., 2006) to parameterize vegetation presence.
They do not require time series of vegetation information
(e.g., NDVI, LAI).
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TABLE 1 | International Geosphere Biosphere Program (IGBP) land cover classes.

Land cover

index

Description Land cover index Description

1 Evergreen

needleleaf

8 Savannas

2 Evergreen

broadleaf

9 Grassland

3 Deciduous

broadleaf

10 Permanent

wetland

4 Mixed forest 11 Cropland

5 Closed forest 12 Urban built-up

6 Open

shrubland

13 Crop/natural

vegetation

7 Woody

savannas

14 Barren/sparsely

vegetated

Noah

The Noah LSM (Chen et al., 1996) employs a single column soil-
vegetation-atmosphere transfer scheme, discretized using finite
difference methods and split-hybrid (water and energy balance)
temporal integration. We adopted model version 3.3, which runs
at a 15-min timestep and produces ET at 0.1◦ spatial and daily
temporal resolutions. ET in Noah 3.3 includes three components:
wet canopy evaporation, transpiration, and evaporation from
bare soil. The transpiration is defined using Penman-Monteith
formulation with stomatal resistance and constrains using water
storage terms that are dependent upon precipitation instead of
vapor pressure. The bare soil evaporation is parametrized with
soil moisture and the wet canopy evaporation and transpiration
are functions of the intercepted canopy water content, which
is a residual of water balance. ET is the sum of these
three components.

VIC

The VIC model is a semi-distributed macroscale hydrologic
model (Liang et al., 1994) in which ET includes similar
components as in Noah. The computation of wet canopy
evaporation and transpiration is similar to Noah, but unlike
Noah the maximum intercepted canopy water content is a
function of LAI climatology in VIC. The soil component of
VIC employs an area integration to define the soil moisture
constraint on transpiration defined using Penman-Monteith
with zero stomatal resistance. VIC runs at a 1-h timestep in
energy and water balance mode and produces ET at 0.25◦

spatial resolution.

CLSM

CLSM (Koster et al., 2000) was developed by the NASA
Global Modeling and Assimilation Office and is the land-
surface component of the Goddard Earth Observing System
model version 5 general circulation model. It simulates water
and energy balances on irregular topographically derived
catchments. ET is calculated from three water balance prognostic
variables, surface excess, root zone excess, and catchment
deficit, for the dynamically changing saturated, non-saturated,

TABLE 2 | Average correlation coefficient by country for between Noah, VIC, and

CLSM ET.

Country Noah/VIC ET Noah/CLSM ET VIC/CLSM ET

Sudan 0.94 0.97 0.93

South Sudan 0.97 0.97 0.95

Eritrea 0.90 0.95 0.88

Djibouti 0.89 0.96 0.91

Ethiopia 0.94 0.93 0.92

Somalia 0.94 0.95 0.92

Kenya 0.92 0.89 0.88

Uganda 0.91 0.89 0.92

Rwanda 0.92 0.91 0.92

Burundi 0.89 0.96 0.89

Tanzania 0.95 0.95 0.93

and below wilting areas within the catchment. The primary
soil moisture prognostic variable is the catchment deficit,
defined as the average amount of water that would have to
be added to bring the catchment to saturation. The root
zone excess and surface excess describe average amounts
of water that are out of equilibrium within the root zone
and surface across the catchment. CLSM runs at a 15-
min timestep and produces ET at 0.1◦ spatial and daily
temporal resolutions.

Data Processing
Prior to performing the analyses, all the data were collocated
in both space and time. The spatial resolution of LSM ET is
0.1◦, SSEBop is 1 km, and NDVI is 250m. Therefore, all the
datasets were resampled to 5 km spatial resolution. The three
datasets are also available at different temporal scales; LSM
ET is daily, NDVI is a 10-days composite, and SSEBop ET is
dekadal (10-days equivalent), thus all the respective datasets were
temporally aggregated to a monthly timescale. Additionally, the
NDVI time series was smoothed using the weighted least-squares
approach to remove artifacts caused by unexpected distortions
(e.g., clouds, missing data). Prior to the computation, we masked
out the areas that receive <200mm of rainfall annually as desert
regions of East Africa (Nicholson, 1996). Studies show anomalies
rather than actual values are better indicators for vegetation
conditions (Tadesse et al., 2015), therefore, we used anomalies
in the analyses. ET anomalies for any given 10-days period
were calculated by subtracting the 10-days period value from its
historical median (2003–2016). Similarly, NDVI anomalies were
calculated by subtracting the 10-days value from its historical
median (2003–2016). After computing the mean µ and standard
deviation σ , the LSM ET and NDVI anomalies were linearly
scaled to the data space of SSEBop ET using Equations (1, 2).
We also standardized anomalies for ET and NDVI to bring
them under the same scale. These composites allow qualitative
comparison of how similarly each of the datasets represents
vegetation conditions for different hydrologic regimes over the
study area. However, they do not provide direct information with
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respect to interannual comparisons between the datasets.

E′LSM = µSSEBop + (ELSM − µLSM)
σSSEBop

σLSM
(1)

E′NDVI = µSSEBop + (ENDVI − µNDVI)
σSSEBop

σNDVI
(2)

where E and E′ are the actual and scaled anomalies.
The annual maximum vegetation fraction derived from 12

years of Collection 5 MODIS NDVI data (MOD13A2) (Broxton
et al., 2014) and IGBP land cover map were processed to use them
in the relationship and error analyses between ET and NDVI by
vegetation fractions and land cover types. The descriptions of the
IGBP land cover classes are provided in Table 1.

Triple Collocation Analysis
Triple Collocation (TC) (Stoffelen, 1998) is a statistical method
for characterizing consensus and discrepancies across multiple
independent datasets. TC analysis has been used to estimate
the random errors in NDVI and ET variables. TC analysis is
particularly valuable in regions that lack in situ observations
for evaluations, as consensus anomaly estimates derived from
multiple independent datasets can be interpreted as a measure
of confidence in the absence of adequate in situ evaluation
data (van der Schalie et al., 2018). TC uses a set of three or
more linearly related and collocated variables with independent
error structures. It produces root mean square error (RMSE)

of the random error component of the individual variable, in
the absence of a variable that can be used as the absolute truth
(van der Schalie et al., 2018). We employed TC analysis to
quantify random errors in LSM ET, SSEBop ET, and NDVI
where two of the variables were measuring hydrologic flux and
the third one was measuring vegetation vigor. The variables
depict reasonable cross-correlations across most of the study
area, indicating linear relationships between them at monthly
scale. Therefore, they are suitable for TC analysis framework. As
stated before, the objective is not to validate any one variable
against a different one, but rather to evaluate the skill of these
products relative to one another and how the variables can be
used together in optimizing vegetationmonitoring in East Africa.
The TC analysis is performed with the assumption that errors
in the datasets are uncorrelated between each other and are
independent (Gruber et al., 2016). The LSMs are forced with
CHIRPS and MERRA2 inputs, whereas the primary forcing for
SSEBop is MODIS radiometric temperature data, and NDVI is
derived from MODIS surface reflectance data. In addition, there
are substantial differences in underlying modeling approaches
between LSM ET and SSEBop ET. Therefore, it is fair to assume
that errors in these datasets are independent and uncorrelated.

In this study, we have taken an ensemble mean of the

Noah, VIC, and CLSM ET anomaly time series because of
the similarities between them and designated the ensemble

mean as “LSM ET” in successive analyses. Table 2 shows the

FIGURE 2 | Annual total evapotranspiration (ET; in mm) for the period 2003–2016 from (A) Noah, (B) VIC, (C) CLSM, (D) SSEBop. The bottom row shows the

difference in ET climatology between (E) Noah minus SSEBop, (F) VIC minus SSEBop, (G) CLSM minus SSEBop, and (H) ensemble mean of Noah, VIC, and CLSM

minus SSEBop.
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correlations between Noah, VIC, and CLSM ET by country. As
required, we designated SSEBop ET as the reference variable,
which by no means assumes that the SSEBop is perfect, but
rather we assume errors in the SSEBop ET are effectively
independent from those impacting errors in LSM ET and NDVI.
Finally, the TC errors were computed for the May–October and
November–April composites for each of the datasets, using the
following equations:

εLSM =
〈(

E′LSM − ESSEBop
) (

E′LSM − E′NDVI
)〉

(3)

εNDVI =
〈(

E′NDVI − ESSEBop
) (

E′NDVI − E′LSM
)〉

(4)

εSSEBop =
〈(

ESSEBop − E′LSM
) (

ESSEBop − E′NDVI
)〉

(5)

where ε is the TC error for each dataset, E and E′ are the
actual data scaled data, respectively, and 〈−〉 is the corresponding
average over the period. TC produces the random error metric,
where numbers closer to zero indicate better performance and
vice versa.

FIGURE 3 | Standardized anomaly composites of LSM ET, NDVI, and SSEBop

ET over the wetter half of the year for the period 2004–2010. May–October for

Sudan, South Sudan, Ethiopia, Eritrea, Djibouti, Uganda, and Somalia, and

November–April for Kenya, Uganda, Rwanda, Burundi, and Tanzania.

Statistical Measure
Spatially distributed statistical measures, including long-
term annual mean, standardized monthly anomalies (spatial,
temporal), and Pearson’s correlation coefficient r, are used to
compare these variables during the wetter half of the year.

r =

∑n
i

(

Ei − E
)

(Si − S)
√

∑n
i

(

Ei − E
)2 ∑n

i (Si − S)
2
, −1 ≤ r ≤ 1 (6)

where Ei represents the LSM ET or NDVI monthly anomaly,
Si represents monthly SSEBop ET anomaly, E and S are the
respective mean, n is the total number of data records in the time
series, and the subscript i denotes the ith number of samples.
As suggested in Hain et al. (2011), we used anomalies instead of
actual values for correlation to minimize impacts of differences
in mean and standard deviation values between SSEBop ET, LSM
ET, and NDVI variables due to differences in input data and
modeling approaches.

FIGURE 4 | Standardized anomaly composites of LSM ET, NDVI, and

SSEBop ET over the wetter half of the year for the period 2011–2016.

May–October for Sudan, South Sudan, Ethiopia, Eritrea, Djibouti, and Somalia,

and November–April for Kenya, Uganda, Rwanda, Burundi, and Tanzania.
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FIGURE 5 | Time series anomaly cross-correlation coefficient calculated over the wetter half of the year for 2003–2016 for (A) LSM ET/SSEBop ET, (B) LSM ET/NDVI,

and (C) SSEBop ET/NDVI. (D) The difference in anomaly cross-correlation where blue (red) shading indicates LSM ET/NDVI correlation is greater (less) than

NDVI/SSEBop ET correlation. (E) The difference in anomaly cross-correlation where blue (red) shading indicates LSM ET/SSEBop ET correlation is greater (less) than

NDVI/SSEBop ET correlation. Only pixels that exhibit a statistically significant correlation at 90% confidence interval are shown (p < 0.1). (F) The difference in anomaly

cross-correlation where blue (red) shading indicates LSM ET/SSEBop ET correlation is greater (less) than LSM ET/NDVI correlation.

RESULTS

Annual ET
The annual total ET (in mm) that reflects the period 2003–2016 is
shown in Figure 2 for the LSMs and for SSEBop ET. The annual
total ET values over the land surface (top row in Figure 2) are
generally highest across the Inter-Tropical Convergence Zone
(ITCZ) and over the Ethiopian Highlands. In contrast, low ET
can be seen over Somalia. The spatial distribution of annual
ET resembles the annual rainfall gradient in the region, which
is mostly determined by surface heating and confluence of the
tropical easterlies (Novella and Thiaw, 2013). A CHIRPS-based
rainfall gradient map over East Africa is available in Figure 2A of
Fenta et al. (2017).

Over the region, high annual ET values of over 1,400mm are
found in the southern part of the Ethiopian Highlands. High ET
of around 1,000mm per year is also found in southwestern South
Sudan and adjacent areas of Lake Victoria in Uganda and Kenya.
Besides the desert areas, parts of southern Sudan, the leeward
side of the Ethiopian Highlands, eastern Somalia, and Kenya
produce ET below 200mm per year. The spatial distributions of
annual total ET for the three models are similar. The correlation
coefficient between Noah, VIC, and CLSM ET are greater than
0.8 with P < 0.1 across the study area. At country level, the

average correlation coefficient is even greater (Table 2) between
these LSM ET. The similar spatial resemblance of Noah, VIC,
and CLSM ET further justifies use of their ensemble mean. A
difference map between the LSM ensemble mean ET and SSEBop
ET is shown in Figure 2H along with differences between SSEBop
ET and individual LSM (Noah, VIC, CLSM) ET in Figures 2E–G.

Spatial Anomaly Comparison
Bearing in mind the predominantly arid conditions of the study
region, we evaluated the performances of these variables in
identifying vegetation conditions during different hydrologic
regimes. To do so, wemapped the standardized seasonal anomaly
composites of ET and NDVI over the wetter half of the year for
the last 12 years from the time series (2004/05 to 2015/16). We
used standardized anomalies because of the differences in units
for ET and NDVI. The seasonal anomaly maps are presented in
Figure 3 for the 2004/2005 to 2009/2010 seasons and in Figure 4

for the 2010/2011 to 2015/2016 seasons. The seasonal anomalies
were computed over May to October over Sudan, South Sudan,
Ethiopia, Eritrea, Djibouti, and Somalia; and over November to
April over Kenya, Uganda, Rwanda, Burundi, and Tanzania.

The droughts of 2004/2005 and 2009/2010 due to failed
rainfall (McNally et al., 2016) have been well-captured in LSMET,
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FIGURE 6 | Triple Collocation (TC) error estimates (in mm) over the 2003–2016 for (A) LSM ET, (B) NDVI, and (C) SSEBop ET. LSM ET and NDVI have been rescaled

to SSEBop ET. The difference in TC error between (D) LSM ET and SSEBop ET, (E) LSM ET and NDVI, (F) SSEBop ET and NDVI.

SSEBop ET, and NDVI. The extreme severity of the 2004 drought
over eastern Ethiopia, Somalia and the 2009/2010 drought over
South Sudan have been particularly well-depicted by LSM ET
(Gebremeskel et al., 2019), while the 2010/2011 drought over
Somalia and Kenya (Robinson et al., 2019) has been well-
portrayed by all three variables. Conversely, healthy to average
vegetation condition of 2006/2007 due to the wettest rainfall
season since 1982 across the region has been better reflected in
all three variables.

More recently, the 2015/2016 El Niño caused a dramatic
decrease in rainfall, especially over Ethiopia and Sudan, resulting
in severe drought (Qu et al., 2019), which has been well-identified
in LSM ET. While a coherent condition is portrayed by LSM ET,
NDVI, and SSEBop ET during the anomalously dry or wet years,
they tend to differ slightly during some hydrologically average
years. For example, during 2008/2009 LSMET differs fromNDVI
and SSEBop ET over South Sudan by showing below average
conditions, and in 2011/2012 LSM ET shows above average
conditions over the same area while NDVI and SSEBop ET show
below average conditions.

Temporal Anomaly Correlation
Figure 5 shows the temporal cross-correlation between the
anomalies of the variables (between LSM ET and SSEBop
ET in Figure 5A, between LSM ET and NDVI in Figure 5B,
and between SSEBop and NDVI in Figure 5C) using monthly

composites during the wetter half of the year for the period
2003–2016. This provides information about the temporal
correlation between two datasets and yields a measure of skill for
either LSM ET, SSEBop, or NDVI relative to each other. Only the
pixels that have a statistically significant correlation coefficient
at 90% confidence interval (P < 0.1) are shown on the maps in
Figure 5. In general, LSM shows good temporal agreement with
SSEBop or NDVI over Ethiopian Highlands, Kenya, Uganda, and
central Tanzania, but poor performance over South Sudan and
southern Somalia. In contrast, SSEBop ET is strongly correlated
with NDVI across much of the area. LSM exhibits statistically
significant r values over 67% of the pixels, while NDVI shows
statistically significant correlation over 77% of the pixels with
SSEBop. LSM also exhibits statistically significant correlation
withNDVI over 72% of the pixels. Although SSEBop shows better
correlation with NDVI than LSM ET, portions of the study area
are associated with statistically significant negative correlation
between SSEBop and NDVI. These results relate with findings of
Joiner et al. (2018) based on weekly climatology composites of
fraction of potential ET and NDVI over East Africa. The same
study also suggests up to 2 weeks of time lag in NDVI response.
However, we have observed, when NDVI is summarized to
monthly scale, the lag becomes less evident for the relationships
between NDVI and ET over East Africa.

Figures 5D–F shows differences in temporal cross-correlation
between the variables, comparing correlation computed between
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them. Figure 5D shows the difference in correlation between
LSM/NDVI and SSEBop/NDVI. Blue shading denotes pixels
where LSM is more strongly correlated and red shading
denotes pixels where SSEBop is more strongly correlated with
NDVI, highlighting regions where each variable shows relative
advantages and disadvantages. Similarly, in Figure 5E, blue
shading shows pixels where LSM ET is more strongly correlated
with SSEBop ET and red shading indicates pixels where NDVI
is more strongly correlated with SSEBop ET. It can be inferred
that LSM ET is not a good indicator of vegetation conditions over
South Sudan.

TC Analysis
The spatial distributions of relative error estimates computed
using Equations (3–5) for LSM ET, NDVI, and SSEBop ET are
shown in Figure 6. The TC error values are relative to SSEBop ET
and are shown inmillimeters as the LSMET andNDVI have been
linearly scaled to SSEBop ET as required by the TC computation.
The domain-averaged relative TC errors are observed to be
130mm for the LSM ET and 93mm for SSEBop ET.

Although the domain-averaged TC errors are relatively low,
there are substantial differences in spatial distribution of the
errors within the study area. LSM ET shows high TC error over
South Sudan, southern Somalia, and eastern Tanzania; NDVI
shows high TC error over eastern Sudan; and SSEBop shows
high TC error over eastern Sudan and the border region between
Kenya and Somalia. Figures 6D–F shows the difference in TC
errors between LSM, NDVI, and SSEBop to highlight areas of
high and low TC errors by each variable. The red shaded pixels
in Figures 6D,E denote where LSM has higher TC error and the
blue shaded pixels where LSM has lower TC errors compared
to TC errors in SSEBop and NDVI. It also becomes clear that
the areas of positive LSM TC errors are similar to the areas
where LSM did not correlate well with SSEBop or NDVI and vice
versa (Figures 5D,E). These similarities indicate that both TC
error and cross-correlation techniques are providing qualitatively
similar information. Similar findings are also reported by Hain
et al. (2011) while comparing three different soil moisture
datasets in the U.S.

DISCUSSION

Both LSM ET and SSEBop ET show similar spatial patterns in
annual total ET distribution but are not identical in magnitude.
The high LSM or SSEBop ET along the ITCZ and Ethiopian
Highlands can be attributed to the intense surface heating and
high precipitation amounts over the Ethiopian Highlands. All
the models agree well with very low ET over the arid regions
of eastern Ethiopia and Somalia. Precipitation is very low over
these regions because of the cool air ventilated from the western
Indian Ocean where sea surface temperatures are low along
with cool ocean currents adjacent to the East Africa land area
(Yang et al., 2015), rendering as poor vegetative growth. ET
from VIC tends to show higher estimates than SSEBop and the
other two models, especially over the Ethiopian Highlands. Over
southern Somalia, encompassing the catchments of the Juba and
Shabelle Rivers and central South Sudan, all the LSMs tend to

FIGURE 7 | The cross-correlation coefficient for the 2003–2016 as a function

of vegetation fraction for (A) LSM ET/SSEBop ET, (B) NDVI/SSEBop ET, and

(C) the difference in correlation between LSM ET/SSEBop ET and

NDVI/SSEBop ET.

underestimate ET. SSEBop ET obtains its measurement based
on radiometric temperature differences between theoretical hot
and cold pixels. The radiometric temperatures vary depending
on the amount of vegetation present. Typically, the higher the
vegetation presence, the lower the surface temperature over
well-watered locations because of the cooling effect of ET.
Therefore, the performance in ET computation is expected
to increase with increasing vegetation cover as the processes
integrate both the effects of surface evaporation and plant
transpiration. Thus, SSEBop ET could be more responsive to
changes in the presence of vegetation cover than the LSM ET.
The spatial resolution difference between LSM ET and SSEBop
ET could also have played a role in resolving energy balance while
estimating ET.

It can be inferred from Figures 3, 4 that ET from both LSM
and remote sensing measurements could be better indicators of
vegetation conditions during extreme drought events (e.g., in the
years 2004/2005, 2009/2010, and the El Niño year of 2015/2016).
Because they are mostly driven by surface energy balance, they
are more sensitive to higher atmospheric demand due to higher
temperatures and lower soil moisture, which relates to lack of
rainfall during extreme drought events. Conversely, NDVI could
be a better indicator of vegetation conditions during wetter than
normal conditions because it is more sensitive to availability of
water due to higher than normal rainfall conditions (e.g., the year
of 2006/2007).
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FIGURE 8 | The average correlation for the 2003–2016 by IGBP land cover types for (A) LSM ET/SSEBop ET, (B) LSM ET/NDVI, and (C) NDVI/SSEBop ET.

While LSM ET correlates positively with SSEBop ET and
NDVI over a majority of the study area, some areas had negative
correlation between SSEBop and NDVI. These areas of negative
correlation collocate with both dense and sparsely vegetated areas
(Figure 5C). This can be attributed to the issues in NDVI due to
signal saturation over densely vegetated areas and high noise-to-
signal ratio over areas where the presence of vegetation is very
low (Huete, 1988). To investigate these further, we plotted the
average correlation as a function of vegetation fraction and type
in Figures 7, 8, respectively. The cross-correlation does not vary
between LSM ET and SSEBop ET with the increase of vegetation
presence, but it increases between SSEBop ET and NDVI. This
means that SSEBop ET and NDVI are more influenced by
vegetation cover than it is for LSM ET (Figure 7B). On the
other hand, the correlation between LSM ET and SSEBop ET is
better over vegetation fraction <18% (Figure 7C). NDVI suffers
from high noise-to-signal ratio over areas with high albedo (low
vegetation cover) and SSEBop ET utilizes a correction factor to
adjust surface temperature while computing ET fraction over
high albedo areas (Senay et al., 2013). The correction process
might have helped correlate SSEBop ET better with LSM ET
than with NDVI over sparsely vegetated areas. The average
correlation by land cover types also confirms that neither SSEBop
ET nor NDVI performs well over evergreen and deciduous
broadleaf as well as barren/sparsely vegetated land cover types
(Figure 8C). This implies that LSM ET could be a better indicator
for vegetation condition over sparsely vegetated areas. Over
moderately vegetative areas (vegetation fraction of > 20%), a
consistent correlation (r > 0.5) can be observed between ET
and NDVI at the monthly time scale, which implies that any of
these variables could be a good indicator of vegetation condition
over moderately vegetated areas. A similar pattern of correlation
between ET and NDVI is also reported by Mbatha and Xulu
(2018) during 2002–2016 over southern Africa.

As with the cross-correlations between the variables, the
spatial variability of the random error values during the rainy
season for each variable has been evaluated as a function of the
vegetation fraction (Figure 9). The plots show that the random

errors in LSM ET are lower than the random errors in SSEBop
ET over low-density vegetated areas (vegetation fraction of 40%
or less). When the vegetation fraction increases, the error in LSM
gradually increases, but again decreases for the very high end of
the vegetation fraction (95% or more) (Figure 9A). As a remotely
sensed surface temperature–based estimation of SSEBop ET, it is
expected that the accuracy of the estimate would decrease over
areas of dense vegetation mostly due to inaccuracies in remotely
sensed surface temperature data over high densely vegetated
areas. Compared to NDVI errors, LSM ET errors are lower over
the low (20% or lower) end of the vegetation fraction and the
errors start to decrease for LSM ET as the vegetation fraction
increases toward full coverage (95% or higher). Figure 9C shows
that NDVI might have the most error over the low and high
ends of the vegetation fraction areas and therefore may not be
a good variable for vegetation monitoring over these areas. Over
these areas, LSM ET is most likely to provide better information
for vegetation monitoring. These results are also consistent with
correlation analysis (Figure 7), which indicates that LSM ET
shows better correlations compared to other two data sources
over the low-density vegetated areas.

To further investigate the random errors by vegetation type,
we plotted average TC error for each variable as a function
of vegetation type in Figure 10. Only a few pixels belong
to evergreen needleleaf forest (type 1), permanent wetland
(type 10), and urban built-up (type 12) areas in the study
area; therefore, they may not be a true representation of
the TC errors. Among other land cover types, LSM ET has
lower TC error over cropland and barren/sparsely vegetated
areas compared to TC error in SSEBop ET and NDVI. For
the remaining land cover types, TC errors in LSM ET are
higher than those in SSEBop ET or NDVI. More specifically,
LSM ET TC errors are higher over the savanna and woody
savanna land cover types collocated in South Sudan. This
could be due to vegetation parameterization differences in
LSM ET.

Finally, we compiled the TC errors for each pixel to identify
the variable with the lowest random error. The map in Figure 11
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FIGURE 9 | Average TC error difference as a function of vegetation fraction for

(A) LSM ET TC error minus SSEBop ET TC error, (B) LSM ET TC error minus

NDVI TC error, and (C) NDVI TC error minus SSEBop ET TC error.

shows the lowest TC error by variable for each pixel. Based on
this map, NDVI would provide better information for vegetation
monitoring over 41% of the study area, mostly covering parts
of Ethiopia, Somalia, and eastern Kenya. SSEBop would provide
better information over 40% of the study area, covering the
Ethiopian Highlands, South Sudan, western Kenya, Uganda, and
Tanzania, and LSM ET would provide better information for
monitoring vegetation condition over 19% of the study area,
mostly covering areas in Sudan, parts of Somalia, Eritrea, and
Ethiopia. This map can be used as a guide along with other
ancillary socio-economic information by analysts to optimize
vegetation monitoring using both ET and NDVI for drought and
food security assessments.

CONCLUSIONS

We performed cross-correlation and triple collocation analyses
to characterize relationships between ET from remotely sensed
measurements (SSEBop) and from LSMs (Noah, VIC, and
CLSM) and a biophysical variable directly computed from surface
reflectance measured by satellite sensors, NDVI. In general,
SSEBop ET and LSM ET show good spatial agreement in annual
total ET distribution following the annual precipitation gradient

FIGURE 10 | Average TC error by land cover type for (A) LSM ET TC error, (B)

NDVI TC error, and (C) SSEBop ET TC error. The corresponding vegetation

type for the numbers along the x-axis are shown in Table 1.

FIGURE 11 | Map of lowest TC error for LSM ET, SSEBop ET, and NDVI for

the 2003–2016 period.

in East Africa. However, there are differences in magnitude
between them. LSM ET and SSEBop ET were found to be
better indicators for vegetation monitoring during the extreme
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drought events, while NDVI could provide better information
for vegetation conditions during wetter than normal conditions.
Spatially, LSM ET correlates reasonably well with NDVI and
SSEBop ET over most of the study area except over South Sudan
and southern Somalia, whereas SSEBop ET and NDVI show
relatively better agreement over southern Somalia. Correlations
between the variables suggest that LSM ET could be a better
indicator for vegetation condition over sparsely vegetated areas,
while any of these variables could be a good indicator of
vegetation condition over moderately vegetated areas. The TC
error estimation technique estimated relative random error in
LSM ET, SSEBop ET, and NDVI. The errors of these variables
suggest that NDVI might have the most error over the low
and high ends of the vegetation fraction areas and therefore
may not be a good variable for vegetation monitoring over
these areas. Over these areas, LSM ET is most likely to provide
important information for vegetation monitoring. Finally, a map
was produced by compiling the lowest random error by variable
that can be used in optimizing vegetation monitoring by using
LSM ET, SSEBop ET, and NDVI over the areas where they
perform the best. The map would be useful especially over the
extremely dry landscapes of Djibouti and parts of arid and semi-
arid lands of Somalia, Ethiopia, and northern and eastern Kenya
where very high reflectance of sandy soils poses critical challenges
in comprehensive monitoring of vegetation conditions. As
NDVI emphasizes vegetation conditions from water supply
perspective and ET emphasizes vegetation conditions from
water demand, perhaps a ratio of NDVI and ET could also
be explored for comprehensive vegetation monitoring. While
this study provides a framework for optimizing vegetation
monitoring for drought and food security assessments over East
Africa, the framework can be adopted to optimize vegetation
monitoring over any other drought and food insecure regions of
the world.
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