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Scaling CO2 Capture With
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Air Company, Brooklyn, NY, United States

To prevent the global average temperature from increasing more than 1.5◦C and lower

the concentration of greenhouse gases (GHGs) in the atmosphere, most emissions

trajectories necessitate the implementation of strategies that include both GHGmitigation

and negative emissions technologies (NETs). For NETs, there are unique research

challenges faced by both CO2 capture and utilization to scale in an economically

feasible manner. Starting with incumbent methods, wherein CO2 is recovered from a high

concentration source, and moving toward CO2 capture from more widely available dilute

sources, we outline how CO2 capture systems interface with downstream utilization in

flow reactors. To provide a real-world point of comparison, we analyze CO2 sourcing for

Air Company’s CO2-to-alcohols pilot and demonstration scale deployments in Brooklyn,

New York, USA and Calgary, Alberta, Canada as case studies. The degree of reduction

in atmospheric CO2 depends on product alcohol usage; for example, use as a fixed

chemical feedstock provides longer term emissions reduction than as a fuel, which is

eventually oxidized. Lastly, we discuss the barriers that are present for economic scale-up

of CO2 capture and utilization technologies broadly.

Keywords: carbon dioxide utilization, direct air capture, carbon recovery, carbon capture, solar fuels, emissions

to liquids, ethanol, flow chemistry

INTRODUCTION

Anthropogenic climate change is perhaps the most significant existential challenge that humanity
faces today (Mora et al., 2018; Gills and Morgan, 2020). A rapid increase in utilization of
fossil fuels since the industrial revolution has increased the concentration of greenhouse gases
(GHGs) in the atmosphere at a faster rate than has been observed previously (Peng et al.,
1983; Etheridge et al., 1996; Lacis et al., 2010). The overwhelming majority of scientific evidence
points to this increase in atmospheric GHGs, specifically carbon dioxide, being the cause of the
changing global climate (Oreskes, 2004; Hartmann et al., 2013). Historically, there has been an
equilibrium between CO2 sequestration via photosynthesis and CO2 emissions by biodegradation
and other natural mechanisms that gradually removed CO2 from the atmosphere, transforming
Earth’s atmosphere into the habitable one that we now rely on (Des Marais, 2000; Gonzalez
Hernandez and Sheehan, 2020). Burning fossil fuels to power today’s society introduces a new,
rapid flux of CO2 into the atmosphere that natural photosynthesis can no longer compensate
(Grace, 2004; Le Quéré et al., 2018).
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Renewable technologies must be developed and deployed to
bring equilibrium back to the global carbon cycle (Holdren
et al., 1980; Goreau, 1990; Gielen et al., 2019). There are
several renewable approaches to CO2 emissions mitigation,
and ultimately the planet will require a diversified portfolio
as no single technology could reasonably abate global CO2

emissions alone (Moriarty and Honnery, 2012; Fasihi et al.,
2019; Realmonte et al., 2019). Many viable solutions rely on
the increased utilization of renewable (wind, solar, hydroelectric,
and others) energy with low lifecycle CO2 emissions intensity
(Sims, 2004). Displacing fossil fuel-based electricity generation
with renewables indirectly reduces GHG emissions by preventing
them from being emitted in the first place. Carbon capture
and storage (CCS) technologies, on the other hand, provide
direct CO2 emissions reduction by sequestering CO2 from
anthropogenic sources or from the air (Snæbjörnsdóttir et al.,
2020). Lastly, carbon capture and utilization (CCU) affords both
direct and indirect emissions reduction by directly utilizing
captured CO2 as a reactant to make a product, which in
turn displaces the product’s fossil-derived counterpart. Together,
the latter two technologies are known as carbon capture,
utilization, and storage (CCUS). CCUS is a subset of negative
emissions technologies (NETs), which is defined for the purposes
of this article as technologies that reduce atmospheric GHG
concentrations below the concentration that would occur
without the technology (McLaren, 2012).

The utility of NETs increases over time as we implement
measures to reduce global GHG emissions. In today’s world
where coal is still burned for electricity, it is in many cases
more advantageous to replace these most polluting emitters
with renewable energy to prevent their CO2 emissions in the
first place (Gaffney et al., 2020). Once the “lowest hanging
fruit” is taken by removing the worst emitters, the relative
difficulty of mitigating CO2 increases. At this intermediate
point, the utility of NETs to capture CO2 from clean emitters
is comparable to deploying additional indirect CO2 emissions
reductionmeasures. Ultimately, whenmost electricity generation
is done renewably (which introduces additional energy storage
challenges that further enable several CCU technologies) there
will still be substantial CO2 emissions in several areas, such as
the chemical and aerospace industries, agriculture, aviation, and
cement production (Fasihi et al., 2019). At this point, NETs will
be required tomaintain equilibrium in the global carbon cycle. As
of 2020, we need to remove more than 170 gigatons of CO2 from
the atmosphere to remain under the target of 1.5◦C of warming
by 2100 (Johansson et al., 2020). This is the equivalent of more
than 5 times the total amount of CO2 emitted globally in 2019
(Friedlingstein et al., 2020).

Currently, the most widely commercialized systems that
capture CO2 recover it from a high-purity source, such as
hydrogen production or sugar fermentation (de Assis Filho et al.,
2013). These CO2 recovery (CR) systems utilize feed streams
with typically >95% CO2 concentration, requiring minimal
impurity removal to increase the concentration to >99%, while
compressing to provide a liquefied CO2 product for ease of
transport and use. In contrast, point source CO2 capture (PSC)
uses a more dilute feed stream, such as natural gas flue gas which

is ∼4–16% CO2 in N2 and O2 from the air (Jiang et al., 2019).
A testament to the energetic implications of CO2 concentration
on NET efficiency, much PSC research focuses on source gases
with higher CO2 concentrations (Li et al., 2011; Baker et al.,
2017). Lower concentration feed streams necessitate use of a
higher volume sorption system, and typically uses the industry
standard monoethanolamine (MEA) CO2 scrubber. Direct air
capture (DAC), on the other hand, captures CO2 from the air at
∼416 ppm which is much more energetically challenging than
either CR or PSC (Ren et al., 2021). A key differentiator between
these technologies is the concentration of CO2 in their source
material, which dictates the feedstock mass and energy required
for separation.

In this article, we present an analysis of CO2 capture
technologies as they interface with downstream continuous flow
CO2 utilization systems. We provide an industrial perspective
by discussing the advantages and challenges to deploying flow
reactors downstream from CR at high-purity point sources in
the Air Company pilot reactor in New York, as compared
to PSC from the flue gas of a natural gas-fired power plant
using an amine absorption-based system at the Air Company
demonstration reactor in Calgary. In doing so, we highlight the
trajectory for deployment of CO2 capture technologies more
broadly, when coupled with utilization as these emerging fields
and respective technologies scale. Lastly, we discuss the lessons
learned from these deployments as they relate to integrated CO2

capture and utilization systems and their associated technological
and infrastructural barriers.

TECHNOLOGIES THAT CAPTURE CO2

All three major categories of CO2 capture technologies are
subject to the same development constraints as other chemical
processes. To progress from conceptual idea, to a proof
of concept, followed by a benchtop prototype, then pilot,
demonstration, and small commercial plant is highly capital
intensive and requires research and development infrastructure
of its own. As they are both still the subject of heavy R&D, the
economics for both PSC and DAC do not reach the low cost
point that CR has achieved. Given the long chemical scale-up
and development cycles and the fundamentally higher energy
requirement for PSC and DAC, CR is the lowest hanging fruit
today as a CO2 source to provide suitable feedstock for CO2

utilization. On the other hand, CR has the lowest potential for
scale and long-term CO2 emissions reduction since there are
limited sources; many are dependent on industries powered by
fossil fuels that can be replaced with renewable alternatives, such
as H2 production (Table 1).

CR acts on CO2-rich gases produced during processes such
as fermentation and is fully commercially available (Haszeldine
et al., 2018). Due to its source gas containing >90% CO2, it
can function without high thermal energy input to capture and
release CO2 from a sorbent and is typically fully powered by
electricity. This gives it the best economics of all the CO2 capture
technologies today, as evidenced by its widespread use to produce
CO2 for sale. Due to its high concentration feedstock, CR is
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TABLE 1 | Typical reported energy consumption and potential scale for CO2

capture technologies as defined by their source concentration.

CO2 Recovery CO2 Capture DAC

Source

concentration

>90% 4–16% >416 ppm

Sorbent phase Liquid Solid, Liquid Solid, Liquid

Reported output

temperatures

−18◦C 30–130◦C 80–900◦C

(Sadiq et al.,

2020)

Reported output

pressures

20–57 bar (liquid) 0.1–2 bar 1–100 bar

Example sources Fermentation, H2

Refining

Coal and natural

gas power

generation

Ambient air

Reported energy

cost (kWh/ton)

120 kWh/ton

(Möllersten et al.,

2003)

666–2,650

kWh/ton

1,470–3,803

kWh/ton

Electrical energy

cost range (kWh/ton)

120 kWh/ton 136–189

kWh/ton

(Fitzgerald et al.,

2014)

200–775

kWh/ton

(Goeppert

et al., 2012)

Thermal energy cost

range (kWh/ton)

N/A 530–2,500

kWh/ton

994–3,030

kWh/ton

(Broehm

et al., 2015)

Potential scale (GT

CO2/year)

<1 ∼6 (Olivier et al.,

2017)

>33

the most entropically and energetically favorable CO2 capture
technology by a large margin as shown in Table 1. However,
because CR has the lowest potential for scale for global CO2

removal, it is insufficient to meet decarbonization goals over the
long term if not used in tandem with PSC and DAC. Due in part
to its low potential for scale and need for future technological
improvements, there is a dearth of scientific literature and policy-
based focus on CR. For this reason, it makes the most pragmatic
sense to prioritize deployment of CR in locations where there
are concentrated CO2 streams being emitted as the lowest-
hanging fruit in the NET portfolio. These deployments can be
done rapidly while simultaneously continuing to scale PSC and
DAC technologies.

PSC predominantly acts on post-combustion point sources,
such as natural gas combined cycle (NGCC) plants with CO2

concentrations of 4–16% (Jiang et al., 2019; see Table 1).
Currently, PSC is operating at industrial scales, but its poor
economics prevent widespread deployment, prompting further
R&D in laboratories and pilot plants to reduce capital and energy
costs (Table 2). Several PSC pilots show significant promise to
further these goals, with innovations such as corrosion inhibitors
helping to reduce heat duty from 5.0 to 1.8 GJ/ton CO2 and
with projected return on investment within 2.5 years (Idem
et al., 2015; Shirmohammadi et al., 2018). Current challenges
are centered around optimizing adsorbent capacity at the high
temperatures and low CO2 concentrations present in flue gas
streams (Divekar et al., 2020). Unfortunately, many otherwise
promising improvements in PSC (including selective membranes

TABLE 2 | Summary of technologies under R&D to improve the economics of

PSC, including their current stage of development and reported technology

readiness level (TRL).

Point Source CO2 capture

technology

Stage of development TRL

Monoethanolamine (MEA)

(Jiang et al., 2019)

Commercialized 9

Solid sorbent (Svante) Commercialized 9

Ammonia absorption

(Shirmohammadi et al., 2018)

Commercial demonstrations 6–9

Vacuum swing adsorption

(Divekar et al., 2020)

Lab 3–5

Metal-organic frameworks

(MOFs) (Witman et al., 2017)

Lab 3–5

Clathrate-based (Lim et al.,

2018)

Lab 3–5

S-EGR membranes (Baker

et al., 2017)

Lab 3–5

Nonaqueous amine

absorbent (Guo et al., 2019)

Lab 3–5

Two-membrane system (Turi

et al., 2017)

Theoretical 2–3

Activated carbon

adsorption (Jiang et al., 2019)

Theoretical 2–3

Photoresponsive MOFs (Park

et al., 2020)

Theoretical 2–3

TABLE 3 | Selected technologies under R&D to improve the economics of DAC,

including current stage of development and reported TRL.

Direct air capture

technology

Stage of development TRL

Amine adsorbents

(Broehm et al., 2015)

Commercial demonstrations 8–9

Solid adsorbents

(Ishimoto et al., 2017)

Commercial demonstrations 8–9

MOFs (Lee et al., 2014) Lab 2–5

Electrochemical

absorption (Voskian and

Hatton, 2019)

Lab 2–3

Resin (moisture swing)

(Lackner, 2013)

Lab 2–3

NaOH/Na2CO3-

Ca(OH)2/CaCO3 (Broehm

et al., 2015)

Theoretical 2–3

in combined cycles reaching 90% capture rates) require expensive
retrofitting of plants, which may deter commercial deployment
(Turi et al., 2017).

PSC typically uses the byproduct gas of fossil fuel combustion
as a source of CO2, raising concerns that overreliance on PSC
may enable continued fossil fuel dependence. In contrast, DAC
has been proposed as a mechanism that minimizes the need
for infrastructural change or fossil fuel dependence from its
inception (Lackner et al., 1999). As DAC removes CO2 from
air, with a concentration that is orders of magnitude lower

Frontiers in Climate | www.frontiersin.org 3 May 2021 | Volume 3 | Article 656108

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pace and Sheehan Scaling CCUS for Ethanol Production

than that of CR and PSC, it requires the highest energy input
of the technologies studied (Breyer et al., 2019). One of its
strengths as a component of a diversified portfolio of NETs is
in offsetting distributed emissions, such as those from aviation
and agriculture. Areas for improvement of DAC technology
primarily focus on decreasing energy requirements for CO2

desorption (see Table 3). Of the high temperature and low
temperature DAC systems, low temperature thus far achieves
lower heat supply costs (Fasihi et al., 2019). Thicker absorbent
films, thinner monolithic walls, and adsorbents with higher
efficiency at ambient air conditions can decrease the required
energy of temperature vacuum swing adsorption (Sinha et al.,
2017).

Critics argue that both PSC and DAC delay an inevitable
transition to renewables, and thus increase the societal costs
associated with pollution (Jacobson, 2019, 2020). There are
scenarios in which this concern is understandable; some DAC
deployment trajectories require a quarter of global energy
demand by the end of the century (Realmonte et al., 2019).
However, the warming targets in the Paris Agreement can only

be met if NETs are part of the portfolio of climate solutions
deployed (Haszeldine et al., 2018), making it imperative to
deploy both low-carbon energy generation and NETs. The
timing and trajectory of NET deployment is critical to reconcile
both sides of the discussion. In the near term, NETs have the
most impact by displacing the processes that are both most
CO2 intensive, thereby maximizing both direct and indirect
CO2 emissions, and have no renewable replacement in the
foreseeable future.

We propose a trajectory for deployment of CO2 capture
technologies that follows this approach, and examples on the
pilot and commercial demonstration scales using continuous
flow CO2 conversion systems are described below. The stranded
sources of concentrated CO2 are urgent to capture, but not as
important in the long-term as our ability to remove CO2 from
the air. Correspondingly, the energy and capital intensity of
DAC make it more economic to first pursue lower-hanging fruit,
especially when today’s renewable energy infrastructure does not
provide adequate heat to power DAC systems without burning
fossil fuels (Holmes et al., 2013; Keith et al., 2018), but it is critical

FIGURE 1 | Air Company pilot plant in New York that utilizes CO2 sourced from CR, (A) photograph of the electrolyzer for H2 production (left) and CO2 hydrogenation

system (right), and (B) block flow diagram of the processes taking place in the facility.
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that large-scale R&D efforts lower these expenses in the future.
Proper timing for both renewable electricity and NETs is critical
to maximize societal benefit.

AIR COMPANY EXAMPLES

Air Company’s CO2-to-alcohols commercial pilot plant in
Brooklyn, New York is a distillery that utilizes CO2 delivered
from CR-sourced sites, including fermentation facilities, to
produce ethanol. The ethanol is distilled, mixed, and bottled
on-site to produce spirits and hand sanitizer. The facility is
powered by a mixture of offsite wind turbines and utility-
scale solar photovoltaics, enabling ethanol production from
CO2, H2O, and renewable electricity. Figure 1A is a photograph
of Air Company’s CO2 conversion pilot plant in the facility,
with a NEL H-series H2O electrolysis system and a fixed
bed flow reactor for CO2 hydrogenation. A flow chart of the
process can be seen in Figure 1B; in brief, CO2 and H2 are
compressed, heated, and fed into the 16-foot fixed bed flow
reactor. The reactor is filled with a novel and proprietary

heterogeneous catalyst that has not yet been reported in
literature and is developed and synthesized on the kg-scale
in Air Company’s facilities, enabling stable and continuous
conversion of CO2 and H2 into ethanol. The gaseous products
are passed through a condenser assembly, which separates the
room-temperature crude ethanol aqueous liquid and gases (Sarp
et al., 2021). Room temperature gases are recycled into the
reactor for further conversion. The facility and systems are
further adaptable to accommodate CO2 electrolysis when that
technology is at an appropriate commercial stage of development
(Chen et al., 2018).

After the CO2 conversion process, the crude ethanol is filtered
and distilled to produce a neutral spirit that is ∼95% ethanol
by volume, the remaining 5% being water with <300 ppm net
of all impurities by gas chromatography (GC), and meets all
requirements for United States Pharmacopeia (USP) grade. In
this facility, the CO2 fed into the reactor is captured offsite
via CR powered by renewables, which typically requires 120
kWh/ton, together with ∼30 kWh/ton for transportation. CR
is a continuous flow system that delivers CO2 as a liquid

FIGURE 2 | Air Company plant in Calgary utilizing CO2 sourced from PSC at a NGCC power plant, (A) photograph of the CO2 conversion system, and (B) block flow

diagram of the processes taking place in the facility.

Frontiers in Climate | www.frontiersin.org 5 May 2021 | Volume 3 | Article 656108

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pace and Sheehan Scaling CCUS for Ethanol Production

TABLE 4 | Summary of inlet parameters and approximate energy cost for CO2

capture coupled with pilot and production scale downstream flow reactors.

Parameter Brooklyn pilot Calgary demonstration

CO2 emitter

concentration

95% 6.6%

CO2 capture electricity

required

120 kWh/ton CO2 136 kWh/ton CO2

CO2 capture heat

required

n/a 2,405 kWh/ton CO2

Transportation fuel

required

30 kWh/ton CO2 n/a

CO2 product

concentration

>99% 98%

Delivery pressure 57 bar (liquid, 21 ◦C) 0.2–1 bar

Water content (weight

%)

<0.1% (Dry) 2%

Electrolysis energy

required

11 MWh/ton CO2 8.9 MWh/ton CO2

at high pressure, ensuring consistent supply and eliminating
concern about the rate or variability of CO2 use in flow
reactors downstream.

Defining NETs as technologies that reduce atmospheric GHG
concentrations below that which would occur without the
technology, lifecycle assessment is based on a cradle-to-gate
analysis (McLaren, 2012). Under optimal production conditions
and operating at capacity, to produce 1 kg of ethanol as a
functional unit, a minimum of 1.91 kg of CO2 and 0.26 kg of H2

is required. Depending on the lifecycle analysis methodology, a
reasonable carbon footprint for the captured CO2 is ∼ −1.78
kgCO2e given that the CO2 used in the process would otherwise
be emitted to the atmosphere (Müller et al., 2020). The primarily
wind and solar power for the facility has average lifecycle
emissions of 10 gCO2e/kWh (Sovacool, 2008). Water electrolysis
consumes 81 kWh/kg H2, which equates to 0.21 kgCO2e (NEL
Hydrogen, 2020). Compression, heating, cooling, and distillation
are all powered by electricity or waste heat and net ∼8 kWh/kg
ethanol. Amortized material of construction emissions over
production lifetime averages 40 gCO2e/kg ethanol, accounting
for unoptimized system mass (Sheehan, 2021). This results in an
estimated carbon footprint of∼-1.45 kgCO2e/kg ethanol, though
a more detailed and thorough lifecycle analysis that includes
cradle-to-grave considerations is the subject of a future study that
is currently underway.

Especially when transportation GHG emissions are minimal
as to keep the net CO2e <100 kg per ton of CO2 captured,
CR is an ideal capture medium for downstream flow CO2

conversion. The CO2 is delivered as a liquid, which has a constant
vapor pressure. This is helpful in flow systems if there are one
or more stages of compression prior to introduction of CO2

to other reactants. The suction pressure of these compressors
must remain constant for optimum operation and to ensure
adequate compressor lifetime, and severe variation in inlet CO2

pressure or temperature can cause challenges that prompt plant
shutdown. CR eliminates these operational variables and is
economic without substantial subsidy, which makes it a model

system for integration with flow CO2 conversion systems in the
near-term despite its limited long-term utility.

Unlike fermentation processes, NGCC power plants release
flue gas streams with CO2 concentrations of 4–16%. In this
case, CO2 is a harmful byproduct of electricity production. PSC
from NGCC power plants takes place today using a commercial
monoethanolamine (MEA) process, in which CO2 is absorbed
by liquid MEA at high pressure and low temperature and
stripped from theMEA at low pressure and high temperature. Air
Company’s Calgary commercial CO2-to-alcohols demonstration
plant is deployed at the Shepard Energy Center, an 860 MW
NGCC power plant. The NGCC byproduct flue gas containing
6.6% CO2 is fed into the MEA adsorption system operated by
the Alberta Carbon Conversion Technology Center (ACCTC),
shown in the left on the photograph in Figure 2A. The product
from the capture system, water-saturated CO2 (98%), is then
pumped into the Air Company building. Tail gas is typically
emitted from amine CO2 capture systems, which contains∼1.2%
CO2 that is not captured because it is too energy-intensive
to do so. The water content of the captured CO2 could have
implications for the efficacy of the system, and a knockout drum
dryer is used for its removal. After compression, the CO2 is
combined with H2 and introduced into a reactor similar to, but
significantly larger than, the Air Company pilot plant. While H2

was supplied via tube trailer in the interim, construction of an
integrated facility with a H2O electrolyzer powered by renewable
electricity is nearly complete.Table 4 shows a summary of the gas
inlet parameters between the pilot and demonstration facilities.

DISCUSSION AND CONCLUSIONS

For the Air Company pilot and commercial demonstration
facilities as well as deployments for larger CO2 utilization systems
by us and others in the future, plant economics will play a major
role in the technology used for CO2 capture. Our experiences
suggest that the hypothesis to target the high-concentration CO2

emitters first is valid, but the GHG reduction of these sources
is limited. This calls for research to reduce the capital costs,
energy requirements, and improve product characteristics (e.g.,
temperature, pressure) for PSC and DAC at-scale. In our case,
using a CR-sourced pilot reactor and PSC-sourced commercial
demonstration reactor, the biggest barrier to use of DAC was
the large capital expenditure for small units (on the order of 1–
10 tons per day of CO2). Innovations in materials science and
sorbent materials that drive down the capital cost of small DAC
units would be hugely beneficial for distributed deployment,
especially in industries where customers are willing to pay a
substantial premium for modular and distributed DAC, thus
offsetting its comparably larger operational expense.

Beyond capital expenditure and operational considerations,
the necessity of retrofits for certain PSC technologies could
represent key barrier to PSC deployment and receives little
academic attention (Koelbl et al., 2014). Due in part to the
costs of retrofits and the abundance of non-retrofittable power
plants, DAC has surprisingly been identified as the less expensive
option compared to PSC in one third of NGCC plants.
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Further select cases (e.g., microalgae cultivation) also make
DAC energetically competitive despite being the furthest from
commercial availability (Mangram, 2012; Wilcox et al., 2017;
Azarabadi and Lackner, 2020; Hirsch and Foust, 2020). There
is no fundamental reason why both DAC and PSC systems also
cannot deliver product CO2 with the same consistency, pressures,
and temperatures as CR to optimize integration with downstream
flow reactors. Beyond facilitating retrofits, research that improves
the feedstock input and CO2 output tolerances of DAC and PSC
technologies could further accelerate commercialization.

Locations for geological storage and measures to mitigate
leakage also represent key barriers to scaling NET outside CR,
PSC, and DAC technologies themselves that must be addressed
(Koelbl et al., 2014; von Strandmann et al., 2019). Since CCS
does not produce a physical, saleable end product, exploration
into further profitable NET opportunities, mass production and
innovative infrastructural development, financial incentives, and
international policy will be necessary to reach emissions targets
(Honegger and Reiner, 2018; Hirsch and Foust, 2020; Olfe-
Kräutlein, 2020). The high startup costs associated with early
CCU deployment may potentially be overcome by following
successful disruptive innovation models in electric vehicles (EVs)
and EV infrastructure that move from high-end to mass markets
to scale pragmatically, for example, as Tesla has done (Chen and
Perez, 2018).

Ultimately, widespread CO2 capture and utilization will be
needed to meet emissions targets, but these technologies alone
will not save us. Real infrastructural change to facilitate an
economic trajectory of CO2 capture deployment is required.
Similar to the way the hardware and software for EVs existed
prior to its currently accelerating adoption due to cultural and
political changes, these fundamental pieces exist for CO2 capture.
CO2 utilization technologies now provide an additional incentive
to build the required infrastructure on local and global scales.
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