
ORIGINAL RESEARCH
published: 17 May 2021

doi: 10.3389/fclim.2021.675840

Frontiers in Climate | www.frontiersin.org 1 May 2021 | Volume 3 | Article 675840

Edited by:

Sarah Kang,

Ulsan National Institute of Science and

Technology, South Korea

Reviewed by:

Tomomichi Ogata,

Japan Agency for Marine-Earth

Science and Technology

(JAMSTEC), Japan

Kaiming Hu,

Institute of Atmospheric Physics

(CAS), China

*Correspondence:

Annalisa Bracco

abracco@gatech.edu

Specialty section:

This article was submitted to

Predictions and Projections,

a section of the journal

Frontiers in Climate

Received: 04 March 2021

Accepted: 13 April 2021

Published: 17 May 2021

Citation:

Ikuyajolu OJ, Falasca F and Bracco A

(2021) Information Entropy as

Quantifier of Potential Predictability in

the Tropical Indo-Pacific Basin.

Front. Clim. 3:675840.

doi: 10.3389/fclim.2021.675840

Information Entropy as Quantifier of
Potential Predictability in the Tropical
Indo-Pacific Basin
Olawale J. Ikuyajolu 1,2, Fabrizio Falasca 1 and Annalisa Bracco 1,2*

1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States, 2 Program in Ocean

Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States

Global warming is posed to modify the modes of variability that control much of the

climate predictability at seasonal to interannual scales. The quantification of changes in

climate predictability over any given amount of time, however, remains challenging. Here

we build upon recent advances in non-linear dynamical systems theory and introduce

the climate community to an information entropy quantifier based on recurrence. The

entropy, or complexity of a system is associated with microstates that recur over time

in the time-series that define the system, and therefore to its predictability potential. A

computationally fast method to evaluate the entropy is applied to the investigation of the

information entropy of sea surface temperature in the tropical Pacific and Indian Oceans,

focusing on boreal fall. In this season the predictability of the basins is controlled by two

regularly varying non-linear oscillations, the El Niño-Southern Oscillation and the Indian

Ocean Dipole. We compute and compare the entropy in simulations from the CMIP5

catalog from the historical period and RCP8.5 scenario, and in reanalysis datasets.

Discrepancies are found between the models and the reanalysis, and no robust changes

in predictability can be identified in future projections. The Indian Ocean and the equatorial

Pacific emerge as troublesome areas where the modeled entropy differs the most from

that of the reanalysis in many models. A brief investigation of the source of the bias

points to a poor representation of the ocean mean state and basins’ connectivity at the

Indonesian Throughflow.

Keywords: tropical climate, predictability, entropy, ENSO, IOD

INTRODUCTION

In the past decade, our theoretical understanding of the physics of the climate system has advanced
in fundamental ways. These advancements proceeded in parallel with model improvements and
computing capabilities. Understanding and especially predicting climate change at regional or
local scales—the scales that are relevant to society—remains, however, challenging: regional climate
change is influenced by the large-scale climate and, at the same time, feeds back to the global scale
but these interactions are poorly represented in models.

In this work, we focus on the tropical Pacific and Indian Oceans, where the El Niño Southern
Oscillation (ENSO; Bjerknes, 1966, 1969) and the Indian Ocean Dipole (IOD; Saji et al., 1999;
Webster et al., 1999) control the largest portions of the variance at interannual scale (Figure 1).
They impact key variables of societal relevance, from surface temperature to precipitation and

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2021.675840
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2021.675840&domain=pdf&date_stamp=2021-05-17
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles
https://creativecommons.org/licenses/by/4.0/
mailto:abracco@gatech.edu
https://doi.org/10.3389/fclim.2021.675840
https://www.frontiersin.org/articles/10.3389/fclim.2021.675840/full


Ikuyajolu et al. Information Entropy and Climate Predictability

FIGURE 1 | (A) First EOF mode of the tropical Indo-Pacific SST monthly

anomalies, showing the observed ENSO pattern. (B) Second EOF mode of

tropical Indian Ocean SST monthly anomalies highlighting the IOD patterns.

The monthly data cover the period 1980–2018 and are obtained from SODA

3.4.2 reanalysis. Percentages of variance explained by the EOF patterns are

included. The black dash line depicts the equator.

the frequency of extreme events such as tropical cyclones,
typhoons and droughts. These climatemodes are of the uttermost
importance not only for water and food security, but also for
global health, as they modulate, for example, malaria occurrences
in India (Dhiman and Sarkar, 2017; Anyamba et al., 2019),
Indonesia (Kovats, 2000) and Africa (Hashizume et al., 2012;
Kreppel et al., 2019). Assessing their potential predictability and
quantifying how this predictability is simulated in climate models
and projected to change in the future, is a priority.

ENSO and IOD play a crucial role in global climate
variability. In light of this importance, their interactions have
been the subject of numerous studies. A recent review of
ENSO teleconnections can be found in Yeh et al. (2018). The
IOD develops in late summer with a November maximum.
Since its discovery, observational and modeling studies have
focused on its linkages with the Asian SummerMonsoon (Behera
et al., 1999; Ashok et al., 2001; Guan et al., 2003; Saji and
Yamagata, 2003), its modulation of the Indian SummerMonsoon
and ENSO (Ashok et al., 2001); and its teleconnections over
North America, Australia, South-Africa (Li and Mu, 2001)
and East Africa (Black et al., 2003). The regional and global
influences of these modes cannot be overemphasized, yet a
realistic simulation of the characteristics and teleconnections
of these modes remains challenging in state-of-the-art climate
models (Weller and Cai, 2013), precluding the reliability of
future projections.

Here, we introduce the climate science community to a
quantifier of complexity, or entropy, recently proposed in the
literature that allows for distinguishing regular, chaotic, and
random behaviors in time-series. It provides a quick framework
to investigate potential predictability and verify how well climate
models represent it. We test it using an observationally-based
reanalysis product and model data-sets, we verify its robustness
and finally use it to exemplify the challenges implicit in using
global climate models—here the integrations from the Coupled
Model Intercomparison Project phase 5, CMIP5—(Taylor et al.,
2012) to investigate present and future predictability. We focus
on the Indo-Pacific Ocean in boreal fall, when the IOD variance
is maximized and many countries are impacted by its and ENSO
modulation of rainfall and temperatures over the surrounding
land masses.

The rest of this paper is organized as follows: section Data
provides information about the observational data and models
used; section The Entropy Quantifier: Recurrence Plots and
Information Entropy focuses the information entropy quantifier;
sections Entropy in Reanalysis Data, CMIP5 Historical Runs and
CMIP5 Projections discusses the entropy of historical and future
projection focusing on the boreal fall season, and section Entropy
and the ENSO-IOD Relation analyzes possible sources of model
bias in the historical period. A summary of the findings concludes
the work.

DATA

We analyze monthly mean outputs from 15 CMIP5 models and
consider both historical runs and future projections following
the representative concentration pathway (RCP) 8.5 scenario. For
each model, we use at least 1 member for the historical analysis
and its evolution in the RCP case. For 10 models we verified
that internal model variability does not impact the outcome of
our analysis by exploring 3 (or 2 when three runs were not
readily available) members in the historical period. The output
variable we focus on is sea surface temperature (SST), and further
consider sea level pressure (SLP) and thermocline depth (Z20) in
investigating model divergence.

In terms of observational datasets, we use the monthly
mean subsurface temperature from the Simple Ocean Data
Assimilation (SODA) version 3.4.2, which was forced by
the European Center for Medium-range Weather Forecasts
(ECMWF) re-analysis ERA-Interim (Carton et al., 2018). SODA
has a spatial resolution of 0.25◦ x 0.25◦ with 50 vertical levels,
and spans the 1980- 2017 period. For cross validation, we also
considered fields from the Ocean Re-Analysis System 4 (ORAS4)
(Zuo et al., 2019). Results obtained using SODA and ORAS4
are nearly identical and consistent. For brevity, we focus our
discussion on SODA. Sea level pressure is from the monthly
mean ERA-Interim (Dee et al., 2011). All data have been de-
trended and re-gridded into a uniform 1◦ longitude x 1◦ latitude
spatial resolution before analysis. For the observational datasets,
we look at the period 1980–2018 for temporal consistency among
them, while in the CMIP5 models we consider the last 39 years
of the historical period (1967–2005)—same period length as in
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TABLE 1 | Models and ensemble members analyzed in this work.

Models acronym Model Institute, country Ensemble members

Hist RCP 8.5

ACCESS 1.0 Australian community climate and

earth-system simulator, version 1.0

Commonwealth Scientific and

Industrial Research Organisation

(CSIRO)–Bureau of meteorology

2 1

ACCESS 1.3 Australian community climate and

earth-system simulator, version 1.3

BOM, Australia 1 1

CanESM2 Second generation Canadian earth

system model

Canadian Centre for Climate

Modeling and Analysis (CCCma),

Canada

3 1

CCSM4 Community climate system model,

version 4

NCAR, United States 3 1

CMCC-CESM Centro euro-mediterraneo

cambiamenti climatici climate model

Centro Euro-Mediterraneo per I

Cambiamenti Climatici (CMCC), Italy

1 1

CNRM-CM5 Centre national de recherches

meteorologiques coupled global

climate model, version 5

Centre National de Recherches

Meteorologiques (CNRM)–Centre

Europeen de recherche et de

3 1

GFDL-CM3 Geophysical fluid dynamics laboratory

climate model, version 3

National Oceanic and Atmospheric

Administration (NOAA)/geophysical

fluid

3 1

GISS E2-H Goddard institute for space studies

model E2, coupled with the Hybrid

Coordinate Ocean Model (HYCOM)

National Aeronautics and Space

Administration (NASA) Goddard

institute for space

3 1

GISS E2-R Goddard institute for space studies

model E2, coupled with the Russell

ocean model

NASA GISS, United States 3 1

HadGEM2-ES Hadley centre global environment

model, version 2–earth system

UKMO Hadley Centre,

United Kingdom

3 1

INM-CM4 Institute of numerical mathematics

coupled model, version 4.0

Institute of Numerical Mathematics

(INM), Russia

1 1

IPSL-CM5A-LR L’Institut pierre-simon laplace coupled

model, version 5A, coupled with

NEMO, low resolution

L’Institut Pierre-Simon Laplace (IPSL),

France

3 1

IPSL-CM5A-MR L’Institut pierre-simon laplace coupled

model, version 5A, coupled with

NEMO, mid resolution

IPSL, France 1 1

MPI-ESM-LR Max planck institute earth system

model, low resolution

Max Planck Institute for Meteorology

(MPI-M), Germany

1 1

MRI-CGM3 Meteorological research institute

coupled atmosphere–ocean general

circulation model, version 3

Meteorological Research Institute

(MRI), Japan

3 1

the reanalyses—and the last 30 years of the XXI century (2071–
2100) as representative of future climate.Table 1 summarized the
model runs used.

In the following, the IOD strength and variability is quantified
by the IOD Index, which is the difference in the SST monthly
anomalies (SSTAs) averaged over the western tropical Indian
Ocean (WTIO) (50◦–70◦E, 10◦S−10◦N) and in the SETIO
region (90◦–100◦E, 0◦S−10◦N) (Saji et al., 1999). For ENSO we
adopt the Niño-3.4 index, defined as the area-averaged SSTAs
over 170◦W−120◦W, 5◦S−5◦N. To examine the strength of
oceanic linkages between the Pacific and Indian oceans and the
relationship between ENSO and IOD, we perform a correlation
analysis using the depth anomalies in the 20◦C isotherm (Z20), a
proxy for the tropical thermocline depth, in the ITF region (area

average over 120◦E−131.5◦ E, 7.5◦-8.5◦S) (Bracco et al., 2005) or
the sea level difference between the western Pacific (WP; 0–10◦N;
125◦E−145◦E) and the Eastern Indian Ocean (EIO; 10◦S−20◦S;
110◦E−130◦E) (Mayer et al., 2018).

THE ENTROPY QUANTIFIER:
RECURRENCE PLOTS AND INFORMATION
ENTROPY

Given a dynamical system, several measures of complexity have
been proposed to distinguish regular (e.g., periodic), chaotic and
random behaviors in the time-series that describes it. Among
those complexity quantifiers, the most common are Lyapunov
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exponents, fractal dimensions, scaling exponents, divergence
rates and entropies (Manneville, 1990; Shi, 2007). Most of
these quantifiers work very well in the case of low dimensional
dynamical systems but their application is complicated for
noisy time series coming from high-dimensional real-world
systems. Bandt and Pompe (2002) proposed the permutation
entropy quantifier to address this issue, and along with minor
modifications this tool has been used in climate science for the
analysis of a proxy record of ENSO spanning the Holocene (Saco
et al., 2010) and for ice core records by Garland et al. (2019). The
permutation entropy depends on two parameters and at least for
low dimensional systems (for example a LogisticMap) has a good,
but not optimal, correlation with the Lyapunov exponents of the
system under investigation.

Here we adopt instead an entropy quantifier based on the
distribution of microstates in a recurrence plot (Prado et al.,
2020). All complexity quantifiers are based on fundamental phase
space properties of ergodic dynamical systems, such as trajectory
recurrence (Poincaré, 1890; Cvitanović et al., 2016) and this
recurrence can be visualized, for a given time-series, using the
recurrence plot (RP) method introduced by Eckmann et al.
(1987). Given a trajectory xi in a dynamical system in its d-
dimensional phase space at time i, its RP is given by an N × N
matrix of 1 and 0 such as:

RPi,j (ε) = 2
(

ε −
∥

∥xi − xj

∥

∥

)

, xi ∈ R
d, i, j = 1, . . . ,N (1)

where ε is the threshold distance and defines the neighborhood of
a state xi, 2 is the Heaviside function, ‖ · ‖ is a norm (Euclidean
distance in our case) and N is the number of states considered.

The analysis of structures (such as diagonal, vertical or
horizontal lines) in a RP is known as recurrence quantification
analysis (RQA) and has found numerous applications in biology,
neuroscience, physics, geosciences and economics, among other
disciplines (Webber and Marwan, 2015). In essence, given a time
series it is possible to reconstruct a state space representation
using the embedding theorem (Takens, 1981), and then compute
the recurrence plot (which is a matrix with “1” if two states
are recurrent, “0” if they are not recurrent). Most methods to
estimate complexity of time series are directly related to RQA
(Marwan et al., 2007), recurrence network analysis (Donner
et al., 2011) and information theory (Bandt and Pompe, 2002;
Balasis et al., 2013). Some of these quantifiers have been
applied to climate science to analyze regime shifts and tipping
points in single time-series (e.g., Donges et al., 2011). All these
methods require “phase space reconstruction,” as mentioned,
or, in other words, they require embedding the time series
in a higher dimensional space. Phase space reconstruction is
computationally time consuming and sensitive to both the choice
of parameters and to the system’s noise and dimensionality
(Gilpin, 2020), and is therefore not advisable for real-world
spatiotemporal fields as it may lead to spurious results (Marwan,
2011; Riedl, 2013).

To remedy these issues, Corso et al. (2018) proposed a
recurrence entropy quantifier that does not require phase space
reconstruction and can be safely applied to fields of any
dimension and complexity. The idea behind is that the entropy

of a time series can be computed by the probability of occurrence
of microstates in its RP. A microstate of size M is defined as an
M×M matrix inside the RP. The total number of configurations

of 1 and 0 in a microstate of size M is M∗ = 2M
2
and is possible

to define a probability of occurrence Pk of a microstate k as
Pk =

nk
M∗ , with nk being the number of occurrences of the k-th

microstate in the RP. The information entropy of the time series
is then given by:

S
(

M∗
)

= −

M∗
∑

k=1

Pk ln Pk. (2)

It is possible to normalize the recurrence entropy by itsmaximum
possible valueM2 ln 2 which corresponds to the case in which all
microstates appear with the same probability Pk = 1

M∗ ; in this
case S = 0 (1) implies perfect predictability (unpredictability) of
the system dynamics.

The number of admissible microstates M∗ grows
exponentially as a function of M but Corso et al. (2018)
showed that only few of them populate the RP. It is therefore
reasonable to consider only a random subsample M of the
possible microstates in the RP and expect a rapid convergence to
S (M∗) (see Supplementary Material). In this case, the entropy
is normalized by ln M.

In layman’s terms, the information entropy based on the
recurrence of microstates can be computed in two steps by
calculating firstly the recurrence plot and then the Shannon
Entropy based on the distribution of microstates. If the Euclidean
distance between states x(t = a) and x(t = b) is less than epsilon
then they are considered neighbors and described by “1” in the
recurrence plot matrix, vice versa they are described by “0.”

The recurrence entropy, in whichever way it is calculated,
depends on the choice of the distance threshold ε. Several
heuristics have been proposed for selecting ε : ∼5% of the
maximal phase space diameter (Mindlin and Gilmore, 1992);
no more than 10% of the mean (or maximum) phase space
diameter (Koebbe and Mayer-Kress, 1992; Zbilut and Webber,
1992); a value ensuring a recurrence point density of∼1% (Zbilut
et al., 2002). More recently, Prado et al. (2020) relied on the
“maximum entropy principle” to free the analysis from having
to select ε. Given a RP and microstates of sizeM, they examined
the dependence of the recurrence entropy S on ε and found that,
typically, the curve S(ε) has a well-defined maximum, SMax, that
does not vary significantly for a range of ε values. In simple
deterministic and stochastic systems, the maximum entropy SMax

calculated by Prado and colleagues is highly correlated with the
Lyapunov exponent, further improving the complexity quantifier
proposed by Corso et al. (2018). SMax is therefore our preferred
choice. Technical details for the heuristic used to determine it
and an example of the convergence when considering only a
subsample M of all possible microstates in the RP can be found
in the Supplementary Material.

The information entropy so computed measures the
complexity of the time series examined, and the two terms,
entropy and complexity will be used interchangeably in the
reminder of the paper. The higher the entropy, the more
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complex and less predictable is the system, and vice versa.
Examples from simple systems such as a logistic map (May,
1976) can be found in both Corso et al. (2018) and Prado
et al. (2020). In the Supplementary Material we quantify the
information entropy of the Lorenz system (Lorenz, 1963),
while a first application to noisy, high-dimensional data can
be found in Falasca et al. (2020) in which the authors used
the entropy quantifier to identify abrupt regime shifts in
paleoclimate simulations.

The information entropy when applied to a climate field
quantifies the degree of complexity of a given region (or grid
point) and depends only on the size of a microstateM. In the next
section we will explore its sensitivity fromM = 2 toM = 8. In
summary, for a given climate field X(t), in this work we compute
the information entropy and its variability for all the time series in
the spatial grid to derive the spatiotemporal entropy field SX (t)
without having to rely on embedding.

ENTROPY IN REANALYSIS DATA, CMIP5
HISTORICAL RUNS AND CMIP5
PROJECTIONS

The entropy fields for the SST in the SODA/ERA-Interim
reanalysis and two representative CMIP5 models, CCSM4 and
HadGEM2-ES are shown in Figure 2 using monthly average
fields and all months, and for different values of M. With this
first analysis we explore the robustness of metric to the size of the
microstates. A microstate of size M = 3, for example, quantifies
the recurrence between x(t1), x(t1+1 month), x(t1+2 months)
and another random sequence x(t2), x(t2+1 month), x(t2+2
months), while if M= 2 the recurrence will be evaluated between
x(t1), x(t1+1 month) and another, shorter, random sequence
x(t2), x(t2+1 month), and so on.

The patterns in the entropy plots do not vary significantly with
M, but the entropy values do, with generally lower predictability
(higher entropy values) and smaller chances of recurrence for
increasing M, as to be expected given that we are evaluating
the recurrence of a longer (in time) microstate, and very high,
unstructured, predictability if M is too small. This dependence
can be exploited for studies focusing on different time-scales and
output frequency, for example by using daily data for evaluating
subseasonal predictability.

When all months are considered, in SODA/ERA-Interim the
highest predictability is found in the central tropical Pacific in
the ENSO impacted area, as expected. Upwelling regions, both
along South America in the cold tongue and in the Arabian Sea,
are characterized by higher complexity near the coasts that in
offshore waters, and the IOD and SIOD action regions appear
slightly more predictable than the remaining IO.

CCSM4 overestimates predictability (underestimates entropy)
nearly everywhere. In terms of patterns, it is close to the observed
ones, but it does not capture the lower than surrounding
predictability of the cold tongue in the Pacific and in the western
Arabian Sea upwelling, and underestimates slightly that of the
ocean region to the west of the tip of India, that participate in
the IOD dynamics. HadGEM2-ES, on the other hand, does not

capture the ENSO predictability potential around the Equator
(10◦N−10◦S), and overestimates predictability in the upwelling
systems in the Pacific and to the west of Australia.

The usefulness of the entropy is also in highlighting changes
in predictability among months, seasons and subseasonal time
scales if daily or higher frequency data are available. Given
the monthly averages used in this study, we show next the
entropy in boreal spring (March to May, MAM) (Figure 3),
when complexity is expected to be higher due to the spring
predictability barrier to ENSO, and in the extended fall season,
August to November (ASON) (Figure 4), when the impacts on
the rainfall variability in the continents surrounding the Indian
Ocean are greatest and the variance explained by the IOD
is largest.

In both figures the entropy is shown in SODA/ERA-Interim
and all models usingM = 3, chosen in light of the seasonal scope
of our analysis (3 or 4 instead of 12 months in each year). In all
CMIP5 models the complexity is higher in boreal spring in the
Pacific, indicating that they generally capture the spring barrier
to ENSO predictability (e.g., Torrence and Webster, 1998; Duan
and Wei, 2013). Little agreement is found among models on the
spring predictability of IO.

In boreal fall, models with a realistically shaped—but
underestimated—entropy in the ENSO region, especially in
the southern hemisphere (CCSM4, CanESM2, MPI) tend to
overestimate the predictability in the IO, west of Sumatra
for CCSM4 and west of Australia in CanESM2 and MPI.
This bias was not as evident in spring. Other models share
the bias in the IO but also have high (generally too high)
predictability in the tropical Pacific and lower than observed at
the equator (ACCESS1.0 and 1.3, CMCC-CESM). CNRM-CM5
reproduces best the entropy patterns in both basins. GFDL-CM3
underestimates the complexity of the equatorial Pacific, while the
IPSL model, in both its version, is characterized by an ENSO
pattern protruding too far west into the warm pool area and
very high predictability north and south of the equator in the
western Pacific. The remaining models tend to underestimate the
SODA/ERA predictability in the Indo-Pacific. In the IO, many
models underestimate the entropy in the 15◦S−35◦S band and
overestimate it along the equatorial ocean, missing the IOD-
related predictability and displaying little intra-model agreement
on the overall patterns.

Since the IOD discovery, Saji et al. (1999) reported the
existence of a correlation between the IOD and ENSO indices.
This correlation reaches 0.62 in the ASON season over the period
considered for the reanalysis, consistent with the SODA/ERA-
Interim entropy pattern, which suggests some predictability
potential in the eastern, equatorial and part of the western IO.
In the Arabian Sea, on the other hand, the complexity tends to be
larger, likely due to the energetic mesoscale field characterizing
this upwelling system in fall.

Since correlation does not imply causation, many studies have
questioned whether the IOD can occur independently of ENSO
and by which mechanism (e.g., Allan et al., 2001; Ashok et al.,
2003; Gualdi et al., 2003; Saji and Yamagata, 2003). The general
consensus is that the IOD is an ocean-atmospheric coupled mode
of climate variability intrinsic to the IO that can be excited
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FIGURE 2 | SST entropy fields with microstates, M = 2, 3, 4, and 8 for SODA reanalysis (left column), CCSM4 (middle column) and HadGEM2-ES (right column)

CMIP5 historical runs. The data span over the period 1967–2005 for models and 1980–2018 for SODA reanalysis. All months are considered.

by ENSO (see also Webster et al., 1999; Cai et al., 2009). As
a result, its predictability does depend on ENSO through an
atmospheric teleconnection and possibly through an oceanic
bridge. The atmospheric teleconnection is indisputable and is
achieved through changes in the Walker circulation over the
western Pacific Ocean during the development of ENSO events
(e.g., Lau and Nath, 2003; Annamalai et al., 2005; Lau et al., 2005;
Behera et al., 2006; Kug et al., 2006; Izumo et al., 2010; Kajtar
et al., 2015). Some studies suggest that the ENSO-IOD interaction
may also be modulated by an oceanic bridge through changes
in the Indonesian Throughflow (ITF) transport between the two
basins (Bracco et al., 2005; Yuan et al., 2011; Zhou et al., 2015).
The ENSO modulations of the thermocline depth in the Pacific
Ocean, and particularly in the Warm Pool region, propagate
through the ITF to the northwestern Australia coast and then into
the IO (Cai et al., 2005; Behera et al., 2006). The ITF signal is then
transported to the southeastern tropical IO (SETIO) by coastal
Kelvin waves that develop off south Java (Sprintall et al., 1999).
Modeling studies found indeed that closing the ITF annihilates
the ENSO-IOD relationship (Wajsowicz and Schneider, 2001;
Bracco et al., 2005; Song et al., 2007; Santoso et al., 2011; Kajtar
et al., 2015) and van Sebille et al. (2014) confirmed that the ITF
transport correlates with ENSO using an eddy-permitting ocean
model. In section Entropy and the ENSO-IOD Relation we will
briefly investigate these atmospheric and oceanic connections in
light of the large discrepancies found amongmodels and between
models and reanalysis in the entropy field.

We focus next on future projections. The multi-model mean
consensus on the evolution of ENSO under global warming
in CMIP5 is toward a strengthening of its amplitude and

permanent El-Niño-like conditions (IPCC, 2014; Cai et al.,
2015). At the same time the IO warms up but not uniformly.
The predicted warming differs significantly among models,
but in most the western Indian Ocean warms more than
the east side (Di Nezio et al., 2020). In all models but the
two versions of GISS-E2, CNRM-CM5 and INMCM4, the
warming pattern over the IO resembles that of a positive
IOD, which is associated with above normal precipitations over
East Africa in fall and greater chances of fires in Australia
and Indonesia (not shown). Despite agreement among many
models in the warming patterns, no robust behavior is found
in the model representation of tropical SST predictability in
the RCP8.5 global warming scenarios (Figure 5). In the Pacific,
ACCESS1.0, CanESM, IPSL-CM5A-LR are characterized by a
decrease in entropy, the opposite is verified in ACCESS1.3,
CMCC-CESM, GFDL-CM3, both versions of the GISS model,
HadGEM2-ES, IPSL-CM5A-MR, MPI-ESM-LR and INMCM4.
The remaining models are almost invariant. In the Indian
Ocean the behavior may differ from the Pacific. The entropy
decreases in the ACCESS and IPSL runs, all four of them,
in CanESM, MRI and in the GFDL model south of the
Equator, increases in the CNRM-CM5 run, which had the closest
representation to the reanalysis in the historical period, and in
the GISS-E2-R model, and is nearly unchanged in the rest of
the cases.

The historical and future entropies suggest that many CMIP5
models misrepresent both ENSO and the IOD in boreal fall, and
their relationship, and generally underestimate the complexity
of the Indian Ocean SST variability, which is neither a mere
response to ENSO or independent of it.
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FIGURE 3 | Boreal spring (March–April–May) SST entropy fields with microstates, M = 3 during 1967–2005 for models and during 1980–2018 for SODA reanalysis.
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FIGURE 4 | Extended boreal fall (August–September–October–November, ASON) SST entropy fields with microstates M = 3 during 1967–2005 for CMIP5 models

and during 1980–2018 for SODA reanalysis.
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FIGURE 5 | Extended boreal fall (ASON) SST entropy fields with microstates, M = 3 for CMIP5 RCP8.5 runs used in this study. The model data span the period

2071–2100.
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ENTROPY AND THE ENSO-IOD RELATION

In this section, we first discuss how the entropy measure relates
to more traditional analysis methods and then we delve into
the model biases in the ENSO-IOD representation. We focus on
the historical period, for which reanalysis products are available
for comparison.

The information entropy is a non-linear time series analysis
tool that allow for extracting and accounting for non-linear
information that cannot be resolved using traditional linear
methods, such as Empirical Orthogonal Function (EOFs), or
power spectra. At the same time, the entropy bias can be
anticipated in part from a traditional EOF analysis of SST
anomalies (Figure 6). Indeed, the entropy identifies major
problems in the representation of climate variability patterns,
as done by the EOFs, if these biases influence recurrence.
Additionally, the information entropy introduces information
on the complexity of the climate modes in different regions.
Too large complexity in the equatorial Pacific, for example, is
indicative of a structural problem common to several models
which is not (or not only) linked to the modeled SST ENSO
patterns per se, but to the representation of equatorial dynamics
both in the atmosphere and in the ocean. The Indo-Pacific EOF
patterns are generally more in agreement with reanalysis data
than the entropy field. ENSO is often modeled with the observed
strength and maximum load at the equator even when it extends
too far into the warm pool region (e.g., ACCESS1.3, CCSM4,
GFDL, GISS-E2-H, INMCM4, both IPSL versions and MPI) and
has too much strength in the central and western portion of the
Pacific basin compared to the eastern one (Bellenger et al., 2014;
Chen et al., 2017). It is however too strong in CMCC-CESM and
CanESM, and too weak in HadGEM2, MRI and INMCM4. In the
reanalysis, the SST anomaly patterns in the IO are characterized
by a modest negative signal into the SETIO region that extends
into the IO from the warm pool region, and by a positive
signal elsewhere with slightly larger intensity in the Arabian Sea.
The SETIO pattern is often underestimated (this is the case for
CanESM and HadGEM-ES, both versions of the GISS and IPSL
models), and is stronger than observed but equatorially confined
in GFDL. The positive signal, on the other hand, is overestimated
in CMCC, GFLD, IPSL and MPI. The EOF patterns, again, do
not correspond to the entropy ones, especially south of 15◦S,
where the SST predictability is often greatly overestimated by
the models.

The complexity of ENSO is also—but not exclusively—linked
to its power spectrum and therefore its periodic recurrence in
time. Figure 7 compares the spectra among models and the
reanalysis based on the (monthly) Nino3.4 index. The bias in
the modeled spectra is reflected in that of the entropy field
along the equatorial Pacific, with the caveat that several models
overestimate the complexity of ENSO at the equator but display
highly predictable (and therefore too regular) dynamics away
from it, especially in the southern hemisphere (see e.g., the
ACCESS models). Noticeably, models with too much power
that spreads across multiple time scales maintain relatively low
predictability, being the last related to the repetitiveness of
the microstates (see e.g., CMCC-CESM). Given the interval

considered, low entropy characterizes also models with ENSO
power on time scales that are too long (e.g., HadGEM2-ES, for
which ENSO peaks at 8–10 years).

In Figure 8 we show the variance of the Niño-3.4 and
IOD indices across the four seasons. In many models, the
variances of the two indices are comparable in magnitude,
while being characterized by an approximately 3:1 ratio in the
observational dataset. Additionally, the Niño-3.4 -IOD cross-
correlation (Supplementary Figure 3), which is linked to the
directionality of the connections between the two modes and
therefore the predictability potential across the basins, indicates
that the Niño-3.4 variability lags, or co-occurs with, the IOD one
in most models, while it leads by 2 months in the reanalysis.
CNRM-CM5 emerges again as the model with the closest
representation to the reanalysis. Cross-correlations between the
Nino3.4 index and the SETIO andWTIO indices separately point
to the eastern region of the IO as source of the bias (not shown).

To better highlight what limits the reliability of model climate
predictions in the IO, we next examine briefly atmospheric and
oceanic connections induced by developing ENSO events affect
the IO and vice versa.We use standard correlation and regression
analysis and our investigation does not aim at being exhaustive,
but simply identifies possible biases that are shared among many
models and appear to influence how predictability is simulated.

Atmospheric Teleconnection
The sea level pressure anomalies (SLPAs) over the SETIO region
can be used as a proxy for the strength of atmospheric changes to
the Walker circulation induced by ENSO over this area. A simple
cross-correlation analysis shows that the modeled SLPa-ENSO
relationship is captured by all models (Figure 9). The same is
verified for the WTIO region (not shown). Interestingly CNRM-
CM5 underestimates the signal, which is better captured by the
GISS runs, CanESM or GFDL.

From this simple analysis, we can infer that the bias in
representing the IOD-ENSO interaction is not caused, at a
first order, by a deficient representation of the atmospheric
teleconnection from the Pacific into the IO. The IOD can
independently modify the Walker circulation through air-sea
interactions in SETIO (Izumo et al., 2010) but the ENSO
influence on the Walker circulation is captured relatively well in
all models. We will show later that the same cannot be said if we
zoom onto the ITF region.

Oceanic Bridge
ENSO influences the IO ocean circulation by modulating the
transport of warm and fresh water from the Pacific Warm Pool
region into the IO via the ITF. Positive transport anomalies occur
during La Niña events and vice versa in El Niño years (Meyers,
1996). England and Huang (2005) found the ITF transport,
defined as the depth integrated transport over the whole water
column at 8◦S, 120◦–131.5◦E, to be anticorrelated with the Niño-
3 index (SSTa averaged over 150◦W−90◦W, 5◦S−5◦N), with
a maximum of −0.32 when the ITF lags ENSO by 9 months.
Bracco et al. (2005) focused instead on the variability of the 20◦C
isotherm (Z20) that may more directly impact the upwelling
in the SETIO region and found that that the fall correlation
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FIGURE 6 | The first EOF patterns of tropical Indo-Pacific sea surface temperature anomalies during the extended boreal fall season (ASON) in 1967–2005 for models

and 1980–2018 for SODA reanalysis. Percentages of variance explained by the EOF patterns are included.
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FIGURE 7 | Power spectrum of Niño3.4 index during 1967–2005 for models and during 1980–2018 for SODA reanalysis. The period (in years) is on the x-axis and the

power is shaded.

between the Z20 anomalies and Niño-3.4 reached−0.62 over the
period 1958–2002.

In SODA, the maximum (minimum) transport occurs in
boreal spring (fall), and the thermocline depth oscillates between
123 and 135m. In the models, the annual cycle varies greatly
in both amplitude and phase (Supplementary Figure 4). Several
models have a thermocline that is 30m or more too deep.
Many, including INMCM4, GISS-E2- R, GISS-E2-H, MPI and
CANESM, display an out of phase seasonal cycle (minimum in
spring and maximum in fall) or shaped with two peaks. CMCC-
CESM stands out for having a thermocline that is too shallow
(about 20m shallower than in the reanalysis in fall). CCSM,
GFDL and IPSL-MR provide the closest representation to that in
the reanalysis, with CCSM being the most realistic.

The cross-correlations between the Z20 anomalies averaged
over the ITF region and Nino3.4 indices are shown in
Figure 10. In the reanalysis, the maximum anticorrelation
(−0.71) is found for the Niño-3.4 index lagging the ITF
thermocline by 1 month. Statistically significant anticorrelations
are found in all models but INMCM. However, the modeled
anticorrelations are consistently maximized at about 3–5 months
lags. The relationship between the Niño-3.4 index and the
ITF is misrepresented by the models also when using the

sea level difference between the western Pacific (WP; 0–10◦N;
125◦E−145◦E) and the Eastern Indian Ocean (EIO; 10◦S−20◦S;
110◦E−130◦E) as ITF proxy (Mayer et al., 2018). Correlation
coefficients are smaller than for Z20 but significant in the
reanalyses, while the linkage is missed entirely in most models
(Supplementary Figure 5). This is indicative of problems in the
representation of both oceanic and atmospheric processes at
the equator.

Finally, the regression maps of the SST over the tropics
and of subsurface temperatures averages between 5◦N and
5◦S onto the IOD index are shown in Figures 11, 12. At the
surface the link between the IOD and the ENSO anomalies are
captured by most models but INMCM4 and underestimated
by ACCESS1.3, HadGEM2-ES, followed by CCSM4, MPI and
MRI and CNRM-CM5. At the ocean surbsurface, on the other
hand, the regression patterns are generally strong underneath
the warm pool, where they have the same sign of the SETIO
region, but underestimated in the central and eastern Pacific. At
the subsurface CNRM-CM5 emerges as closest to the reanalysis
in the pattern representation. Modeled IODs somewhat mimic
the characteristics of the unseasonal IOD events identified in
the observations by Du et al. (2013), but for their seasonality.
The unseasonal IOD are relevant in late spring and summer
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FIGURE 8 | Seasonal variance of Niño3.4 (A) and IOD (B) indices during 1967–2005 for models and during 1980–2018 for SODA reanalysis.

since the 1970’s, and resemble the CMPI5 ones by being mostly
independent of ENSO and forced by (too strong for fall in the
CMIP5 case) equatorial winds. This figure also points to the
differences in the representation of the ITF bathymetry among
the models.

The representation of the relative seasonal evolution of the
two modes identified in the cross-correlations and the greater
independence of the modeled IOD from the Pacific evolution
emerge as problematic in all models. Our brief analysis extends

the results by Cai and Cowan (2009) that highlighted other
systematic biases in the IO and in particular (a) the western IO
thermocline being deeper than the eastern IO while the opposite
is verified in the observations so that the wave dynamics that
transport the IOD temperature anomalies are not reproduced
correctly; (b) slightly warmer SST in the western IO than
eastern IO, while a much warmer eastern IO is observed; (c)
stronger than observed climatological easterly winds over the
equatorial Pacific.
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FIGURE 9 | Cross correlation between the sea level pressure anomalies (SLPAs) over the SETIO region and the Niño3.4 Index during 1967–2005 for models and

during 1980–2018 for SODA/ERA-interim reanalysis. Positive (negative) lags indicate SLPa lags (leads) the Niño3.4 Index.
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FIGURE 10 | Cross correlation between the Indonesian Throughflow (ITF) thermocline depth anomaly and the Niño3.4 index during 1967–2005 for models and during

1980–2018 for SODA reanalysis. Positive (negative) lags indicate ITF lags (leads) the Niño3.4 index.
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FIGURE 11 | Regression maps of tropical Indo-Pacific sea surface temperatures on the IOD during the extended boreal fall season (ASON) of 1967–2005 for models

and 1980–2018 for SODA reanalysis.
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FIGURE 12 | Regression maps of the tropical Indo-Pacific sea subsurface temperatures averaged between 5◦N and 5◦S onto the IOD during the extended boreal fall

season (ASON) of 1967–2005 for models and 1980–2018 for SODA reanalysis.
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SUMMARY

Weather prediction is reliable to<10 days due to the atmosphere
chaotic behavior, the sensitivity on the initial conditions and
model limitations. Climate prediction, on the other hand, has the
potential to extend to longer time scales due to the modulations
exerted by its slowly varying component, the ocean. Climate
modes that manifest as non-linear oscillations, such as the El
Niño-Southern Oscillation, the Pacific Decadal Oscillation, the
Atlantic Multi-Decadal Oscillation, the Indian Ocean Dipole,
etc. further contribute to the extended range of potential
predictability of the climate system.

Global warming is posed to modify these modes of natural
variability that control much of the predictability at seasonal
to interannual scales. Examples include the intensification of
the IOD (Di Nezio et al., 2020), and a higher frequency
of Central Pacific El Niños (Freund et al., 2019) observed
in the last decade and projected to continue in the future,
and shifts in its global-reaching teleconnections following the
expansion of the Hadley cells (Kang and Lu, 2012). In light
of the societal impacts that these modes exert by modulating
surface temperatures, storm frequency, droughts and floods, their
current and future predictability potential is of the uttermost
importance. It remains, however, elusive due to the complexity
of the climate system, the biases in climate models, the challenges
implicit in quantifying it.

In this work, we introduced a new method, building
upon tools developed within the non-linear dynamical systems
community, to quantify predictability in terms of information
entropy. The information entropy of a climate field quantifies the
degree of complexity of a given region or grid point in terms
of recurrence (how many times a phase space trajectory visits
roughly the same area in the phase space over a given period)
and evaluate how it varies over time. Given that the evolution
of a climate field such as SST results from interactions of many
fields, from atmospheric winds and heat fluxes to ocean currents,
its space phase evolution accounts for all these interactions, linear
and non-linear.

Most studies employing a comparable non-linear data analysis
technique in climate science have focused on a limited number
of 1-dimensional time series (i.e., paleoclimate proxies—one or
few at the time—or their modeled equivalent) (Donges et al.,
2011, 2015). The possibility to use it on large, multi-dimensional
fields has been opened by Corso et al. (2018) by introducing a
new entropy quantifier applicable to d-dimensional fields using
the recurrent plot (RP) technique (Eckmann et al., 1987) without
the need for embedding or phase space reconstruction. We
applied it to the SST field in the tropical Pacific and Indian
Ocean, comparing CMIP5 models and reanalysis data, over 39
years in the historical period and in the last 30 years of the
XXI century RCP8.5 projections. We focused on the boreal
fall season, when the ENSO signature is strong and the IOD
has maximum variance in the Indian Ocean. Understanding
the ENSO—IOD relation and the influence of the IOD on
all countries facing the Indian Ocean is essential to improve
prediction of extreme rainfall and droughts over Australia, India,
Indonesia and East Africa. In these highly populated regions
downscaled regional experiments (Hashizume et al., 2012) are

limited by the representation of the large scale atmospheric and
oceanic circulation.

Our analysis highlights the limitations that coupled climate
models still face in addressing climate predictability and its
potential changes. No robust signal is found in the models,
in both basins, as to how predictability will evolve in the
future when considering the projections for the last 30 years
of the XXI century. In the historical period, very few models
capture both pattern and intensity of the entropy signal of
the reanalysis, and CNRM-CM5 outperforms all others in this
regard. Interestingly, in an intercomparison performed using
complex network analysis (Fountalis et al., 2015), CNRM-CM5
outperformed all other CMIP5 models also in the representation
of rainfall patterns and their connectivities, but performed as
well as several others in representing the (global) SST network.
This again points to the power of the entropy quantifier as a
measure of topological similarity linked to predictive power. The
entropy quantifier, in summary, is a computationally efficient
performance metric for coupled climate models, capable of
capturing dynamical characteristics, both linear and non-linear,
that goes beyond the climatology and local variability of the field
under investigation, and delves into its topological properties.

We also showed that a biased representation of coupled
equatorial dynamics and of the atmospheric and subsurface
oceanic bridge between the Pacific and Indian Oceans via the
ITF contributes to the poor representation of the Indo-Pacific
entropy in fall. Incidentally, we verified that the intra-model
variability is relatively small in the historical runs in the statistics
presented, from the entropy to the cross-correlations, and each
model behavior is consistent across ensemble members. Overall,
many models struggle at the equator, in both basins, and display
unrealistic regular dynamics in the IO, especially south of the
equator and/or in the Arabian Sea.

Our results exemplify how information entropy may
contribute a new powerful tool to investigate the potential
predictability of the climate system. More work is needed to
explore its relevance on time scales other than interannual, using
higher or lower frequency time series as input to explore, for
example, subseasonal phenomena o changes across millennia,
and the entropy usefulness in analyzing fields other than SSTs. In
the near future, we aim at applying it across time scales and with
high frequency (at least daily) data to quantify how and where
climate predictability emerges from the weather noise.
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