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Coronavirus disease 2019 (COVID-19) is seriously threatening and altering human

society. Although prevention and control measures play an important role in preventing

the transmission of severe acute respiratory syndrome coronavirus, signals of climate

impact can still be detected globally. In this paper, the data of 265 cities in China were

analyzed. The results show that the correlations between COVID-19 and air quality index

(AQI) and PM2.5 concentration were very weak and that the correlations between COVID-

19 andmeteorological factors were significantly different in different climate backgrounds.

So, a fixed model is not enough to describe the correlations. Overall, high humidity,

low wind speed, and relatively lower air temperature are conducive to the spread of

COVID-19. The climate background suitable for the spread of COVID-19 in China is air

temperature 0∼15◦C, specific humidity <3 g kg−1, and wind speed <3 m s−1. The

Granger causality test shows that there is a causal relationship between daily average air

temperature and the number of COVID-19 confirmed cases in some cities of China, and

air temperature is indicative of the number of confirmed cases the next day. However,

this phenomenon is not universal due to regional climate differences.

Keywords: COVID-19, environmental conditions, correlation, causation analysis, China

INTRODUCTION

In human history, global pandemics are not uncommon. In 2009, H1N1 influenza broke out in
213 countries and regions and millions of people were infected, which seriously endangered public
health and the social economy (https://www.who.int/). Only 10 years later, a global pandemic has
struck human society once again. Starting at the end of 2019, the coronavirus disease 2019 (COVID-
19) took< 3 months to escalate from a local outbreak to a global pandemic. By December 25, 2020,
there were more than 60 million confirmed cases and more than 1.4 million deaths worldwide. A
recent study pointed out that in the absence of specific drugs or vaccines, long-term or intermittent
social isolation may need to last until 2022, and a new COVID-19 outbreak could be expected in
2024 (Kissler et al., 2020).

Analysis of the environmental factors of infectious diseases is indispensable to fully understand
the patterns and mechanisms of the spread of infectious diseases (Carlson et al., 2004). Humans
have long been aware that some respiratory diseases have obvious seasonal characteristics. The
outbreak of the severe acute respiratory syndrome (SARS) in 2003 also depended on specific
temperature and humidity (Drosten et al., 2003). However, the causes of this dependence remain
controversial because the differences in seasonality between regions with four distinct seasons and
tropical regions cannot be explained by a unified theory (Tellier, 2009; Dalziel et al., 2018). Liu Q.
et al. (2020) found that rapid weather changes can significantly reduce the immune function of the
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population, thereby increasing the infection rate of influenza in
winter. Ambient temperature may affect the spread and survival
of SARS-CoV-2, the causative virus of COVID-19. Based on
the data of many cities in China, Xie and Zhu (2020) found
that when the daily average air temperature was <3◦C, the
confirmed cases linearly increased as air temperature increased,
and when the daily average air temperature was above 3◦C, the
number of confirmed cases was flat. Ma et al. (2020) and Wang
et al. (2020) have shown that temperature changes and humidity
may be important factors affecting the spread of COVID-19
and mortality in COVID-19 patients. Recently, Huang et al.
(2020) pointed out that optimal air temperature for COVID-
19 transmission is 5∼15◦C in many countries and regions in
the world, and they considered the impacts of meteorological
factors in the epidemic model and developed the world’s first
global prediction model for COVID-19 (http://covid-19.lzu.edu.
cn/). However, some studies suggested that the spread of COVID-
19 did not show signs of weakening under warm and humid
conditions (Luo et al., 2020). There is evidence that ambient
air pollution might affect the incidence of respiratory diseases
(Ma et al., 2018). For example, SARS-CoV-2 can adhere to
aerosol particles (Liu Y. et al., 2020). Understanding the possible
impact of meteorological and environmental conditions on
the spread of COVID-19 can guide pandemic prevention and
control measures.

Previous studies on the correlation between COVID-19 and
meteorological elements are mostly based on the correlation
analysis of a few urban samples, while geographical and climatic
differences and impacts of air pollution factors are rarely taken
into account. In addition, some research conclusions are still
controversial (Luo et al., 2020; Ma et al., 2020; Xie and Zhu,
2020). In this paper, based on daily confirmed cases of COVID-
19 and meteorological and air pollution data during the same
period in major cities of China, linear correlation coefficients and
Spearman rank correlation coefficients between COVID-19 cases
and meteorological and environmental factors were calculated.
Then, these correlations, as well as their differences in different
geographical and climatic regions, were analyzed and discussed.
Furthermore, Granger causality test was used to explore the
possible causal relationship between them. This study will help
the public to further understand relevant scientific issues and
provide useful reference for preventing the spread of COVID-19.

DATA

The daily data concerning COVID-19 confirmed cases were
from the Chinese Center for Disease Control and Prevention
(http://www.chinacdc.cn/) and the provincial Centers for Disease
Control and Prevention. The meteorological data, including
daily maximum air temperature (Tmax), daily minimum air
temperature (Tmin), daily average air temperature (Tavg), daily air
temperature range (DTR; DTR = Tmax−Tmin), wind speed, and
absolute humidity, were from the China National Meteorological
Information Center (http://www.nmic.cn/). There are many
observation indexes to characterize air quality, among which the
air quality index (AQI) is a comprehensive index to measure
the degree of air pollution and significantly correlated with
most air pollution indicators. In addition, PM2.5 is the primary

pollutant in Chinese cities (Zheng et al., 2018). So, the AQI and
PM2.5 concentration are selected to explore the correlations with
COVID-19 confirmed cases in this study. The AQI and PM2.5

concentration data were from the data center of the Ministry of
Ecology and Environment of China (http://datacenter.mee.gov.
cn). The study period was from December 20, 2019, to March 10,
2020.

METHODS

Generally, the correlation coefficient refers to the linear
correlation coefficient between two variables, which is only used
to describe the degree of linear correlation between two variables.
In order to reflect other correlations, it is necessary to calculate
the rank correlation coefficient (such as Spearman coefficient
or Kendall coefficient) to describe the degree of monotonic
correlation. If the rank correlation coefficient does not reach the
significance standard, the two factors are independent (Li et al.,
2004; Wu and Zhang, 2012).

In recent years, the detection and attribution techniques
developed from mathematical principles mainly include two
categories, multivariate linear analysis and Bayesian inference,
and both can effectively deal with the correlations of complex
data (Houghton et al., 2001). When using attribution analysis,
the autocorrelation of the data series will affect the cross-
correlation between different variables, so the obtained detection
and attribution results often cause controversy (Joliffe, 1983;
Barnett et al., 2000). Therefore, when examining whether there
is correlation in a series, the changes in both the series itself and
other factors should also be examined; otherwise, it may cause
pseudocorrelations between variables (Granger, 1980).

The Granger causality test was first proposed by Clive W.
J. Granger, a Nobel Prize–winning economist. It says that the
correlation between two variables does not necessarily indicate
a certain causal relationship, and there may exist other factors
to cause the trend of coordinated changes. Therefore, these
factors need to be tested. As an attribution analysis method,
the Granger causality test was gradually introduced into the
fields outside economics in the 1990s. Triacca (2001) was the
first to use this test to study the impact of human activities
on climate. Wang et al. (2004) studied the relationship between
North Atlantic oscillation (NAO) and sea-surface temperature
(SST) and pointed out that the Granger causality test yielded
more rigorous and reliable results than simple lagged correlation
analysis did. Mosedale et al. (2006) used the Granger causality
test to quantitatively diagnose the feedback effect of daily SST.
Later, the Granger causality test was further applied to the
fields of extreme climate change, environmental ecology, carbon
emissions, and pollutant transport (Yu et al., 2016; Zheng et al.,
2018; He et al., 2020).

The Granger causality test is usually based on linear
correlations between variables. The process of Granger causality
test is carried out through the following steps.

Stationarity Test
Testing the stationarity of a time series is the prerequisite
of the Granger causality test. If the Granger causality test is
performed without the stationarity test, pseudoregression might
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be obtained. The augmented Dickey–Fuller (ADF) test is a
commonly used method to investigate the stationarity of a time
series. It is performed based on the regression equation

1xt = α + βt + ρxt−1 +

P∑

j=1

λj1xt−j + ut (1)

where xt is the original time series, xt-1 is the time series with
lag = 1, 1xt is a first-order difference time series, 1xt-j is a
first-order difference time series with lag = j, α is a constant
term, βt and λj are trend terms, P is the lag order, and ut is
the residual term. The null hypothesis of the ADF test, ρ = 0,
indicates that the time series contains one unit root, i.e., the time
series is non-stationary.

In step 1, the test is performed according to Equation (1); in
step 2, the test is performed after removing the trend terms; and
in step 3, the test is performed after removing the constant term
and trend terms. If the test result rejects the null hypothesis at
any step, it means that the time series is stationary, and the test
can be stopped. Otherwise, the test should continue to the third
step. For the time series whose test results are non-stationary,
generally, the stationary time series can be obtained through
several differential transformations.

Granger Causality Test
Statistical causality can be expressed as a probability or
distribution function. Under the condition that all other events
are fixed, if the occurrence or non-occurrence of one event A
has an impact on the occurrence probability of another event
B, and these two events are in chronological order (A first, B
second), it can be concluded that A is the cause of B. The basic
principle of the Granger causality test is as follows: to determine
whether xt causes the changes in yt , firstly, to what extent the
current values of yt can be explained by the past values of yt
should be examined, and then whether adding lagged values of
xt can improve the degree of explanation should be examined. If
adding lagged values of xt can improve the degree of explanation
on yt , then the xt is deemed the Granger cause of yt . The Granger
causality test constructs the following regression model:

xt =

n∑

i=1

λixt−i+

n∑

j=1

µjyt−j + u1t (2)

yt =

m∑

i=1

αiyt−i+

m∑

j=1

βjxt−j + u2t (3)

In Equations (2, 3), xt and yt represent the time series; λi,
µj, αi, and βj are the regression coefficients; u1t and u2t are
residual terms and assumed not related to each other; and m
and n represent the maximum lag order. The null hypotheses of
Equations (2, 3) are β1 = β2 = . . . = βm = 0 and µ1 = µ2 =

. . . = µn = 0, respectively. If most βj are significantly non-zero,
while most µj are equal to 0, then one-way causality from xt to yt
exists, that is, xt is the cause of changes in yt . Likewise, one-way
causality fromyt to xt would mean that yt is the cause of changes
in xt . If most βj and µj are significantly non-zero, then two-way
causality between yt and xt exists.

RESULTS

Correlation Between COVID-19 and
Meteorological Elements
In late December 2019, COVID-19 cases were successively
discovered in Wuhan, Hubei Province, China, and COVID-19
then spread to other provinces and cities. The governments
adopted a variety of prevention and control measures against
COVID-19. At the beginning of March 2020, the COVID-19
epidemic in China had basically ended except in Hubei Province.
As of March 10, 2020, a total of 81,939 cases of COVID-19
had been confirmed in China, including 68,930 cases in Hubei
Province, accounting for 84.1% of the confirmed COVID-19
cases in China. As the epicenter of COVID-19, Wuhan had
49,995 cases, accounting for 61.0% of the confirmed COVID-
19 cases in China. Figure 1 shows the spatial distribution of the
confirmed cases in 265 cities in China. The epidemic spread
with Wuhan as the center and cities close to Wuhan (in and
around Hubei Province) and economically developed cities with
high population mobility (Beijing, Shanghai, Guangzhou, etc.)
had more infected people. There were few confirmed cases in
northwestern China or the Qinghai-Tibet Plateau (TP). Since the
diagnostic criteria for COVID-19 during the epidemic (February
12) used by cities in Hubei Province were changed, the data of
daily new confirmed cases in these cities changed greatly and
were not suitable for direct use. The analysis in this paper did
not include data from Hubei Province, which will be properly
processed and discussed elsewhere.

China has a vast territory and can be divided into eight regions
based on climate characteristics and geographical location:
Northeast China (NEC), North China (NC), the eastern part of
Northwest China (ENC), the western part of Northwest China
(WNC), the middle and lower reaches of the Yangtze River (JH),
South China (SC), Southwest China (SWC), and TP (You et al.,
2017). Figure 2 shows the distribution of the daily confirmed
cases in the representative provinces and cities of all eight climate
regions in China. Similar to Figure 1, there were more confirmed
cases in NEC, NC, JH, SC, and SWC and fewer cases in ENC,
WNC, and TP. The temporal distributions of the confirmed cases
in different provinces and cities were consistent. The confirmed
cases began to gradually increase in mid-January, with peaks
occurring from the end of January to the beginning of February.
Under the strong prevention and control measures taken by
governments, the epidemic gradually weakened and basically
ended in early March.

Table 1 lists the linear correlation coefficient (LCC) and
Spearman coefficient of rank correlation (SCRC) between the
total number of confirmed COVID-19 cases in 30 provincial
capitals in China and major meteorological and environmental
factors (effective sample size 896). COVID-19 showed linear
positive correlations with various air temperature indices and
specific humidity and a linear negative correlation with daily
average wind speed. Although these correlation coefficients all
reached the confidence level of 0.05 or even 0.01, the correlations
were not strong (maximum correlation coefficient of 0.164). The
linear correlation between COVID-19 and AQI was only 0.051,
which was not significant.
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FIGURE 1 | Distribution of confirmed cases in China as of February 25, 2020. The lower right corner is the South China Sea islands. The eight subregions are

Northeast China (NEC, 42.25◦N−54.75◦N, 110.25◦E−135.25◦E), North China (NC, 35.25◦N−42.25◦N, 110.25◦E−129.75◦E), Jianghuai (JH, 27.25◦N−35.25◦N,

107.25◦E−122.75◦E), South China (SC, 15.75◦N−27.25◦N, 107.25◦E−122.75◦E), Southwest China (SWC, 21.75◦N−35.25◦N, 97.25◦E−107.25◦E), Tibetan Plateau

(TP, 26.75◦N−35.25◦N, 97.25◦E−107.25◦E), West of Northwest China (WNC, 35.25◦N−49.75◦N, 7.25◦E−97.25◦E), and East of Northwest China (ENC,

35.25◦N−42.75◦N, 97.25◦E−110.25◦E), respectively.

FIGURE 2 | The time series of confirmed cases in typical provinces of different climatic regions in China.

Table 1 also provides the Spearman rank correlation
coefficients between COVID-19 cases and these factors.
According to the test results, Spearman rank correlation

coefficient is basically consistent with linear correlation
coefficient, which indicates that there are mainly linear
correlations between COVID-19 and meteorological factors
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TABLE 1 | The Linear correlations coefficient (LCC) and Spearman coefficient of rank correlation (SCRC) between confirmed cases and meteorological and environmental

factors.

Tave

(◦C)

Tmax

(◦C)

Tmin

(◦C)

DTR

(◦C)

Wind speed

(m s–1)

Specific

humidity

(g kg–1)

AQI PM2.5

LCC 0.139** 0.102** 0.164** 0.149** −0.066* 0.092** 0.051 0.057

SCRC 0.104** 0.083* 0.137** 0.092* −0.107** 0.069* 0.058 0.043

*P < 0.05; **P < 0.01; Tave, daily average air temperature; Tmax , daily maximum air temperature; Tmin, daily minimum air temperature; DTR, daily air temperature range (DTR =

Tmax − Tmin); AQI, air quality index.

FIGURE 3 | Frequency distribution (A) and linear correlation (B) between daily average air temperature (Tavg ) and confirmed cases in different air temperature ranges.

Frontiers in Climate | www.frontiersin.org 5 March 2021 | Volume 3 | Article 619338

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Zheng et al. COVID-19 and Environmental Factors

in China’s samples. There were no significant correlations
between COVID-19 and AQI and PM2.5 concentration. For this
reason, this paper only discusses linear correlation features in
the following analysis. Figure 3A shows the frequency of daily
average air temperature and confirmed cases, with a step of 5◦C.
When the air temperature was lower than 0◦C or higher than
15◦C, the frequency of an increase in confirmed cases was lower
than that of a rise in daily average air temperature; when the
air temperature was 0∼15◦C, the frequency of an increase in
confirmed cases was higher than that of a rise in daily average
air temperature. This indicates that air temperature of 0∼15◦C
in China favors the spread of COVID-19. In particular, the air
temperature data in the range of 5∼10◦C only accounted for
27.29% of the total air temperature data, but the confirmed
cases in this air temperature range accounted for 40.15% of
the total COVID-19 cases. Figure 3B shows the scatter plot
of the confirmed cases and the daily average air temperature.
It can be seen that in different air temperature ranges, the
number of confirmed cases had different correlations with air
temperature. When the daily average air temperature was lower
than −5◦C, the number of confirmed cases showed a significant
negative correlation with the air temperature, with a correlation
coefficient of −0.539. When the daily average air temperature
was between −5 and 7◦C, the number of confirmed cases was
significantly positively correlated with air temperature, with
a correlation coefficient of 0.278. When the daily average air
temperature was higher than 7◦C, the number of confirmed
cases was significantly negatively correlated with air temperature,
with a correlation coefficient of −0.189. All correlations were
higher than the confidence level of 0.01. Therefore, it was not
appropriate to use a fixed model to describe the correlations
between the number of confirmed cases and air temperature.

Similarly, the correlations between the number of confirmed
cases and the daily average specific humidity and wind speed
in China were statistically analyzed (Figure 4). Under different
humidities and wind speeds, the number of confirmed cases was
very different. In Figure 4A, when the specific humidity was
lower than 3 g kg−1, the frequency of an increase in confirmed
cases was lower than that of a rise in specific humidity, so this
humidity range was not conducive to the spread of COVID-
19. When the specific humidity was >3 g kg−1, the frequency
of an increase in confirmed cases was higher than that of a
rise in specific humidity. The specific humidity data in the
range of 3–5 g kg−1 only accounted for 24.78% of the total
data of specific humidity, but the confirmed cases in this range
accounted for 40.39% of the total COVID-19 cases, indicating
that such humidity conditions are highly favorable for the
spread of COVID-19. Data with a specific humidity >11 g kg−1

were mainly collected on the days with precipitation, and these
conditions were not conducive to the spread of COVID-19.
When the specific humidity was lower than 4 g kg−1, the number
of confirmed cases was significantly positively correlated with the
atmospheric humidity (r = 0.31). When the specific humidity
was >4 g kg−1, there was a significant negative correlation
(r =−0.19) between these two.

The distribution of the number of confirmed cases with wind
speed is presented in Figure 4B. The data with wind speed

<3 m s−1 accounted for 82.49% of the data for daily average
wind speed, while the confirmed cases in this wind speed interval
accounted for 88.32% of the COVID-19 cases. When the wind
speed was> 3 m s−1, the opposite was observed, as the frequency
of confirmed cases was lower than that of wind speed data.
This means that small wind speed is conducive to the spread
of COVID-19. Specifically, when the wind speed was lower
than 1 m s−1, the number of confirmed cases was positively
correlated with the wind speed (r = 0.20). When the wind speed
was >3 m s−1, there was a negative correlation between them
(r = −0.08), though it was weak and not significant. When
the wind speed was in the range of 1∼3 m s−1, there was no
definite relationship between the number of confirmed cases and
wind speed.

There are great geographical and climatic differences across
China (You et al., 2017). Figure 2 shows that the COVID-
19 outbreak process in each region has a similar pattern, but
it is not clear whether it also has a similar response pattern
with meteorological and environmental factors. In this study, a
representative city in each climate region (NEC: Harbin; NC:
Beijing; JH: Zhengzhou; SC: Guangzhou; SWC: Chongqing;
Figure 1) with good data was selected for analysis. Table 2 shows
that air temperature was the most significant factor affecting
COVID-19. Whether in the cold and dry northern cities of
Beijing and Harbin, or the relatively warm southern cities of
Guangzhou and Chongqing, or the central city of Zhengzhou,
where the climate conditions are somewhere in between, the
number of confirmed cases was stably correlated with daily
average air temperature and daily minimum air temperature
(P < 0.05). Among them, the correlation between the number of
confirmed cases and daily maximum air temperature in Beijing
and Harbin, the northern cities, was relatively high (P < 0.05).
This may be because air temperature was a relatively stable
variable. During the relatively short period of the epidemic, the
air temperature variations in these cities rarely exceeded the
threshold (Figure 3). However, the number of confirmed cases
was not well-correlated with changes in air temperature and
daily air temperature range, which means that a long period
with appropriate air temperature could have a greater impact
on COVID-19 than a period with sudden temperature changes.
The number of confirmed cases was weakly and non-significantly
correlated with wind speed and specific humidity, whichmight be
related to the relatively large variations in these meteorological
factors during this period. The statistical results showed that the
correlations between the number of confirmed cases and wind
speed and specific humidity were not consistent across different
ranges (Figure 4). In addition, the correlation between the AQI
and COVID-19 remained weak.

Causality Test
As a hypothesis testing scheme, the Granger causality test
is generally used to test two groups of variables with good
correlation, so as to further judge whether there is causal
correlation between them. Given that only the correlation
between the number of confirmed cases and the air temperature
in the representative cities reached significance standard, the
Granger causality test was used to determine whether there was a
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FIGURE 4 | Frequency distribution and linear correlation (inset) between confirmed cases and (A) specific humidity and (B) wind speed.

causal relationship between them. The Granger causality test was
performed by EViews 6.0.

The ADF test (Table 3) showed that both daily average air
temperature and confirmed cases were all stationary series in
these cities (P < 0.01), so the Granger causality test could be
directly performed. Table 4 shows that when Lag took k = 1,
for the northern cities of Harbin and Beijing and the southern
city of Guangzhou, the F statistics were 1.290, 1.647, and 1.098,
and P-values were 0.026, 0.020, and 0.030, respectively. That is,
the null hypothesis was rejected with the probability of P < 0.05,
and the test conclusion was that daily average air temperature was
the Granger cause of the number of confirmed cases; moreover,

it shows that the air temperature in these cities not only highly
correlated with the number of confirmed cases that day but also
has a strong indication of the number of confirmed cases the next
day. For the central city of Zhengzhou and southwestern city of
Chongqing, when the probability of P < 0.05 or P < 0.1, the
test results showed that daily average air temperature was not the
Granger cause of the number of confirmed cases. It indicated that
although the air temperature in these cities had a high correlation
with the number of confirmed cases on the same day, it was not
indicative of the number of confirmed cases the next day.

When Lag took k = 2, only the test for Harbin could reject
the null hypothesis with a probability of P < 0.1, which suggested
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TABLE 2 | The Linear correlations between confirmed cases and meteorological and environmental factors.

Tave/1Tave

(◦C)

Tmax/1Tmax

(◦C)

Tmin/1Tmin

(◦C)

DTR

(◦C)

Wind speed

(m s−1)

Specific

humidity

(g kg−1)

AQI PM2.5

Harbin 0.367*/0.051 0.365*/0.105 0.358*/0.239 0.063 0.135 0.193 0.053 0.068

Beijing 0.381*/0.198 0.333*/0.110 0.434**/0.076 0.020 0.046 0.107 0.049 0.032

Zhengzhou 0.453**/0.086 0.301*/0.054 0.453**/0.102 0.116 0.096 0.011 0.046 0.136

Guangzhou 0.385*/0.001 0.262*/0.060 0.423**/0.002 0.177 0.030 0.300 0.170 0.144

Chongqing 0.342*/0.196 0.301*/0.062 0.218/0.097 0.160 0.042 0.119 0.191 0.220

See Table 1 for *, **, Tave, Tmax , Tmin, DTR and AQI.

1Tave, daily average air temperature difference; 1Tmax , daily maximum air temperature difference.

1Tmin, daily minimum air temperature difference.

TABLE 3 | Augmented Dickey-Fuller test results for daily average air temperature (Tave) and confirmed cases in 5 cities.

Harbin Beijing Zhengzhou Guangzhou Chongqing

Tave (
◦C) −5.218* −5.875* −5.594* −3.834* −5.910*

Confirmed cases −8.234* −12.088* −5.755* −4.010* −6.139*

*P < 0.01.

TABLE 4 | Granger causality test results.

Lag Hypothesis F P

k = 1 Tave is not the Granger cause of confirmed cases in Harbin 1.290 0.026

Tave is not the Granger cause of confirmed cases in Beijing 1.647 0.020

Tave is not the Granger cause of confirmed cases in Zhengzhou 0.001 0.972

Tave is not the Granger cause of confirmed cases in Guangzhou 1.098 0.030

Tave is not the Granger cause of confirmed cases in Chongqing 0.164 0.688

k = 2 Tave is not the Granger cause of confirmed cases in Harbin 0.806 0.055

Tave is not the Granger cause of confirmed cases in Beijing 0.219 0.804

Tave is not the Granger cause of confirmed cases in Zhengzhou 0.939 0.404

Tave is not the Granger cause of confirmed cases in Guangzhou 0.584 0.054

Tave is not the Granger cause of confirmed cases in Chongqing 0.074 0.928

k = 3 Tave is not the Granger cause of confirmed cases in Harbin 0.987 0.417

Tave is not the Granger cause of confirmed cases in Beijing 0.155 0.925

Tave is not the Granger cause of confirmed cases in Zhengzhou 0.597 0.628

Tave is not the Granger cause of confirmed cases in Guangzhou 0.845 0.481

Tave is not the Granger cause of confirmed cases in Chongqing 0.205 0.892

F is the f-statistic of Granger Causality test; P is the confidence level.

When k = 1, 2, or 3, it means confirmed cases lags 1, 2, or 3 day (s) of daily average air temperature (Tave) when considering Tave as the cause. Bold lines represent the rejection of

null hypothesis.

that air temperature still affected the number of confirmed cases
every other day, but the indication significance became weaker.
On the other hand, tests for other cities could not reject the null
hypothesis. When Lag took k = 3, no causality can be tested in
all cities.

CONCLUSION AND DISCUSSION

The impact of meteorological conditions on COVID-19 is a
controversial issue. The analysis of this paper found that the
correlations between COVID-19 and air temperature, humidity,

and wind speed in major cities in China were significantly
different in different climate backgrounds. Therefore, it is
inappropriate to use a fixed model to describe the relationships
between COVID-19 and meteorological factors. Generally, high
humidity, low wind speed, and relatively low air temperature
were conducive to the spread of COVID-19.

Affected by sample size and geographical location, some

research results seem inconsistent. For example, Xie and Zhu
(2020) based on data from 122 cities in China found that COVID-

19 confirmed cases increased approximately linearly when the

daily average air temperature <3◦C, and it tended to be flat when
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daily average air temperature was above 3◦C. Luo et al. (2020)
reported that COVID-19 can still spread under warm and humid
conditions. All this information can be considered as a subset of
Figure 3B in this paper, indicating that more samples are needed
to obtain amore comprehensive understanding. Recently, Huang
et al. (2020) pointed out that the optimal temperature for
COVID-19 spread was 5∼15◦C, and 70% of confirmed cases
worldwide occurred between 5 and ∼15◦C, which is similar
to this paper. In addition to Hubei Province, China still has
58.2% of cases in this temperature range, but only 43.2% of
the temperature data (Figure 3A). This indicates that although
human prevention and control measures play an important role
in the spread of the virus, signals of climate impact can still be
detected on a global scale, and capturing these signals will help us
better respond to the COVID-19 epidemic.

This paper also applied the Granger causality test to detect any
causal connection between COVID-19 and air temperature in
five representative cities. The results show that with a confidence
level of 0.05, there is a causal relationship between the daily
average air temperature and the number of confirmed cases
on the next day in some cities, such as Harbin, Beijing, and
Guangzhou. With a confidence of 0.1, the air temperature
in Harbin was still indicative of the number of confirmed
cases on every other day. However, this phenomenon was
not universal due to geographical differences. During the
epidemic period, the air temperatures in Harbin, Beijing, and
Guangzhou were −25∼10, −6∼6, and 8∼20◦C, respectively,
and the number of COVID-19 confirmed cases increased or
decreased monotonically with temperature in these temperature
ranges (Figure 3B). In Zhengzhou and Chongqing, there was no
similar correspondence, which suggested that only relying on the
correlation coefficient may mislead some incorrect conclusions.

Due to the active and effective prevention and control
measures taken by the Chinese government, the epidemic period

of COVID-19 in China is relatively short (Figure 2). In order to
ensure there were sufficient statistical samples in cities of different
geographical climate regions, this study analyzes the correlations
between COVID-19 and meteorological and environmental
factors during the entire epidemic period in China. Are these
correlations consistent at different stages of an epidemic? Further
research is required. Although a previous study has reported
that ambient air pollution has a significant impact on respiratory
diseases (Ma et al., 2018), statistics in this study show that
the linear correlation coefficient and Spearman rank correlation
coefficient between the AQI (PM2.5) and COVID-19 are weak
on both national and regional scales. Perhaps, there is some
unknown and complex connection between COVID-19 and
aerosols, and its mechanism still needs further study.
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