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This paper shows that skillful week 3–4 predictions of a large-scale pattern of 2 m

temperature over the US can be made based on the Nino3.4 index alone, where skillful

is defined to be better than climatology. To find more skillful regression models, this

paper explores various machine learning strategies (e.g., ridge regression and lasso),

including those trained on observations and on climate model output. It is found that

regression models trained on climate model output yield more skillful predictions than

regression models trained on observations, presumably because of the larger training

sample. Nevertheless, the skill of the best machine learning models are only modestly

better than ordinary least squares based on the Nino3.4 index. Importantly, this fact is

difficult to infer from the parameters of the machine learning model because very different

parameter sets can produce virtually identical predictions. For this reason, attempts

to interpret the source of predictability from the machine learning model can be very

misleading. The skill of machine learning models also are compared to those of a fully

coupled dynamical model, CFSv2. The results depend on the skill measure: for mean

square error, the dynamical model is slightly worse than the machine learning models;

for correlation skill, the dynamical model is only modestly better than machine learning

models or the Nino3.4 index. In summary, the best predictions of the large-scale pattern

come from machine learning models trained on long climate simulations, but the skill is

only modestly better than predictions based on the Nino3.4 index alone.

Keywords: machine learning, ridge regression, lasso, subseasonal prediction, week 3–4, ENSO

1. INTRODUCTION

This paper concerns predictions out to weeks 3–4. Such predictions differ from weather forecasts
(i.e., predicting individual days) in that they forecast the mean over a 2-week period instead of
individual days. In this sense, week 3–4 forecasts are similar to seasonal forecasts in that both
involve predicting the mean weather over an interval longer than a week.

Several predictors have been identified as having the potential to be a source of predictability
in a week 3–4 forecast. A dominant source of predictability (especially in winter) are the
ocean-atmosphere interactions, especially the effects of ENSO and the Madden-Julian oscillation
(MJO) (e.g., Shukla and Kinter, 2006). These tropical phenomena are associated with anomalous
convective heating in the atmosphere, which excites Rossby waves that can influence weather
over North America. Alternatively, in the winter sudden stratospheric warming events can cause
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anomalous temperatures throughout the atmosphere that last for
weeks. At the surface, this temperature signal can persist for up to
a month (Baldwin et al., 2021). Snow cover and the top meter of
soil moisture last for weeks after precipitation events and can be a
source of influence for temperature and precipitation over those
weeks (e.g., Sobolowski et al., 2007; Guo et al., 2011). Individual
high impact events such as volcanic eruptions, while much rarer,
can also provide a source of long lasting predictability (National
Research Council, 2010). Not all of these variables will necessarily
be able to be used in all places or at all times, but many of
them might be able to be a source of predictability on week 2–8
time scales.

The Climate Prediction Center (CPC) currently issues an
operational week 3–4 temperature forecast over the Contiguous
United States (CONUS). This forecast is made from several
sources, including forecasts made by SubX dynamical models
(Pegion et al., 2019), forecaster experience, and a statistical model
which is based in part on the phase of ENSO, the phase of the
MJO, and the multi-decadal trend—all of which are calculated
from 30 years of reanalysis data (Johnson et al., 2014).

By far the strongest source of sub-seasonal predictability over
North America comes from Pacific sea surface temperatures
(SSTs), particularly those associated with El Niño. In the 1970s
and 1980s, SST indices (called Nino 1–4) were established to
represent the state of El Niño. These indices were chosen at least
in part by convenience—these areas corresponded with common
ship routes and arrays of observational buoys such as the TAO
array (McPhaden et al., 2010) where SST data was readily
available. In the late 1990s, the Nino3.4 index was identified as
being the most representative of ENSO as a whole (Barnston
et al., 1997). While regression predictions based on the Nino3.4
index can make skillful subseasonal forecasts over CONUS, this
is not necessarily the index that optimizes these forecasts.

Recently, NOAA partnered with the Bureau of Reclamation
to run public forecast competitions in 2016 and again in 2019
(see https://www.usbr.gov/research/challenges/forecastrodeo.
html). The winner of the 2016 competition (Hwang et al., 2019)
used machine learning with predictors taken from observations
of a number of variables as well as long range forecasts made by
the North American Multi-Model Ensemble.

The goal of this paper is to see if there is another source of
week 3–4 predictability from SSTs or a better tropical Pacific
index which can optimally capture subseasonal predictability.We
will be using only SST data as predictors, so we expect to find
the largest signal to be from ENSO. However, because we are not
limiting our prediction to the ENSO indices, we hope to be able
to find more than what the ENSO indices alone can tell us.

To identify better predictors, we used machine learning
techniques called lasso and ridge regression. Ridge regression
was originally designed to solve the problem of singular matrices
caused by nearly collinear predictors. On the other hand, lasso
was derived by Tibshirani (1996) to combine two features.
The first is prediction accuracy. Lasso shrinks the predictors
and sets some of them to exactly zero. Shrinkage is known to
increase the skill of a prediction made with many predictors
by reducing the variance of the prediction (Copas, 1983). The
second feature is interpretation. Since lasso sets some predictors

to exactly zero, that gives us the chance to interpret the
remaining predictors.

In making a forecast for observations, we trained lasso and
ridge regression on observational data and were able to make
a prediction with some skill (see section 4). However, there is
always the risk of overfitting and artificially increasing the skill of
the prediction when training and predicting the same data set. An
alternative approach that avoids this risk is to train on dynamical
model data and then test on independent observations. This gives
us a larger sample size and also allows us to test if dynamical
models can capture predictive relations. The dynamical models
that were used come from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) PreIndustrial Control runs. These runs
are simulations where the external forcing (e.g., CO2 levels,
aerosols, or land use) is prescribed to be what they were in 1850
and persist for each year after that. PreIndustrial Control data is
used both because of the abundance of models which produce
this kind of control data and to avoid confounding trends
produced by external forcing. Ridge regression and lasso would
pick up on externally forced trends to make a prediction, but
we are trying to make a prediction based on internal dynamics.
While forecasting based on external forcingmay be an interesting
topic to explore, this paper is focusing on using only internal
dynamics to make forecasts. Despite PreIndustrial Control runs
being forced with the external forcing from 1850, it has been
shown that changes 2 m temperature teleconnections due to
external forcing are small (DelSole et al., 2014).

2. DATA

2.1. Laplacian Eigenvectors
As discussed earlier, SST influences sub-seasonal temperature
over CONUS primarily through Rossby wave teleconnection
mechanisms. Such waves are well-established in midlatitudes
after about 15 days of tropical heating (Jin and Hoskins, 1995).
Furthermore, the structure of the midlatitude response is largely
insensitive to the longitudinal position of the heating anomaly
(Geisler et al., 1985). As a result, the predictable relation
between SST and midlatitude temperature is anticipated to
be characterized by only a few large-scale patterns. Therefore,
instead of individual grid points, we predict large-scale spatial
structures of CONUS 2 m temperature. A convenient set of
large-scale patterns are provided by the eigenvectors of the
Laplace operator, called Laplacians in this paper. Laplacians are
an orthogonal set of patterns ordered by spatial length scale.
On a sphere, Laplacians are merely the well-known spherical
harmonics. For the CONUS domain, we use the algorithm of
DelSole and Tippett (2015) to derive the Laplacians. The first
few Laplacians over CONUS is shown in Figure 1. Because the
predictable space is anticipated to be low-dimensional, not all
of the Laplacian eigenvectors are anticipated to be predictable.
We predicted each of the Laplacians separately and found that
only the third CONUS Laplacian could be predicted skillfully.
This result is consistent with the fact that this Laplacian projects
strongly onto the ENSO signal over CONUS (e.g., Higgins
et al., 2004) and looks like the most predictable pattern in the
dynamical model CFSv2, which is shown in Figure 8 of DelSole
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FIGURE 1 | Laplacian eigenvectors 2–7 over CONUS. The first Laplacian eigenvector is not shown as that is simply the spatial average over the domain.

et al. (2017). For these reasons, the 3rd Laplacian eigenfunction
is referred to as the “ENSO-forced temperature pattern,” and the
projection of 2 m temperature on this pattern is the predictand
in this study. The ENSO-forced temperature pattern represents
12.4% of the variance of the 2-week mean 2 m Temperature
anomalies over CONUS. Although the Laplacians are large scale,
individual patterns are not necessarily associated with definite
climate signals. Incidentally, it is entirely possible that using
predictors other than SSTs could lead to a different Laplacian
being predictable, or multiple predictable Laplacians.

2.2. Data
The observational data used in this study is daily 2m temperature
as well as observed daily SSTs produced by the CPC for the
period 1981 to 2018. Both data sets are provided by the Earth
Systems Research Laboratory Physical Sciences Division (ESRL
PSD), Boulder, Colorado, USA and are available on their website
(https://www.esrl.noaa.gov/psd/). The domain of interest for 2 m
temperature is land points within 25◦ to 50◦N and 125◦ to 67◦W,
which, although not exactly CONUS, is referred to as CONUS in
the remainder of this paper. Two SST domains were considered

for this study—the Tropical Pacific (25◦S to 25◦N and 125◦E to
60◦W) and the Atlantic plus Pacific (30◦S to 60◦N and 125◦E
to 8◦W).

We also used SSTs from 18 CMIP5 models with PreIndustrial
Control forcing to train the machine learning algorithms. We
included a model only if it had at least 100 years of daily data
output. See Table 1 for the list of the models used as well as the
length of each model run.

Since our goal is to find a better predictor than the Nino3.4
index, we choose a region much larger than the Nino3.4 region
and let the optimization algorithm choose the best predictors. If
the chosen domain is “too large” and a more localized domain
is better, then lasso/ridge regression has the flexibility to choose
grid points in just that domain.

2.3. Pre-processing
The 2 m Temperature data was interpolated onto a 2.5 × 2.5
degree grid and projected onto the third CONUS Laplacian (see
section 2.1) and the SST data onto a 4×4 degree grid. In order to
account for the seasonal cycle, the first three annual harmonics
of daily means were regressed out of each data set. To account
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TABLE 1 | List of the CMIP5 models used and the corresponding length of the

daily dataset, in years.

Name of model Number of years

CCCma.CanESM2 200

CNRM-CERFACS.CNRM-CM5 105

CSIRO-BOM.ACCESS1-0 125

INM.inmcm4 110

IPSL.IPSL-CM5A-LR 200

IPSL.IPSL-CM5A-MR 120

IPSL.IPSL-CM5B-LR 300

MIROC.MIROC4h 100

MIROC.MIROC5 110

MIROC.MIROC-ESM 211

MIROC.MIROC-ESM-CHEM 255

MPI-M.MPI-ESM-LR 110

MPI-M.MPI-ESM-P 106

MRI.MRI-CGCM3 110

NCC.NorESM1-M 401

NOAA-GFDL.GFDL-CM3 105

NOAA-GFDL.GFDL-ESM2G 105

NOAA-GFDL.GFDL-ESM2M 105

for any trends, a third-degree polynomial was regressed out of
each data set. Finally, the predictors (SSTs) were normalized such
that the sum of the variance of all of the predictors equals 1
and the CONUS predictand was normalized to unit variance in
time. This was done in order to minimize the effect of amplitude
errors across dynamical models when making a prediction.
Observations and CMIP5 dynamical model data were processed
the same way.

2.4. Time Definitions
The predictand in this study is a 2 week mean of 2 m temperature
anomalies over CONUS. The predictor is a 1 week mean of sea
surface temperature anomalies (SST), which ends 2 weeks before
the 2 week period we want to predict begins. To put another way,
if today is day 0, the SSTs were averaged from day −7 to day 0 to
construct the initial condition, and then we predict the average
of day 14 through day 28 CONUS temperature. SSTs evolve on a
much slower time scale than the atmosphere, so there is almost
no difference between a 1-week and 2-week average. Also, our
target is 2-week means, so averaging longer than 2 weeks would
prevent us from capturing predictability that varies between 2-
week means. The time period examined is boreal winter, defined
as predictions made in December, January, and February (DJF).

2.5. Nino3.4 Index
TheNino3.4 index is defined as the average of the region bounded
by 5◦N to 5◦S, and from 170 to 120◦W. The annual cycle and
trends were removed from the Nino3.4 index in the same way as
the rest of the data, described in section 2.3, and averaging in time
described in section 2.4. To calculate the regression coefficient for
the Nino3.4 index we used leave 1 year out ordinary least squares.
That is, one winter of data was left out, and from the remaining

data the regression coefficient for that year was calculated using
ordinary least squares.

2.6. Dynamical Model Data - CFSv2
The question arises of how our machine learning method
compares to a dynamical model. To answer this question we
compared the skill of machine learning models to the skill of
a fully coupled dynamical model. The model we chose was
the NCEP CFSv2 model, an operational forecast model and a
contributing member of the SubX dataset (Pegion et al., 2019).
The SubX data is freely available on their website (http://iridl.
ldeo.columbia.edu/SOURCES/.Models/.SubX/). The hindcast is
available from January 1, 1999 to December 31, 2015. The
hindcast is initialized daily, and each initialization is run for
45 days. Anomalies of the hindcast are precomputed, with the
climatology calculated as a function of lead time and initialization
date, as described in Appendix B of Pegion et al. (2019). To
calculate the skill of this model, we projected the forecasts
of 2 m temperature onto the Laplacians (described in section
2.1), averaged over weeks 3–4 for each prediction made in DJF,
corrected amplitude errors by using leave 1 year out ordinary
least squares, and calculated the Mean Squared Error (described
in section 3.2) and correlation skill relative to the observations
(described in section 2.2).

3. METHODS

3.1. Machine Learning Technique - Lasso
and Ridge Regression
Our prediction equation is

ŷf =

P
∑

p=1

xfpβp + β0, for f = 1, 2, . . . F (1)

where ŷf is the forecasted (anomalous) time series of the ENSO-
forced temperature pattern (i.e., the 3rd Laplacian eigenvector
over CONUS) at the f th forecast, xfp is the time series of the pth

SST grid point at the f th forecast, βp is a weighting coefficient

connecting the pth SST grid point’s time series to the ENSO-
forced temperature pattern, and β0 is the intercept term. The
set of βp is referred to as “beta coefficients” in the remainder of
this paper.

To estimate β in Equation (1), we used machine learning
algorithms called lasso and ridge regression. For an excellent
description of lasso and ridge regression and their differences, we
recommend the textbook by Hastie et al. (2009). Lasso minimizes
the equation

F
∑

f=1

(

yf − ŷf
)2

+ λ

P
∑

p=1

|βp|. (2)

Similarly, ridge regression minimizes the equation

F
∑

f=1

(

yf − ŷf
)2

+ λ

P
∑

p=1

(

βp

)2
. (3)
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In both cases the variables are the same as Equation (1), F is
the number of forecasts, P is the number of predictors, yf is the
true time series of the ENSO-forced temperature pattern at the
f th forecast and λ is an adjustable parameter. βp is embedded in
ŷf . β0 is not included in the summation in the second term of
Equations (2) and (3).

The result of using either technique is a set of βs as a function
of λ. There is a question of model selection—which λ do we
choose? A standard method of choosing λ will be presented;
however this standard method is not optimal in this study and
we adjusted the method slightly to better fit with the rest of our
method. This will be presented in section 3.5.

One of lasso’s properties that we hope will be useful for
interpretation is that at sufficiently large λ all of the βs will be
exactly zero, while at sufficiently small λ β will converge to the
Ordinary Least Squares solution for β . In between, some of the
βs will be exactly zero. One way to interpret this is that those
predictors associated with the zero βs are not as important as
the other predictors when making a prediction. So we might be
able to “pick out” the most important 3 or 4 predictors for our
prediction. One caveat is that if several predictors are strongly
correlated, lasso will only pick a few predictors and will set the
coefficients of the remaining predictors to zero. This could lead
to a strong sample dependence in the selection of predictors.

Ridge regression, unlike lasso, does not set the coefficients
of any predictors to zero—all predictors are included. If several
predictors are strongly correlated with each other, all of those
predictors are selected but with a smaller amplitude than the
amplitude of the one predictor that would be selected by
lasso. This can make interpretation much more difficult for
Ridge regression.

3.2. Measure of Skill - Normalized Mean
Squared Error
To measure the skill in predicting the ENSO-forced temperature
pattern, the Normalized Mean Squared Error (NMSE) is
calculated as

NMSE(λ) =

∑F
f=1

(

yf − ŷf
)2

∑F
f=1

(

yf − ȳ
)2

, (4)

where the variables are the same as in Equations (1)–(3) and
ȳ is the climatological mean temperature over the period in
question. A Normalized Mean Squared Error of less than 1
means that the statistical model is a better prediction than the
climatological mean, while a Normalized Mean Squared Error of
greater than 1 means that it is worse than a prediction based on
the climatological mean. Normalizing by the climatological mean
offers a standard model-independent measure of comparison.
Because the βs are a function of λ the NMSE is likewise evaluated
over that range of λ. Since NMSE penalizes amplitude errors,
we consider an alternative skill measure based on the anomaly
correlation (also called the cosine-similarity):

cor(λ) =

∑F
f=1(yf − ȳ)(ŷf − ¯̂y)

√

∑F
f=1(yf − ȳ)2

√

∑F
f=1(ŷf −

¯̂y)2
, (5)

where all variables are the same as in Equation (4) and ¯̂y is the
mean predicted temperature.

Not only are we are trying to make predictions which are
better than climatology, we are trying to improve on the current
state of subseasonal predictions. Although the details differ
somewhat, the Climate Prediction Center uses the Nino3.4 index
as part of their statistical guidance when making a week 3–4
or week 5–6 forecast (Johnson et al., 2014). We are trying to
see if there is a better index for making predictions of CONUS
compared to the standard Nino3.4 index. To find the skill of
the Nino3.4 index, we calculated its NMSE following Equation
(4), where x is the observed time series of the index and β was
calculated using leave 1 year out ordinary least squares.

3.3. NMSE Confidence Intervals -
Bootstrap Test
To test whether the NMSE from a particular prediction model
is significantly different from a prediction based on climatology
(which has a NMSE of 1) we used the bootstrap test. To perform
this test, we randomly sampled the errors of the 37 winters
with replacements. We do this 10,000 times to estimate the
distribution of the errors. The 5th and 95th percentiles of the
distribution are the confidence intervals at the 5% level. If these
confidence intervals do not include 1, then the prediction is
significantly different from a prediction based on climatology.
Because predictions made by ridge and lasso are potentially very
different, each prediction is tested individually.

3.4. Cross Model and Multi-Model
Comparison
Because the SST grid is the same across all regression models,
the βs calculated from one data set can be used to make a
prediction in another. In particular, because we are interested in
predicting observations, we can use the βs estimated from the
CMIP5models to predict observations. Rewriting Equation (4) to
reflect this gives a Normalized Mean Squared Error equation of:

NMSE(λ) =

∑F
f=1

(

yf ,obs −
∑P

p=1

(

xfp,obsβp,model

)

)2

∑F
f=1

(

yf ,obs − ȳobs
)2

, (6)

where the variables are as in Equation (4) except that the βs
are now calculated from the dynamical models instead of from
observations. Subscripts indicate that x and y are the observed
SSTs and CONUS temperatures, respectively.

Doing this allows us to make a prediction without worrying
about overfitting because the prediction is made on a data
set which is completely independent from observations. If a
prediction was trained on observations and then also validated in
observations, there would be some worry about overfitting due to
using the data twice.

Given the success of ensembles in forecasting (e.g., Slater
et al., 2019) and the number of different dynamical models that
we used, we might want to consider a way to use all of the
model data at once. There are several ways to do this, but we
simply concatenated the time series of each of the dynamical
models and let lasso find the βs of that time series. Then the
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Normalized Mean Squared Error is calculated as in Equation (6),
where βp,model refers to the βs calculated in this way. In the rest
of the paper, a prediction made in this way is referred to as the
multi-model prediction.

3.5. Choosing λ
Because the NMSE is a function of λ, we need a criterion for
choosing λ. The standard method of choosing the λ is to perform
a 10-fold cross-validation on the whole data set which produced
β (Hastie et al., 2009). This is designed to give an estimate of the
out-of-sample error. In our case, the data set that produced β

(model data) is completely independent from the data set that we
want to evaluate (observations). However, the machine learning
models trained on climate model simulations are completely
independent of observations, so a different selection criterion is
needed. Here, we simply leave 1 year out, calculate NMSE as a
function of lambda, and then select the lambda for that year using
the “one standard error rule” discussed in section 7 of Hastie et al.
(2009). After the lambda is selected for each year, a prediction
is made based on that corresponding betas and the NMSE is
computed over the 37-year predictions. This means that each
year could have a different λ selected. Practically, however, there
is little difference in the λ from year to year, so the prediction
models for each year are almost identical.

Both the machine learning predictions and the Nino3.4 index
involve a parameter that is estimated by leaving out the same
data (that is, both the machine learning λ and the Nino3.4
regression coefficient for each winter were estimated by leaving
out that winter and using the rest of the data for the calculation).
Because of this, comparing the machine learning prediction to
the Nino3.4 prediction will be as fair as possible—if there is an
extreme anomaly in 1 year neither prediction method should
have an advantage based on their coefficient selection.

3.6. Measure of Skill - Random Walk Test
We are interested in improving predictions, but comparisons
based on NMSE or correlations have low statistical power, as
discussed in DelSole and Tippett (2014). This low power means
that it will be very difficult to identify statistically better forecasts
merely by comparing NMSE or correlation. Accordingly, we
apply a more powerful test. Specifically, we use the RandomWalk
test of DelSole and Tippett (2016). To do this test, we simply have
to count the number of times our selected model has smaller
squared error than a forecast based on the Nino3.4 index. To
avoid serial correlations, we count only those forecasts starting
on the same calendar day, so each forecast included in the count
are separated by at least 1 year. For example, of the 37 forecasts
made on January 1, we count how many of our forecasts had a
smaller NMSE than the forecasts from the Nino3.4 index made
on January 1, likewise for January 2 and so on. The resulting
percentages are then plotted as a function of the calendar day
of the initial condition. The 95% confidence intervals for each
point are based on the binomial distribution and are exact for
each particular date.

Looking at all 90 points at once might give us an idea of when
in the winter the machine learning can make a better forecast
than the Nino3.4 index. Although the forecasts that are made

on a particular date are independent, the 37 forecasts made on
January 1, for example, will be highly correlated with the 37
forecasts made on January 2. Due to this serial correlation the
95% confidence intervals will underestimate the uncertainty of
this analysis. However, it may still give us a good idea of when
the machine learning model is able to improve upon the Nino3.4
index and when it cannot.

4. RESULTS

4.1. Tropical Pacific, Grid Point Predictors
The Nino3.4 index has a NMSE of 0.889 when predicting the
third Laplacian of CONUS 2 m temperature. While we do define
skillful to be better than climatology, since the Nino3.4 index has
lower error than climatology, our real bar is Nino3.4.

The skill of predicting the ENSO-forced temperature pattern
at weeks 3–4 using various regression models is shown in
Figure 2A. As can be seen, ordinary regression based on the
Nino3.4 index outperforms the machine learning techniques
trained on observations. In fact, predictions made when
observations are used to train the machine learning are not
even significantly better than a prediction based on climatology.
Training the machine learning techniques on long CMIP5
model simulations is significantly better than a prediction based
on climatology, which suggests that while machine learning
techniques can produce skillful predictions, the short sample size
of the observations strongly limits their skill. Training on the
CMIP5 model simulations has a slightly lower error than the
prediction based on the Nino3.4 index. Whether this difference
is statistically significant will be investigated shortly.

It is instructive to also compare the skill of the predictions
made by machine learning with the skill of a fully coupled
dynamical model. The NMSE of the CFSv2 dynamical model,
presented as the first bar in Figure 2A, is actually slightly less
skillful than the predictions made by the machine learning
algorithms. This is likely due to amplitude errors, as the CFSv2
prediction has the largest correlation with the ENSO-forced
temperature pattern (shown in Figure 2B), albeit by a relatively
small margin.

To assess significance of differences in skill, we apply the
random walk test described in section 3.6. Some representative
results are shown in Figure 3. Some predictions are no better
than a Nino3.4 index (Figure 4C), while others are significantly
better than those based on Nino3.4 index, but only for short
periods (Figures 4A,B). No prediction is significantly better than
Nino3.4 for every calendar day. Accordingly, we say that some of
the ML predictions are “modestly” better than predictions based
on the Nino3.4 index.

Figure 4 shows the β coefficients associated with the ridge
regression prediction and the lasso prediction, respectively. As
can be seen, the spatial maps can differ greatly. Nevertheless,
they yield very similar predictions (e.g, the correlation with
the Nino3.4 index exceeds 0.9 in most cases). This illustrates
a problem with physically interpreting the β coefficients: very
different maps of β coefficients can produce virtually identical
predictions. One reason for this is that highly correlated
predictors (e.g., SST grid point values) can be summed in
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FIGURE 2 | (A) Cross-validated normalized mean squared errors of predictions of the ENSO-forced temperature pattern, and (B) the associated correlation skills for

the following models (from left to right): CFSv2 hindcast; ordinary least squares based on the Nino3.4 index; ridge regression trained on observed SST; lasso

regression trained on observed SST; ridge regression trained on CMIP5 model simulations; lasso regression trained on CMIP5 model simulations. The validation time

period for the CFSv2 hindcast is 1999–2015. The validation time period for the empirical models (right 5 bars) is 1981–2018. The empirical models only use tropical

Pacific SST grid points as predictors. Error bars show the 5% and the 95% levels, calculated using a bootstrap method.

different ways to produce nearly the same prediction. Another
reason is that the variance of different spatial structures can differ
by orders of magnitude, so a relatively large β coefficient can be
multiplied by a low-variance structure and have negligible impact

on the final prediction. An extreme example of this is contrived
in section 4.2. Both factors imply that the final β coefficients
obtained by lasso or ridge regression can be highly dependent
on the training data, yet still produce nearly the same prediction.
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FIGURE 3 | Percentage of times ML predictions are closer to observations than predictions using the Nino3.4 index. The percentage is plotted as a function of the

calendar day of the initial condition. Only predictions starting on the same calendar day are used to calculate percentages. For each calendar day, there are 37

predictions, one for each of the 37 years. The different panels show results for the following predictions: (A) Tropical Pacific Laplacians using lasso, (B) Tropical Pacific

grid points using ridge, (C) Tropical Pacific grid points using lasso, (D) Atlantic plus Pacific Laplacians using lasso. Points above the red line indicate initial conditions

when a prediction made with machine learning is significantly better (at the 5% level) than a prediction made with the Nino3.4 index. Points below the black line

indicate initial conditions when predictions made with the Nino3.4 index are significantly better than predictions from ML. Panels (A,B) are both moderate

improvements on the Nino3.4 index, (C) is statistically indistinguishable from the Nino3.4 index, and (D) is significantly worse than the Nino3.4 index.

Given this, we believe physical interpretation of the β coefficients
alone can be very misleading.

It is interesting to note that for the same training data (i.e.,
the same CMIP5 model), the grid points selected by lasso tend to
be near local extrema of the β coefficients from ridge regression.
Figures 5, 6 show the β patterns associated with lasso and ridge
regression, respectively, for each of the 18 contributing models as
well as the final multi-model used for the prediction. To make
these figures, the lambda in each case was set to the multi-
model value of lambda. Comparing Figure 5 and Figure 6, in
general the grid points which ridge regression has assigned the
largest amplitude are also the grid points which lasso selected.

For example, panel a of Figure 5 shows the spatial pattern of
the prediction for the CanESM model when lasso was used. In
this plot, the selected grid points are to the northeast and to the
south of the Nino3.4 index, as well as two points in the Nino3.4
region. Similarly, panel a of Figure 6 shows the spatial pattern of
the CanESM prediction using ridge regression. Although every
grid point has a non-zero amplitude using ridge regression, the
amplitude of the same locations selected by lasso is relatively
large. Each model’s correlation with the Nino3.4 index is also
similar between the two machine learning algorithms. From
a physics perspective, the patterns chosen by ridge regression
would be considered more physically realistic since it is the
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FIGURE 4 | The β coefficients selected by various machine learning algorithms. Titles of the individual panels indicate the domain, basis set, machine learning

algorithm used, and the correlation between the resulting prediction and the Nino3.4 index. The black boxes indicates the Nino3.4 index. (A) Pac. grid points ridge

rho = 0.96. (B) Pac. grid points LASSO rho = 0.92. (C) Pac. EOFs ridge rho = 0.53. (D) Pac. EOFs LASSO rho = 0.98. (E) Alt+Pac. EOFs ridge rho = 0.78.

(F) Alt+Pac. EOFs LASSO rho = 0.94. (G) Alt+Pac. Lap ridge rho = 0.92. (H) Alt+Pac. Lap LASSO rho = 0.93. (I) Pac. Lap ridge rho = 0.94. (J) Pac. Lap LASSO

rho = 0.95. (K) Pac. weighted Lap ridge rho = 0.96. (L) Pac. weighted Lap LASSO rho = 0.96.

Frontiers in Climate | www.frontiersin.org 9 August 2021 | Volume 3 | Article 697423

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Buchmann and DelSole Subseasonal Prediction Using Machine Learning

FIGURE 5 | The β coefficients selected by lasso for predicting week 3–4 ENSO-forced temperature pattern using grid points in the Tropical Pacific. The black boxes

indicates the Nino3.4 index. Red model names indicate the models that individually had a minimum NMSE greater than 1. (A) CanESM2 rho= 0.81. (B) CNRM-CM5

rho = 0.6. (C) ACCESS1-0 rho = 0.71. (D) inmcm4 rho = −0.19. (E) IPSL-CM5A-LR rho = 0.84. (F) IPSL-CM5A-MR rho = 0.72. (G) IPSL-CM5B-LR rho =0.92.

(H) MIROC-ESM rho = −0.44. (I) MIROC-ESM-CHEM rho = −0.53. (J) MIROC4h rho = 0.73. (K) MIROC5 rho = 0.85. (L) MPI-ESM-LR rho = 0.36. (M)

MPI-ESM-P rho = 0.76. (N) MRI-CGCM3 rho = 0.91. (O) NorESM1-M rho = 0.95. (P) GFDL-CM3 rho = 0.87. (Q) GFDL-ESM2G rho = 0.78. (R) GFDL-ESM2M

rho = 0.92. (S) Multi-model rho = 0.92.
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FIGURE 6 | The β coefficients selected by ridge regression for predicting week 3–4 ENSO-forced temperature pattern using grid points in the Tropical Pacific. The

black boxes indicates the Nino3.4 index. Red model names indicate the models that individually had a minimum NMSE greater than 1. (A) CanESM2 rho= 0.91.

(B) CNRM-CM5 rho = 0.83. (C) ACCESS1-0 rho = 0.91. (D) inmcm4 rho = −0.46. (E) IPSL-CM5A-LR rho = 0.92. (F) IPSL-CM5A-MR rho = 0.86. (G)

IPSL-CM5B-LR rho =0.97. (H) MIROC-ESM rho = 0.57. (I) MIROC-ESM-CHEM rho = 0.32. (J) MIROC4h rho = 0.89. (K) MIROC5 rho = 0.94. (L) MPI-ESM-LR

rho = 0.1. (M) MPI-ESM-P rho = 0.82. (N) MRI-CGCM3 rho = 0.96. (O) NorESM1-M rho = 0.96. (P) GFDL-CM3 rho = 0.93. (Q) GFDL-ESM2G rho = 0.85. (R)

GFDL-ESM2M rho = 0.94. (S) Multi-model rho = 0.96.
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large scale processes that are able to set up teleconnections. This
is one situation where ridge regression may actually be more
interpretable than lasso.

In these figures, there are models that are unable to produce a
statistical model with a NMSE less than 1 for any λ—that is, using
lasso or ridge regression they are unable to make a better week 3–
4 prediction in observations compared to observed climatology.
Those models also have a negative correlation with the Nino3.4
index. Using lasso, this applies to the inmcm4 and MIROC-ESM
models (Figures 5 D,H). Using ridge regression, this applies to
the inmcm4 model (Figure 6D).

The analysis presented here could, with further refinement, be
used as a new kind of diagnostic for model output. For instance,
we found that machine learning models trained on inmcm4 and
MIROC-ESM had no skill in predicting the ENSO-forced pattern
for any choice of λ, in contrast to other CMIP5 models. In the
model description of its climatology for each of the two models
[see Volodin et al. (2010) for the inmcm4 model and Watanabe
et al. (2011) for the MIROC-ESM model], the authors point out
that their simulated annual SSTs are similar to other climate
models. Additionally, a statistical analysis of the variance and
correlation of individual CMIP5models’ El Niño teleconnections
done by Weare (2013) indicates that these models performed
comparably to other CMIP5 models. Ordinarily, the lack of sub-
seasonal forecasts from dynamical models wouldmake validation
impossible, but here we use model output as training data
for subseasonal predictions, which yields a kind of proxy for
subseasonal forecasts that can be validated against observations
without explicitly creating initialized subseasonal forecasts from
these dynamical models.

4.2. Tropical Pacific, EOF Predictors
Since the above forecasts are only modestly better than the
Nino3.4 index, we explore alternative predictors, particularly
EOFs. The first EOF has a correlation of 0.98 with the Nino3.4
index, so in theory the regression model should be able to use
the other EOFs to make a better prediction than the Nino3.4
index alone.

Using the Tropical Pacific EOFs to make a prediction, lasso’s
prediction is just the first EOF. It has a NMSE of 0.894
and its random walk test is not shown but is like Figure 3C

(indistinguishable from a prediction made with the Nino3.4
index). Ridge regression does select a larger amplitude for the first
EOF but includes all of the rest as well. The result of this is a low
correlation with the Nino3.4 index (ρ = 0.53), a NMSE of 0.936
(worse than the Nino3.4 index’s NMSE) and a random walk test
like Figure 3D (a worse prediction than the Nino3.4 index for the
entire month of December).

Although ridge regression’s β spatial pattern (Figure 4C)
looks nothing like the Nino3.4 index and its correlation confirms
the dissimilarity, we cannot conclude just by visual inspection
that this will be a poor predictor. To illustrate the problem with
visual inspection of beta coefficients, we artifically construct a
pattern made up of two EOFs, the first EOF with an amplitude
of −1 and the 100th EOF with an amplitude of 0.3. The
result, shown in Figure 7, reveals a β spatial pattern that has
a correlation of 0.95 with the Nino3.4 index, despite looking

completely random. This example exploits the fact that the
variance of the leading and trailing EOFs differ by several orders
of magnitude, so a relatively large β can be attached to the trailing
EOF but still produce a prediction dominated by the leading EOF.

4.3. Atlantic Plus Pacific, EOF Predictors
It is possible that expanding the domain to include the Pacific
extratropics and the Atlantic could improve our prediction skill.
Using EOFs in this domain, the first EOF has a correlation of 0.97
with the Nino3.4 index, so like the previous section, by giving
lasso and ridge additional predictors they might be able to make
a better prediction than the Nino3.4 index alone.

With the domain expanded to the Atlantic plus Pacific,
predictions are somewhat improved compared to the tropical
Pacific alone. Ridge regression especially sees an improvement
with a NMSE of 0.879 and a random walk test that is like
Figure 3C (indistinguishable from theNino3.4 index). Curiously,
its correlation with the Nino3.4 index is relatively low (only
0.78) although its NMSE is similar to that of the Nino3.4
index. Despite its moderate correlation with the Nino3.4 index,
ridge regression’s β associated with the first EOF has a very
small amplitude.

Lasso puts a large emphasis on the first EOF, although 7 other
EOFs are included in the prediction. Lasso’s prediction has a
NMSE of 0.886 and a correlation of 0.94 with the Nino3.4 index.
It’s random walk test is also like Figure 3C.

4.4. Both Domains, Laplacian Predictors
Physically, teleconnections are set up by large scale structures.
We can define Laplacian eigenvectors for the tropical Pacific
domain as well as for the Atlantic plus Pacific domains. The first
few Laplacians for each domain is shown in Figure 8. Truncating
at 100 Laplacians gives us sufficient resolution without being
computationally overwhelming. The SST represented by 100
Laplacians is

S = XET (7)

where S (time×space) is the time series of the SST field
represented by a linear combination of 100 Laplacians, X

(time×100) is the time series of the 100 SST Laplacians, and E

(space×100) is the spatial patterns of the 100 Laplacians.
When applying the Laplacians as a basis set over the Atlantic

plus Pacific, both algorithms’ predictions get much worse. Lasso
has a NMSE of 0.918 and ridge regression has a NMSE of 0.914.
Both of their random walk tests are like Figure 3D (worse than
the Nino3.4 index). What makes this case notable is that both
predictions have a large correlation with the Nino3.4 index (0.92
for ridge and 0.93 for lasso) but are dramatically outperformed
by the Nino3.4 index.

When making a prediction from the Tropical Pacific using
SST Laplacians as the predictors, lasso gives a NMSE of 0.864 and
ridge regression gives a NMSE of 0.871. The results of the random
walk test are very similar for both lasso and ridge regression and
is shown in Figure 3A (better than the Nino3.4 index in late
January and possibly also in mid-December).
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FIGURE 7 | A contrived example of β coefficients that yield predictions with a high correlation with the Nino3.4 index (0.95) while bearing little similarity to the leading

EOF of SST.

4.5. Weighted Tropical Pacific, Laplacians
Predictors
When using Laplacians in the Tropical Pacific, the structure of
the βs selected is dominated by small-scale noise, which is not
physically realistic. It is possible to modify LASSO so that large-
scale structures are preferentially selected. There are any number
of ways to do this. It turns out that the variance of the Laplacian
time series drops almost monotonically as the spatial scale of

the Laplacian decreases (i.e., the Laplacian number increases).

Knowing this, we chose to weight the choice of β by the inverse

of the variance, so that the βs associated with the large-scale
Laplacians (which have more variance) would have a larger

amplitude. The resulting β patterns (Figures 4K,L) are larger
scale and therefore we would consider them more physically
realistic. These larger scale structures seem like they would be
able to better represent the Nino3.4 signal than the smaller scale
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FIGURE 8 | Laplacian eigenvectors 2–4 for the Atlantic plus Pacific (top), and for the tropical Pacific (bottom) domains. The first pattern for each basin is the spatial

average over the domain and is not shown.

structures we get when we don’t weight the predictors, but the
correlation with the Nino3.4 index is almost the same as without
the weighting.

Both the lasso and the ridge regression predictions have a
NMSE of 0.870, which are also almost the same as without the
weighting. The random walk tests are similar for both and are
represented by Figure 3C (indistinguishable from the Nino3.4
index). Besides the more physically realistic β patterns, we found
no advantage to using this alternative weighting scheme for
selecting the beta coefficients.

5. CONCLUSIONS

This paper shows that skillful predictions of the “ENSO-forced”
pattern of week 3–4 2 m temperatures over CONUS can be
made based on the Nino3.4 index alone. To identify better
prediction models, various machine learning models using sea
surface temperatures as predictors were developed. In addition,
machine learning models were trained on observations and on
long control simulations. We find the machine learning models
trained on climate model simulations are more skillful than
machine learning models trained on observations. Presumably,

the reason for this is that the training sample from climate
model simulations is orders of magnitude larger than training
sample available from observations. Initialized predictions from a
dynamical model, namely the CFSv2 model, also were examined.
With amplitude correction, the skill of CFSv2 hindcasts of this
pattern were comparable to the skill of predictions from Nino3.4
and machine learning models.

The skills of machine learning models and a simple prediction
based on the Nino3.4 index are very close to each other.
To ascertain if one is better than the other, we performed a
careful statistical assessment of whether the machine learning
predictions were better than predictions based on the Nino3.4
index alone. To avoid serial correlation, the test was performed
for each initial start date separately. We found that the best
machine learning predictions were significantly more skillful
for only about 10% of the cases, while for most other start
dates the hypothesis of equally skillful predictions could not
be rejected. Our general conclusion is that although the best
predictions of the ENSO-forced pattern come from machine
learning models trained on long climate simulations, the skill
is only “modestly” better than predictions based on the Nino3.4
index alone.
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FIGURE 9 | The regression coefficient between each machine learning prediction and the local SST, calculated by regressing the prediction against observed SST. As

in Figure 4, titles of the individual panels indicate the domain, basis set, machine learning algorithm used, and the correlation between the resulting prediction and the

Nino3.4 index. (A) Pac. grid points ridge rho = 0.96. (B) Pac. grid points LASSO rho = 0.92. (C) Pac. EOFs ridge rho = 0.53. (D) Pac. EOFs LASSO rho = 0.98.

(E) Alt+Pac. EOFs ridge rho = 0.78. (F) Alt+Pac. EOFs LASSO rho = 0.94. (G) Alt+Pac. Lap ridge rho = 0.92. (H) Alt+Pac. Lap LASSO rho = 0.93. (I) Pac. Lap ridge

rho = 0.94. (J) Pac. Lap LASSO rho = 0.95. (K) Pac. weighted Lap ridge rho = 0.96. (L) Pac. weighted Lap LASSO rho = 0.96.
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Various attempts were made to interpret the source of
predictability in the machine learning predictions. Lasso is
usually promoted as being better for interpretation due to its
ability to set the amplitude of some predictors to zero. However,
when the predictors are correlated grid points, lasso selects
isolated grid points whereas ridge regression yields smooth,
large-scale patterns, making the latter more physically realistic.
When selecting uncorrelated predictors such as EOFs, lasso
retains its interpretability advantage. Nevertheless, interpretation
of the regressionweights can be verymisleading. Specifically, very
different maps of β-coefficients can produce virtually the same
prediction. To illustrate this, we generated an artificial set of beta
coefficients in Figure 7 that yields a high correlation with the
Nino3.4 index (ρ = 0.95) but whose appearance is very different
from the canonical ENSO pattern. Another factor is that if the
predictors are correlated, then the predictors selected by lasso
can be very sensitive to the training sample. Despite this, it is
worth noting that in contrast to the β-coefficients, the regression
patterns between the machine learning predictions and model
SSTs are very robust and all emphasize the tropical Pacific ENSO
pattern (Figure 9).

This machine learning framework is extremely versatile—
there is no essential reason why it could not be used to
predict other variables, use other variables as predictors, or make
predictions at different time scales. As an example, a subseasonal
prediction of temperature could be attempted using snow cover
anomalies as well as SST anomalies in the winter. A major caveat
to this framework as a whole is that dynamical models are not
perfect—if there is no signal for the machine learning to train
upon then it will never be able to predict observations using that
predictor. This could also be a new way to validate dynamical
models—some models used in this study were not skillful at
making subseasonal predictions of observations.
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