
ORIGINAL RESEARCH
published: 06 July 2021

doi: 10.3389/fclim.2021.693653

Frontiers in Climate | www.frontiersin.org 1 July 2021 | Volume 3 | Article 693653

Edited by:

Mphethe Tongwane,

Zutari, South Africa

Reviewed by:

Yuan Xue,

George Mason University,

United States

Yagmur Derin,

University of Oklahoma, United States

*Correspondence:

Seth Peterson

seth@geog.ucsb.edu

Specialty section:

This article was submitted to

Climate Services,

a section of the journal

Frontiers in Climate

Received: 11 April 2021

Accepted: 11 June 2021

Published: 06 July 2021

Citation:

Peterson S and Husak G (2021) Crop

Area Mapping in Southern and Central

Malawi With Google Earth Engine.

Front. Clim. 3:693653.

doi: 10.3389/fclim.2021.693653

Crop Area Mapping in Southern and
Central Malawi With Google Earth
Engine
Seth Peterson* and Greg Husak

Climate Hazards Center, Department of Geography, University of California, Santa Barbara, Santa Barbara, CA, United States

Agriculture in sub-Saharan Africa consists primarily of smallholder farms of rainfed

crops. Historically, satellite data were too coarse to account for the heterogeneity in

these landscapes. Sentinel-2 data have improved spectral resolution and much higher

spatial resolution (10m) than previously available satellites with global coverage, such

as Landsat or MODIS, making mapping smallholder farms possible. Spectral mixture

analysis was used to convert the Sentinel-2 signal into fractions of green vegetation,

non-photosynthetic vegetation, soil, and shade endmembers. Very high spatial resolution

imagery in Google Earth Pro was used to identify locations of crop and natural vegetation

classes, with over 20,000 reference points interpreted. The high temporal resolution of

Sentinel-2 (5 days repeat) allows for classification of landcover based on the phenological

signal, with natural areas having smoothly varying amounts of photosynthetic vegetation

annually, while cropped areas show more abrupt changes, and also the presence of

bare soil due to agricultural activity at some point during the year. We summarized

the endmember values using monthly medians, extracted values for the reference data

points, randomly split them into training and test data sets, and input the training data

into the random forests algorithm in Google Earth Engine to map crop area. We divided

southern and central Malawi into tiles, and found crop/no crop classification accuracies

on the test data for each tile to be between 87 and 93%. The 10m map of crop area was

aggregated to the district level and showed an R2 of 0.74 with ground-based statistics

from the Malawi government and 0.79 with a remotely sensed product developed by

the USGS.

Keywords: crop area, Africa, random forests, Google Earth Engine, phenology

INTRODUCTION

Climate variability—combined with a lack of resources, social and political instability,
pest outbreaks, and other contributing factors—have led to food-insecurity events
throughout sub-Saharan Africa, compromising the lives and livelihoods of the most
vulnerable populations (Devereux, 2009; Samasse et al., 2018; Funk, 2021). Homegrown
food production is a function of crop area and crop yield, but these components are
difficult to assess because agricultural statistics in sub-Saharan Africa are known to
be inaccurate due to poor organization and data analysis (Devereux, 2009; Carletto
et al., 2015). They are also quite coarse, being reported at the administrative unit level
for ground-based statistics, and generally, 300–1,000m pixels for satellite-based maps
(Carletto et al., 2015; Samasse et al., 2018). The recent availability of 10m Sentinel-2 data
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in Google Earth Engine (GEE) allows for efficient processing of
high spatial resolution data, making high spatial resolution crop
area maps over large areas feasible (Chivasa et al., 2017; Samasse
et al., 2018; Jin et al., 2019; Amani et al., 2020; Karlson et al., 2020;
Kerner et al., 2020; Masiza et al., 2020; Tseng et al., 2020; Verde
et al., 2020).

The high temporal (5-days repeat) resolution of Sentinel-2
data allows for the improved observation—and differentiation—
of crop and natural vegetation phenology, as well as a higher
likelihood of minimizing cloud impacts on the time series (Misra
et al., 2020). The high spatial resolution allows for fewer mixed
pixels in these landscapes characterized by smallholder farms,
which result in mosaics of fields, forests, and pastures, often
heterogeneously mixed at even the 30m Landsat scale, and
certainly at the 500m MODIS scale (Ozdogan and Woodcock,
2006; Samasse et al., 2018; Jin et al., 2019; Misra et al., 2020).
The major drawback of small pixel sizes is huge data set
size, complicating both data storage/transfer and computational
requirements. The use of GEE reduces these requirements
because: (1) the data sets are already loaded into GEE; they do
not have to be ordered, downloaded, and stored locally, and
(2) processing can be done on Google’s server cloud, effectively
bringing supercomputing to the average user, for free (Gorelick
et al., 2017).

Remotely sensed data have been used in agricultural
applications since satellites were launched in the early 1970s
(Hammond, 1975; MacDonald and Hall, 1980). Opening the
Landsat archive to free access in 2008, quasi-daily MODIS data,
and high temporal resolution Sentinel-2 data have allowed for
techniques that leverage phenology to map crops and produce
yield estimates (Lobell, 2013; Wang et al., 2020). The phenology
of crops may differ from that of natural areas in many ways,
due to growth form, irrigation, harvest, field management, and
other factors. As the season progresses, crop areas will show bare
soil due to plowing or clearing to prepare the area, followed by
a steady increase in green vegetation as crops grow, then some
vegetation die-back as crops mature, particularly in seasonal
rainfed agriculture areas. Finally, there is a rapid decrease in
vegetation amount due to harvest, leading to bare fields with
a mix of soil and crop residue. In contrast, natural areas may
show different trends. For instance, forested areas may stay
green year-round; shrublands may green up earlier than crops or
grasslands and stay green longer due to established root systems;
grasslands may show similar timing in green up to crops in
rainfed agricultural areas, but dry down would be more drawn
out due to a lack of harvest, and bare soil likely would not
be exposed.

Most of the studies using crop phenology to map crop area use
either raw bands, vegetation indices (VIs) such as the Normalized
Difference Vegetation Index (NDVI, Rouse et al., 1973), or a
combination of the two (Samasse et al., 2018; Jin et al., 2019;
Amani et al., 2020; Karlson et al., 2020; Kerner et al., 2020;
Masiza et al., 2020; Tseng et al., 2020; Verde et al., 2020). In
this study we took a different approach. Spectral mixture analysis
(SMA, Roberts et al., 2002) decomposes the signal of a pixel into
percentages/fractions of the scene components making up the
pixel. These scene components are termed endmembers (EMs),

and generally consist of the spectrally distinct constituents: green
vegetation (GV), non-photosynthetic vegetation (NPV), soil, and
shade. SMA works well on data sets that include broad spectral
coverage, such as Landsat or MODIS. The addition of bands
on the red edge for Sentinel-2 in comparison to earlier sensors
further increases the confidence that SMA produces physically
meaningful EM fractions. GV is generally highly correlated
with NDVI and other VIs focusing on vegetation greenness
[e.g., enhanced vegetation index (EVI, Huete et al., 1997)]. The
other three EM fractions provide unique information. This is
important, for instance, because a drop in NDVI in a pixel can
result from either browning of vegetation (leading to a mixture
of GV and NPV) or a partial crop harvest (leading to a mixture of
GV and newly exposed soil), and while NDVI cannot distinguish
between the two events, SMA can.

Malawi normally receives enough precipitation to produce
most of the maize and other crops required to feed its people;
there has not been a famine since 2001–2002 (Devereux 2009).
However, what makes Malawi an excellent case study are two
existing national reference data sets of crop area: (1) district-wide
statistics from the Malawi Department of Agriculture, and (2)
from a map based on manual interpretation of landcover on a
1 km grid by Gray Tappan of the U.S. Geological Survey (USGS).
We also compare our results to two global data sets, from IIASA-
IFPRI (Fritz et al., 2015) and a protype map from the European
Space Agency (ESA, ESA-CCI, 2021).

MATERIALS AND METHODS

In this study, we used 2018 Sentinel-2 data to map crop
area in central and southern Malawi (6752347 ha) at a 10m
pixel resolution. The basic approach was to manually identify
reference data points using very high spatial resolution imagery
(<1m), randomly divide that data set into training and testing,
extract phenologically-based predictor variables from Sentinel-
2 for the training data set, input those predictor variables into
random forests (RF) to map crop area, and evaluate classification
accuracy, both with the test data set, and in relation to crop
area from the two Malawi reference data sets and the two global
data sets.

Study Area
Malawi has a population of 19.1 million people, with 9.4 million
ha of land area, 3.7 million ha of which are in agriculture
according to government statistics obtained through the Famine
Early Warning System Network (FEWSNET) data warehouse.
We focused on the southern and central regions of the country,
as that captures 86% of the crop area of Malawi. Common
cash crops include tea, tobacco, and cotton. Common food
crops include maize, millet, cassava, sweet potatoes, and legumes.
Farmers in Malawi have practically no access to irrigation, and
as a result, agriculture is rain fed. Annual precipitation from
CHIRPS, a satellite- and station-based product available at 5 km
resolution (Funk et al., 2015) varies between 0.9 and 1.2m
across Malawi, with a pronounced seasonal signal (Figure 1).
Crops are planted in November/December and harvested in
April/May. Malawi contains a number of different landforms,
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FIGURE 1 | Precipitation (green) and average (2000–2020) monthly precipitation (orange) from CHIRPS for a 5 km pixel in an agricultural part of Dedza District,

Malawi, 14.34◦ S, 34.13◦ E.

including plateaus, mountains, lakes, and a large river valley,
which influence the vegetation type and phenology (Figure 2).

Training Data
We dividedMalawi into 10 × 10 tiles. This was primarily done for
logistical reasons—memory restrictions in GEE. Six tiles covered
the bulk of central and southernMalawi, with smaller areas added
to cover the remaining portions (Figure 2). We classified the
landscape into five classes: crop, open water, and three types
of natural areas—sparse, shrub, forest—differentiated based on
observed canopy cover. Air photo interpretation techniques were
applied to very high spatial resolution (1m pixels or less), true
color imagery in Google Earth Pro (GE) to identify thousands
of reference points for the crop, sparse, shrub, and forest classes,
with fewer points needed for open water (Table 1). Points were
identified in areas that were homogeneous over at least 20m.
The “show historical data” feature was used to examine all
available imagery in GE for evidence of agricultural activity,
with most imagery acquired between 2013 and 2020. Examples
of different stages of agricultural activity visible in the imagery
include fields plowed into regular rows, fields having regular
geometric shapes, fields showing different vegetation greenness
with linear distinctions—as if harvesting was in progress during
image acquisition, and crop residue arranged in linear or circular
patterns (Figure 3). For natural areas we sought to use imagery
from 2017 or 2018 to minimize any possible landcover change
effects. In contrast to agricultural areas, natural areas generally
showed irregular vegetation canopies, both in terms of canopy
shape and spacing between plants. They also do not show
linear (man-made) features. Some manually interpreted points
were able to be reused for adjacent tiles where landforms
(and hence, climate/vegetation) were similar (e.g., Orig and 1N
along the shore of Lake Malawi). Training data were added

for each tile in an iterative process until the resulting RF
classification for the tile did not contain spatially correlated
errors. Points from adjacent tiles were always used to make
an initial classification for a new tile to speed up the point
selection process. For instance, if the initial classification map
for a tile showed that forested areas were well-identified using
existing training data from other tiles, no new training points
were added for that class within the new tile. The reference
point files were saved as KMLs and converted to shapefiles for
use in GEE. Much of the effort in this research focused on the
selection, interpretation, and refining of points used to drive
the classification.

Independent Validation Data
The independent validation data used in this study came
from four independent sources, the official statistics from the
Government of Malawi for 2017, a map derived from interpreted
satellite imagery from the USGS from 2017, the global IIASA-
IFPRI crop area map from 2005 and the ESA-CCI Sentinel-2-
based map from 2016. The Malawi government data consists
of the area planted for each of 10–12 crop types at the
district level, covering nine districts in central Malawi, and
13 in southern Malawi. The crop areas were summed and
divided by the overall area of each district to get percent
crop area. It should be noted that the government statistics
for crop area may double count a field if it is intercropped
with two different crops, hence fractions can be >1.0. The
Tappan USGS map relies on expert interpretation of points
on a regular 1 km grid, primarily using Landsat and Sentinel-
2 data to make a determination of landcover at each point
using the Rapid LandCover Mapping tool (Cotillon and Mathis,
2017). A total of 28 landcover classes were used, six of
which represented agricultural areas (rainfed herbaceous crops,
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FIGURE 2 | Study area in Malawi showing administrative districts in central and southern Malawi with fractional crop area (A), elevation for Malawi from Shuttle Radar

Topography Mission (SRTM) data (B), the six initial “tiles” used to perform the Random Forest (RF) analysis, most are 1◦×1◦ (C).

TABLE 1 | Training points generated in Google Earth Pro.

Tile

Orig 1S 1N 1W 1NW 1NWW 1SW, 1SE 1SS

Crop 2,248 2,876 741 1,376 1,323 444 361 20

Sparse 657 207 171 515 272 94 264

Shrub 1,568 3,013 1,016 275 1,327 116 146

Forest 802 737 87

Water 192

The geographical location of the primary six tiles is shown in Figure 2. 1SW, 1SE, and 1SS are west, east, and south of tile 1S, respectively.

cultivated dambo, rice, sugar cane, tea, and tree plantation). The
map was converted to binary (presence/absence) of agriculture
at the 1 km pixel scale to calculate percent crop area for each
district. The IIASA-IFPRI crop area map integrates existing
maps from various sources, ranking and weighting them before
combining them into the final global 1 km pixel crop area
product (Fritz et al., 2015). The ESA-CCI map is derived
from Sentinel-2 data and is available at 20m resolution, it is

unpublished and labeled as a prototype but is beginning to be
evaluated in the literature (Samasse et al., 2018; Alkhalil et al.,
2020).

Predictor Variables
SMA was applied to the 10m Sentinel-2 time series for central
and southern Malawi. We used the Level 1C, top of atmosphere
(TOA) reflectance product rather than the Level 2A surface
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reflectance product, as all of the Sentinel-2 data are available in
this form, allowing us an extra 2 full calendar years in analyses,
because the Level 2A data are only available from mid-2017 to
present while the Level 1C data begins inOctober 2015 inMalawi.
To identify and filter out clouds, the cloudscore algorithm was
used for cloud and cloud shadow masking (Chastain et al.,
2019). Due to the use of top of atmosphere reflectance data,
we used image EMs, derived from pure Sentinel-2 pixels of
maize, senesced vegetation, and bare soil in an agricultural
area in central Kenya, where we had an informant who could
identify landcover, rather than reference EMs convolved to

FIGURE 3 | Four different looks in Google Earth Pro at a smallholder

agriculture area in east central Malawi near 13.72◦S, 35.1◦E on 9/27/2013 (a),

10/31/2013 (b), 11/29/2014 (c), and 3/10/2020 (d). Harvest residue (HR) in

the north east corner of the 9/27 and 10/31 images identifies this area as

cropped. Plowing (PL), exposing dark, smooth soil in 11/29, and to a lesser

extent 10/31 identifies this area as cropped. The fine spatial resolution allows

for the identification of plant canopies in the southeast portion of the image,

the temporal information suggests some of them are evergreen trees, some

deciduous shrubs.

Sentinel-2 band wavelengths from hyperspectral data. Thus,
atmospheric effects are included in the image EM spectra.
SMA was performed on each individual Sentinel-2 image in
southern and central Malawi in 2018 with the same set of EMs,
breaking each pixel of each image down into its components
of GV, NPV, soil, and shade. Table 2 lists the reflectance
values used for each EM. For each pixel, the time series of
EM fractions were summarized in two different ways: (1) the
minimum, maximum, median, and range in values within each
bi-monthly time step were calculated for each EM fraction
(similar to the Jin et al., 2019 approach), and (2) the monthly
median was calculated for each EM fraction (Kerner et al.,
2020). Additionally, for each approach we calculated the annual
minimum, maximum, median, and range for each EM fraction
from the bimonthly/monthly medians. A threshold value of 0.4
for annual GV maximum was used to remove fields that showed
evidence of agricultural activity at some point in GE imagery, but
were fallow in 2018, from the crop training and test data sets.
Even though these distilled datasets contain far less information
than the five day repeat Sentinel-2 data, the resulting arrays of
EM summary statistics were still very large, on the order of 20
GB per tile.

Image Classification
In order to work within the computational limitations of GEE,
analysis was performed for each tile individually. The first step
was to separate the reference data points for each landcover class
into training and test data sets. The reference points were split
roughly 50/50 into training/test for crop and shrubs, and 80/20
for the remaining, less-populous classes. It is important that the
amount of training data per class is roughly equal in order to
obtain an accurate map (He and Garcia, 2009). The training
points were used to extract training data from the predictor
variable array. We used RF to perform the classification analysis.
Decision trees use a series of predictor variable splits to divide the
dependent variable into more and more homogeneous groups.
RF consist of an ensemble of decision trees, where trees are
made to differ by changing the subsets of data used to train
each tree, and allowing only a subset of the predictor variables
to be evaluated at each node. The results from 500 decision
trees were aggregated to produce the RF output (classified maps
and contingency tables); a large number of trees is suggested to
minimize error, with 500 being recommended in the literature
(Probst et al., 2019). RF have been shown to perform well for
this crop area classification application (Jin et al., 2019). RF were

TABLE 2 | Sentinel-2 top of atmosphere reflectance values for the four endmembers used in this study, green vegetation (GV), non-photosynthetic vegetation (NPV), soil,

and shade.

Sentinel-2 central wavelength (nm)

Endmember 490 560 665 705 740 783 842 865 1,610 2,190

GV 0.0917 0.101 0.056 0.114 0.394 0.507 0.501 0.555 0.214 0.0917

NPV 0.124 0.126 0.158 0.182 0.214 0.24 0.22 0.273 0.376 0.287

Soil 0.136 0.163 0.244 0.256 0.277 0.302 0.296 0.313 0.366 0.317

Shade 0 0 0 0 0 0 0 0 0 0
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FIGURE 4 | Sample green vegetation (GV) (A), non-photosynthetic vegetation (NPV) (B), soil (C), and shade (D) endmember (EM) trajectories for a crop area and a

natural area, showing monthly median values.
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TABLE 3 | Confusion matrices for the primary six tiles, the geographical location of the tiles is shown in Figure 2.

Crop Sparse Shrub Forest Water User’s

Orig

Crop 644 11 103 2 0 0.847368

Sparse 29 109 57 1 0 0.556122

Shrub 86 12 627 13 0 0.849593

Forest 9 2 26 150 0 0.802139

Water 0 0 0 0 47 1

Producer’s 0.838542 0.813433 0.771218 0.903614 1 0.817946

1S

Crop 1,254 19 99 7 0 0.909355

Sparse 30 179 20 0 0 0.781659

Shrub 213 14 1,364 10 0 0.851968

Forest 17 2 19 149 0 0.796791

Water 0 0 0 0 47 1

Producer’s 0.828269 0.836449 0.908123 0.89759 1 0.8693

1W

Crop 849 11 67 2 0 0.913886

Sparse 34 130 83 0 0 0.526316

Shrub 75 12 779 11 0 0.888255

Forest 9 0 31 129 0 0.763314

Water 0 0 0 0 47 1

Producer’s 0.877973 0.849673 0.811458 0.908451 1 0.852358

1N

Crop 925 11 78 0 0 0.912229

Sparse 26 136 68 0 0 0.591304

Shrub 155 17 1,095 14 0 0.854801

Forest 11 1 22 128 0 0.790123

Water 0 0 0 0 47 1

Producer’s 0.828111 0.824242 0.866983 0.901408 1 0.852597

1NW

Crop 406 18 18 1 0 0.916479

Sparse 10 69 9 2 0 0.766667

Shrub 27 16 396 29 0 0.846154

Forest 2 4 23 130 0 0.81761

Water 0 0 0 0 47 1

Producer’s 0.91236 0.64486 0.887892 0.802469 1 0.868268

1NWW

Crop 757 26 30 5 0 0.925428

Sparse 27 172 63 5 0 0.644195

Shrub 52 20 475 38 0 0.811966

Forest 13 9 25 201 0 0.810484

Water 0 0 0 0 47 1

Producer’s 0.891637 0.757709 0.801012 0.807229 1 0.840712

run on the training data, developing a model which was then
(1) evaluated with the test data and (2) applied to the entire
tile to make a map. All of the individual tile maps were then
mosaicked, and crop area values for the 22 districts in central
and southern Malawi were compared between our analysis, that
of the Malawi Department of Agriculture, the Tappan USGS
map of crop area in Malawi, the IIASA-IFPRI map, and the
ESA-CCI map.

RESULTS

The EM fraction trajectories reflect changes due to plant

phenology. To highlight the separability of the different cover

types, Figure 4 shows sample EM trajectories for a crop field and

a natural shrubland area, located within 100m of each other.

The GV EM trajectory for the natural area follows precipitation
well; green up begins in October, peak greenness occurs between
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January and March except for 2017, when the rainfall peak
was a month late (Figure 1) and the GV peak was in April,
and then there is a steady decline as the landscape dries down
during the 6 months long dry season (Figure 4). Crop greenup
is delayed a few months compared to shrub greenup, the timing
of peak greenness is later in the season, and the peak is more
pronounced than that of the natural area. Finally, there is an
extended period of near zero GV values between harvest and
planting the following growing season. Negative EM values, while
not physically meaningful, occur because SMA is amatrix algebra
transform with the constraint that fractions sum to 1.0, and can
be interpreted as the absence of that EM for that time step. For
this particular example the natural area demonstrated a higher
GV fraction than the crop fields throughout 2018, but that is not
always the case. NPV for the natural area has an inverse trend
to GV, the new green leaves are dominant at the beginning of
the season so NPV is low, then the leaves senesce, and woody
shrub material and senesced ground cover become more exposed
to the satellite, leading to an increase in NPV. A similar pattern
is present during the growing season for the crop field, although
it appears that harvest residue was left on the field in 2017 and
2018 as NPV remains high during the initial increase in GV for
those years. The soil fractions stayed relatively consistent for the
two areas in Figure 4, showing no evidence of plowing in this
particular area, which is consistent with the observation, based
on NPV, that harvest residue was left on the soil. Soil fraction was
higher for crop areas, likely due to the presence of some exposed
soil between crop rows. NPV and soil show more noise than GV,
likely due to residual cloud contamination. Shade shows a similar
pattern to GV as the landscape absorbs more light (high shade)
when it is highly vegetated, and reflects more (low shade) when
the ground is bare. Some locations experienced persistent cloud
cover during parts of the rainy season, resulting in missing data
in the satellite analysis and corresponding gaps in the plots shown
in Figure 4.

We only present output for the monthly predictor variables
(the second method of data distillation), as accuracies were
slightly better, and the predictor variable data set was half the
size of the bimonthly data set, thus it was more convenient. The
overall accuracies when compared with independent test data for
the six tiles with the most training data (Table 1) were on the
order of 85% (Table 3). We also show data for classes re-coded to
crop/no crop (Table 4), which is the more commonway that crop
area classifications are presented. Accuracies increased 5% for
five of the six tiles, with three tiles exhibiting accuracy over 90%.
Further analysis of the results in Tables 3, 4 show that the user’s
accuracy for crop tends to be a bit higher than the producer’s
accuracy, indicating a slight under-identification of agriculture in
the model results, and an expected underestimate of the overall
cropped area by a small amount. The biggest source of confusion
was between crops and shrubs, thoughmore crops were classified
as shrub than vice versa (Table 3). It may be that the diversity in
crop types and or farming intensity is more variable than shrub
types, so the crop class is more heterogeneous and thus members
of the class are more likely to appear to behave like shrubs.

Table 5 presents the variable importance values for each of
the predictor variables for each of the six tiles in Table 1, with

TABLE 4 | Confusion matrices for the primary six tiles, with the classes

aggregated to crop/no crop.

Crop No crop User’s

Orig

Crop 644 116 0.847368

No crop 124 997 0.889384

Producer’s 0.838542 0.895777 0.872408

1S

Crop 1,254 125 0.909355

No crop 260 1,757 0.871096

Producer’s 0.828269 0.933581 0.886631

1W

Crop 849 80 0.913886

No crop 118 1,175 0.908739

Producer’s 0.877973 0.936255 0.910891

1N

Crop 925 89 0.912229

No crop 192 1,481 0.885236

Producer’s 0.828111 0.943312 0.895422

1NW

Crop 406 37 0.916479

No crop 39 678 0.945607

Producer’s 0.91236 0.948252 0.934483

1NWW

Crop 757 61 0.925428

No crop 92 1,008 0.916364

Producer’s 0.891637 0.942937 0.920229

The geographical location of the tiles is shown in Figure 2.

the top ten variables for each tile in bold. There are a number of
interesting features. GV variables were generally most important.
The median GV at the beginning of the growing season ranked
high, while the median GV for the peak of the growing season
(February) showed much lower importance. Natural areas green
up earlier than crop areas, with separability being reduced at
peak greenness (Figure 4). This also points to the advantage of
monthly vs. bi-monthly variables as January and February values
would have been grouped together, reducing the signal. Natural
areas also remain green longer due to enhanced water availability
due to established root systems, and this is reflected in high
importance scores for GV variables as the season progresses.
NPV showed lower importance than GV, though January was in
the top ten for three tiles. January soil was also highly important.
Also, soil inMay, June, and July, while only in top ten importance
for the NWW tile, tended to have relatively high importance.
Hence, soil was important early in the growing season and during
the harvest season when soil may be exposed in crop areas
while natural vegetation is largely comprised of GV and NPV
(Figure 4). Shade variables were second to GV in importance,
with July and August being the most important months for four
of the tiles. At this time of the year natural vegetation would
show canopy shading due to uneven vegetation heights both
within individual plants and between neighboring plants while
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TABLE 5 | Random Forest variable importance measures for the six primary tiles, the geographical location of the tiles is shown in Figure 2.

Variable importance

Predictor variable Orig 1S 1N 1W 1NW 1NWW

GV January median 493 933 735 628 653 644

GV February median 373 703 585 471 469 519

GV March median 492 812 723 633 554 551

GV April median 494 894 736 637 594 490

GV May median 464 811 730 611 465 551

GV June median 459 877 661 556 424 589

GV July median 512 875 737 627 508 573

GV August median 438 806 672 555 538 628

GV September median 424 828 646 604 544 620

GV October median 445 816 639 623 528 609

GV November median 414 777 612 540 532 626

GV December median 442 738 630 551 546 642

NPV January median 511 845 712 609 484 514

NPV February median 356 672 573 478 457 484

NPV March median 399 676 569 556 486 504

NPV April median 388 729 601 519 481 477

NPV May median 384 801 627 522 458 524

NPV June median 412 771 599 537 412 514

NPV July median 482 746 671 580 436 496

NPV August median 402 718 660 543 460 473

NPV September median 399 705 623 507 434 509

NPV October median 406 694 591 531 418 502

NPV November median 367 644 582 530 470 511

NPV December median 401 670 600 506 463 490

Soil January median 472 791 780 613 521 521

Soil February median 456 740 679 581 468 512

Soil March median 381 647 551 520 482 545

Soil April median 377 679 574 485 465 544

Soil May median 409 651 629 550 493 598

Soil June median 403 682 617 520 457 623

Soil July median 405 685 608 517 492 501

Soil August median 376 641 585 499 445 521

Soil September median 368 684 565 441 347 520

Soil October median 338 657 552 432 339 543

Soil November median 353 603 532 429 319 616

Soil December median 380 614 578 461 341 510

Shade January median 412 763 634 544 520 592

Shade February median 380 686 595 481 538 595

Shade March median 396 685 654 555 535 503

Shade April median 411 739 581 528 449 503

Shade May median 451 728 687 563 452 577

Shade June median 420 794 628 524 475 563

Shade July median 522 903 833 693 501 570

Shade August median 563 846 813 698 498 562

Shade September median 453 804 732 613 504 590

Shade October median 444 763 651 573 500 553

Shade November median 408 681 641 571 490 572

Shade December median 422 704 667 529 496 485

GV annual maximum 455 720 648 596 464 575

(Continued)
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TABLE 5 | Continued

Variable importance

Predictor variable Orig 1S 1N 1W 1NW 1NWW

GV annual minimum 405 699 590 599 487 425

GV annual range 407 714 649 564 607 518

NPV annual maximum 383 699 604 508 455 505

NPV annual minimum 422 747 663 580 480 377

NPV annual range 422 743 618 554 499 481

Soil annual maximum 447 753 709 604 490 504

Soil annual minimum 424 801 651 566 543 371

Soil annual range 441 732 668 589 479 509

Shade annual maximum 425 720 632 577 469 549

Shade annual minimum 418 685 634 588 450 401

Shade annual range 429 747 609 560 503 523

GV refers to green vegetation and NPV is non-photosynthetic vegetation. Values in bold are the top ten most important values for each tile.

harvested crop area would be relatively flat with higher albedo.
For the remaining two tiles January was important, for similar
reasons—young crops would be too small to cast much in the way
of shadows compared to larger natural vegetation. The annual
summary variables were generally not of high importance.

Wemosaicked the maps from the individual tiles to generate a
crop area map for all of southern and central Malawi. Seam lines
were not noticeable, likely because the classification models were
accurate, so there were not differences across tile boundaries.
Table 6 presents crop area estimates for the different data sources.
Agreement in percent crop area at the district level (comparing
sets of 22 values) is high for RF, Malawi government, and Tappan
USGS data sets. R2 for fractional crop area at the district level
between RF and Malawi government is 0.74, between RF and
USGS it is 0.79, and between Malawi government and USGS it
is 0.53 (Table 6). It is interesting that the relationships between
RF and Malawi government and RF and USGS are similar,
but the relationship between Malawi government and USGS is
lower. The primary differences between the RF map and Malawi
government are possible double-counted fields and human error
in gathering data, both data sources cover the entire region.
Both RF and USGS rely on manual image interpretation to
label landcover, but RF uses all of the imagery whereas USGS
examined imagery on a 1 km grid. The Malawi government data
and USGS map have less in common. The ESA-CCI map shows
good agreement with the RF Sentinel-2map (R2 of 0.63), however
Figure 5 suggests that the ESA map systematically overpredicts
crop area in southern Malawi.

DISCUSSION

Our accuracies compare favorably with the three published
studies examining crop area in sub-Saharan African countries at
10m resolution that we are aware of Kerner et al. (2020), Tseng
et al. (2020), and Jin et al. (2019). Kerner et al. (2020) obtained
83% accuracy when classifying crop/no crop in the country of
Togo. Jin et al. (2019) obtained 85% accuracy for crop/no crop

in Kenya and Tanzania. Tseng et al. obtained 86% accuracy in
Kenya. However, our accuracy values are based on many more
samples, making them more robust.

Aside from the increase in accuracy, the main benefit of
utilizing SMA for crop area mapping is that you use the
entire electromagnetic spectrum as measured by Sentinel-2,
reprojected into a more intuitive/interpretable GV, NPV, soil,
shade data space. Jin et al. (2019) also used a suite of greenness
measures for prediction, as well as raw bands, but used additional
information on vegetation structure from radar data from
Sentinel-1. NPV and particularly shade can give information on
vegetation structure (Roberts et al., 2002). We explored the use
of Sentinel-1 data but ultimately decided against it due to some
irregularities in image registration between data from the two
sensors, and because of the presence of shadows/data gaps in
the radar data behind taller features, due to radar being side-
looking.

We chose to use TOA data rather than surface reflectance
because it allows us to do temporal analyses of crop area
over 5 years (2016–2020) rather than three (2018–2020). For
instance, 2016 and 2017 were low rainfall years in Kenya and
we could study the effect of the drought on crop area. TOA data
contain atmospheric scattering that primarily affects the visible
bands. For instance, for surface reflectance data, the blue band
(490 nm) reflectance is usually similar to red reflectance (665 nm)
for GV, whereas for TOA data there is additional blue light
(Table 2). Spatio-temporal variability in atmospheric scattering
should incur noise when using TOA vs. surface reflectance
data, however as atmospheric scattering primarily only affects
three of the ten bands it may not have had a strong effect on
EM fractions, and our classification accuracies remained high.
Other sources of noise include residual cloud contamination
and occasional geolocation errors (particularly considering the
heterogeneity of small-scale farming areas). For instance, Tremas
et al. (2015) found geolocation errors for Sentinel-2 data of
12.5m, or over 1 pixel, which could cause an agricultural area
pixel to have the EM values of a neighboring forest pixel
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TABLE 6 | Fractional crop area for each district in central (Dedza-Salima) and southern (Balaka-Mangochi) Malawi for the four reference data sets and the Sentinel-2

based analysis.

Fractional crop area per district

Government Tappan IIASA- RF

District Area (ha) Statistics USGS IFPRI ESA-CCI Sentinel-2

Dedza 371,787 0.65 0.6 0.39 0.45 0.53

Dowa 309,354 0.67 0.85 0.48 0.65 0.67

Kasungu 803,785 0.27 0.54 0.35 0.52 0.4

Lilongwe 619,355 0.6 0.76 0.39 0.63 0.64

Mchinji 314,342 0.68 0.76 0.38 0.59 0.55

Nkhotakota 436,043 0.18 0.32 0.21 0.26 0.11

Ntcheu 324,817 0.41 0.62 0.39 0.6 0.53

Ntchisi 170,980 0.64 0.73 0.50 0.58 0.53

Salima 215,985 0.29 0.64 0.21 0.36 0.42

Balaka 213,193 0.42 0.67 0.30 0.85 0.51

Blantyre 202,424 0.45 0.51 0.36 0.66 0.44

Chikwawa 488,222 0.28 0.42 0.27 0.44 0.26

Chiradzulu 76,311 1.1 0.84 0.34 0.95 0.76

Machinga 378,449 0.32 0.5 0.28 0.54 0.43

Mulanje 200,776 0.87 0.73 0.34 0.72 0.61

Mwanza 75,842 0.76 0.41 0.36 0.42 0.48

Neno 155,580 0.32 0.35 0.26 0.47 0.34

Nsanje 194,855 0.22 0.35 0.33 0.57 0.33

Phalombe 137,898 0.86 0.71 0.42 0.77 0.68

Thyolo 164,175 0.77 0.88 0.39 0.88 0.65

Zomba 253,570 0.76 0.71 0.37 0.8 0.65

Mangochi 644,604 0.42 0.47 0.23 0.45 0.29

R2 vs. G.S. 0.53 0.34 0.45 0.74

R2 vs. T.U. 0.39 0.52 0.79

R2 vs. I.I. 0.23 0.50

R2 vs. E.C. 0.63

R2 is based on comparing the two sets of 22 values. G.S. referes to Government statistics, T.U. to Tappan USGS, I.I. to IIASA-IFPRI, and E.C. to ESA-CCI.

at certain timesteps, affecting monthly median and annual
summary values.

Fritz et al. (2015) state that the global overall accuracy of the
IIASA-IFPRI map is 82.4%, but it appears to be less accurate
in Malawi, as the range in values is less than the other maps,
and agreement at the district scale was low. Our finding that the
IIASA-IFPRI map differed from the three other reference data
sets and our classification map is in line with the findings of
Samasse et al. (2018). They compared eight landcover maps in
West African countries, and found that the coarser resolution
maps, including IIASA-IFPRI, performed much worse than 30m
maps using Landsat data. Interestingly, the ESA-CCI 20m map,
using Sentinel-2 data, also performed worse than the Landsat-
based maps with accuracies 10–40% points lower. Samasse et al.
(2018) suggested the techniques and West Africa training data
used in the ESA-CCI product needed to be re-examined. Alkhalil
et al. (2020) also evaluated the ESA-CCI map in West Africa.
They found extremely low producer’s accuracies (over-prediction
of crops) for three polygons in the Sahel (0.07, 0.34, 0.03) and
less, but still some over-prediction for three polygons closer to

the coast (producer’s accuracies of 0.61, 0.72, 0.56), leading them
to declare the ESA-CCI product was not an acceptable cropmask.
Our research also showed overprediction of crop area by ESA-
CCI when compared with the RF Sentinel-2 map, particularly in
southern Malawi (Table 6, Figure 5).

RF are known as a greedy classifier, hence, a large number of
manually interpreted points were identified—a total of 20,848.
For comparison to other studies, central and southern Malawi
comprise 6,752,347 ha. Kerner et al. (2020) mapped percent crop
area in Togo (5,678,500 ha) using a different algorithm and hence,
a fraction of the reference data-−1,319 crop or no crop points
from within the country, and a global data set of 35,866 crop/no
crop points. Tseng et al. (2020) used a similar algorithm and
the same global 35,866 points, as well as 14,080 crop/no crop
points for the much larger country of Kenya (58,036,700 ha). Jin
et al. (2019) used RF to map crop/no crop in both Kenya and
Tanzania (94,730,300 ha), 4,509 points were identified in Kenya,
and 4,140 in Tanzania. The country areas are much larger than
that of Malawi; however, the agricultural portion of the countries
is much smaller than these numbers, making the comparison
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FIGURE 5 | Fractional crop area compared for the RF Sentinel-2 map and the

ESA-CCI map. The ESA-CCI map overpredicts crop area by 10–20% for many

of the districts in southern Malawi.

less straightforward, because large parts of each country could be
excluded as potentially arable. In fact, latitude and longitude were
included as predictor variables in Jin et al. (2019). Furthermore,
it is not known exactly how many fewer points would have
been needed if our analysis had been crop/no crop instead of
crop, sparse, shrub, tree, and water. Another factor is we used
roughly 50% of the data for training, 50% for testing while Jin
et al. (2019) and Kerner et al. (2020) trained on 80% of the data
and Tseng et al. (2020) trained on 90% of the data. Hence, they
leveraged their points differently, and had fewer points for robust
accuracy assessment. While our method may be less efficient
and/or an excessive amount of reference points may have been
identified, our accuracies are based on far more data points,
which increases confidence.

This study generated a crop area map for southern and central
Malawi with very high crop/no crop classification accuracies
between 87 and 93%. The approach combined some of the oldest
(air photo interpretation) and newest (cloud computing) remote
sensing techniques. Overall, we find the results presented here
to be a promising result for the potential to use GEE and RF
algorithms to produce high-quality cropped area estimates for
smallholder farms in rainfed agriculture regimes. EM phenology

predictor variables and variable importance measures combine
to produce interpretable, non-“black box” results. Accuracies for
the two most populous classes, crop and shrub, are based on
50% of the reference data points so are extremely robust. A
more accurate assessment of the cropped area in a region can
help better understand the dynamics impacting food production
and food security in vulnerable regions of sub-Saharan Africa.
The method can be repeated using the same training data to
perform the classification over multiple years which would be
useful for the identification of changing landscape dynamics and
for seasons when weather, agricultural inputs (seeds or fertilizer),
or labor impacted the amount of cropped area for a particular
season, over a region, relatively simply. The results presented here
can also be utilized to develop an agricultural mask that can be
used to better focus agroclimatic analysis over wide areas. All
these different benefits could have a positive impact on the ability
to anticipate, assess, and mitigate the impacts of cropped area on
food security over sub-Saharan Africa.
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