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The overarching goal of this work is to develop and demonstrate methods that support

effective agro-pastoral risk management in a changing climate. Disaster mitigation

strategies, such as the Sendai Framework for Disaster Risk Reduction (SFDRR),

emphasize the need to address underlying causes of disaster risk and to prevent the

emergence of new risks. Such assessments can be difficult, because they require

transforming changes in meteorological outcomes into sector-specific impact. While

it is common to examine trends in seasonal precipitation and precipitation extremes,

it is much less common to study how these trends interact with crop and pasture

water needs. Here, we show that the Water Requirement (WR) component of the

widely used Water Requirement Satisfaction Index (WRSI) can be used to enhance

the interpretation of precipitation changes. The WR helps answer a key question: was

the amount of rainfall received in a given season enough to satisfy a crop or pasture’s

water needs? Our first results section focuses on analyzing spatial patterns of climate

change. We show how WR values can be used to translate east African rainfall declines

into estimates of crop and rangeland water deficits. We also show that increases in WR,

during recent droughts, has intensified aridity in arid regions. In addition, using the PWB,

we also show that precipitation increases in humid areas of western east Africa have

been producing increasingly frequent excessive rainfall seasons. The second portion

of our paper focuses on assessing temporal outcomes for a fixed location (Kenya) to

support drought-management scenario development. Kenyan rainfall is decreasing and

population is increasing. How can we translate this data into actionable information?

The United Nations and World Meteorological Organization advise nations to proactively

plan for agro-hydrologic shocks by setting aside sufficient grain and financial resources

to help buffer inevitable low-crop production years. We show how precipitation, WR,

crop statistics, and population data can be used to help guide 1-in-10 and 1-in-25-year

low crop yield scenarios, which could be used to guide Kenya’s drought management

planning and development. The first and second research components share a common

objective: using the PWB to translate rainfall data into more actionable information that

can inform disaster risk management and development planning.

Keywords: climate change, East Africa, agriculture, risk management, climate extremes, drought, disaster risk

management
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BACKGROUND AND RATIONALE

In this study, we introduce a new Plant Water Balance
(PWB) metric and demonstrate how it can be used to support
trend analyses and risk management in east Africa (0–18◦N,
20◦E−51◦E). Beginning in 2005 (Funk et al., 2005) and
continuing to the present (Gebrechorkos et al., 2019), many
studies have documented the decline in the eastern east Africa
(east Africa east of 38◦E and south of 8◦N) boreal spring “Long”
rains. This region experiences a bimodal seasonal cycle, with the
boreal spring “Long” rainy season being longer andmore copious
than the boreal fall “Short” rainy season. More details on the crop
phenology of the “Long” rains can be found in our accompanying
paper, “An agro-pastoral phenological water balance framework”
(Funk et al., 2021).

While it is generally accepted that this decline is associated

with an intensification of the Indian Ocean branch of the Walker

Circulation, as suggested in 2008 (Funk et al., 2008), the primary
driver of that intensification is likely due to changes in the Pacific,

and not Indian, Ocean (Williams and Funk, 2011; Lyon and
DeWitt, 2012). These changes involve a combination of human-
induced warming in the western Pacific and natural, La Niña-like,
cool sea surface temperatures in the equatorial eastern Pacific

(Hoell and Funk, 2013a,b; Liebmann et al., 2014). The relative
contribution of natural variability to the observed declines in

precipitation remains debated. Some studies have emphasized
Pacific Decadal Variability (Lyon, 2014; Yang et al., 2014), while
other papers have focused on anthropogenic warming in the
western equatorial north-western Pacific (Funk et al., 2018,
2019b). Other studies, however, have focused on changes in the
Indian Ocean. One study (Wainwright et al., 2019) suggested
that the recent decline is strongly associated with a shorter rainy
season, with warmer waters to the south of east Africa delaying
the onset and decreasing surface pressures over Arabia, thus
supporting an earlier cessation of the rainy season.

While decomposing the myriad potential drivers of the east
African rainfall declines (Indian vs. Pacific, natural variability
vs. climate change) is very difficult, it is not hard to identify
the substantial increase in the frequency of poor eastern east
African rains. Many of these dry seasons have been associated
with strong Pacific sea surface temperature gradients, and the
sea surface temperature gradients responsible for the decline,
can be used as a basis for prediction (Funk et al., 2014; Shukla
et al., 2014). At the same time, east Africa has also been impacted
by extreme precipitation. According to the EM-Dat emergency
database on natural and technological disasters (https://www.
emdat.be/), since 2015, 119 flood events and extreme storms
have impacted more than 11 million people. Climate science
suggests a fairly straightforward explanation for at least some
of these increases. As the atmosphere warms, saturation vapor
pressures increase. A warmer atmosphere can hold more water
vapor, which is expected to lead to more extreme precipitation
events (Emori and Brown, 2005). While data limitations make
assessments of extreme precipitation outcomes difficult in sub-
Saharan Africa, recent assessments do suggest that in well-gauged
areas, extreme events are becoming wetter, particularly in wet
areas (Harrison et al., 2019).

To help contextualize the agricultural impacts associated
with these extremes, it is useful to consider both crop water
demand and crop water supply. In this study, we show how
a new “Phenological Water Balance” (PWB) index can be
used to (i) explore changes in both very dry and very wet
growing seasons, and (ii) guide long-term risk management
strategies by helping to identify plausible 1-in-10 and 1-in-25-
year drought scenarios for Kenya. The focus of the first analysis
section is spatial. Where are the hot spots of climate change?
Where are crops and pastures experiencing more frequent
water stress? Where is increased atmospheric water demand
exacerbating the impact of rainfall deficits? In places where
rainfall is increasing, where is it probably beneficial and where
might it be harmful, in the sense that precipitation now often
exceeds plant water requirements by a large amount? The focus
of the second results section is temporal. For a given fixed
region (Kenya), that has been experiencing rainfall declines,
how bad might the next really low crop production year be?
Answering such a question is central to the integrated drought
management planning advocated by the World Meteorological
Organization1 and the UnitedNations (UN). In their 2021 special
report on drought,2 the UN Office of Disaster Risk Reduction
discusses how the combination of climate change and population
growth (Smirnov et al., 2016) is increasing drought exposure
in many developing countries; understanding and managing
these increasing drought risks will be central to meeting the
objects enumerated in the Sendai Framework for Disaster Risk
Reduction and 2030 Agenda for Sustainable Development. A
key component of management involves quantifying drought
impacts. This study uses precipitation, WR, population, and
crop statistics to generate plausible near-term projections of
low annual maize yields, maize production, and per capita
maize production.

The PWB framework builds extensively on geospatial
implementations of the “Water Requirement Satisfaction Index”
(WRSI) (Verdin and Klaver, 2002; Senay and Verdin, 2003). In
the results examined here, we use Start of Season (SOS) and
Length of Growing Period (LGP) maps to define crop-growing
seasons. Using these SOS dates and LGP, we can then calculate
Growing Season Precipitation (GSP) and growing season Water
Requirements (WR). The ratio of GSP andWR defines the PWB.
In this paper, we explore how the PWB can be used to examine
the following two questions:

1. Given the well-documented decline in the east African boreal
spring rains, can the PWB framework be used to evaluate
trends, thereby supporting monitoring at decadal time scales?
Can we identify hot spots of elevated drought or flood risk?

2. Can the PWB framework be used with crop and population
statistics to transform assumptions about precipitation into
assumptions about national maize yields in Kenya, thereby
supporting the development of plausible near-term low crop
production scenarios? These scenarios can be used by Kenyan

1https://public.wmo.int/en/programmes/integrated-drought-management-

programme.
2https://www.undrr.org/gar2021-drought.
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planning agencies to inform national-scale planning and
preparedness for agricultural shocks, leading to improved
drought management policies.

The trend analyses cover the entire east African Long rains
growing area. We show that the WR framing adds substantial
value beyond just analyzing changes in rainfall. A given decrease
in rainfall may have very different impacts depending on
local water requirements. Rainfall declines in areas where
precipitation exceeds plant water requirements may have no
negative effects. On the other hand, a relatively modest decrease
in precipitation in a water-stressed region may dramatically
increase the frequency of poor crop and pasture conditions.
Precipitation increases in such areas might be very beneficial.
But precipitation increases in areas where seasonal rainfall
substantially exceeds WR values may actually be detrimental to
crop outcomes.

The agricultural shocks analysis focuses on Kenya. The first
and second research components share a common objective:
using the PWB to translate rainfall data into more actionable
information that can inform disaster risk management and
development planning. The first research section focuses on
spatial patterns. Where are we seeing changes in risk? The second
research section focuses on temporal distributions for a given
country. How can we translate long time-series of rainfall into
actionable near-term crop production deficit scenarios?

It should be noted that while the results presented here
are regional and seasonal, the general approach taken could
be extended to multiple seasons, and on continental or global
scales; scales at which running more complicated models would
be difficult.

DATA

Terminology
Before going into specifics about particular data sets, we present
and discuss Figure 1, which schematically describes the PWB
calculation. In this figure, we describe the typical seasonal
progression of a rain-fed crop, such as maize, millet or sorghum.
Farmers are well attuned to the typical seasonal progression
of rains in their area, and these rains (shown with a solid
blue curve) tend to begin with scattered showers, increase
to a mid-season peak, and then taper off. In this paper,
we break each growing season into “dekads.” Each month is
divided into three dekads—two 10-day dekads followed by a
third dekad that contains the remaining days in the month.
In agricultural modeling, dekads are often used to represent
time-varying environmental variables, such as precipitation or
RefET. RefET will increase when radiation, surface wind, or local
vapor pressure deficits increase. It is a measure of atmospheric
water demand. Early research by the Food and Agriculture
Organization (FAO), based on plot-level crop observations,
related RefET to the seasonal progression of crop-specific Water
Requirements (WR) (Doorenbos and Pruitt, 1977), and created
the Water Requirement Satisfaction Index (WRSI) model (Frère
and Popov, 1986) to estimate crop water deficits. This framework
breaks the crop season into emergence, vegetative, grain-filling,

and senescing stages. The SOS begins when enough precipitation
has fallen to stimulate crop growth. In this study, the SOS
commences when a location receives more than 25mm of rain
in a dekad and then 20mm of precipitation in the following
two dekads (AGRHYMET, 1996). The plant begins to grow,
adding biomass and leaves. As the photosynthesis increases,
WR increases as well, typically plateauing during the vegetative
and grain-filling stages. Then, once grain filling is complete,
plants senesce, photosynthesis, and water requirements drop
rapidly. These WR changes are shown with a thick red line in
Figure 1A.

The PWB is based on the ratio of crop water supply
and crop water demand, with supply and demand being
based, respectively, on precipitation and RefET. To represent
dekadal rainfall (Pi), this study uses 1981–2020 0.1◦ Climate
Hazards InfraRed Precipitation with Stations3 (CHIRPS) rainfall
data (Funk et al., 2015c). CHIRPS is a widely used gridded
precipitation data set that was explicitly designed for drought
monitoring in food-insecure countries in Africa. One key input
is the Climate Hazards Center Precipitation Climatology4 (Funk
et al., 2015b), which is constructed using moving window
regressions, elevation, satellite observations and long-term in situ
rain-gauge averages. At monthly and sub-monthly time scales,
this climatology is combined with geostationary thermal infrared
satellite observations and station data to produce gridded
precipitation fields (Funk et al., 2015c). Several factors that
make CHIRPS well suited to operational agro-meteorological
drought monitoring are a long 40-year-plus period of record for
historical context, low latency, low bias, and good performance
in validation studies (Duan et al., 2016, 2019; Paredes Trejo et al.,
2016; Agutu et al., 2017; Beck et al., 2017, 2019; Shrestha et al.,
2017; Dinku et al., 2018; Gao et al., 2018; Retalis et al., 2018;
Rivera et al., 2018; Harrison et al., 2019; Prakash, 2019; Gummadi
et al., 2021). The CHIRPS product grows out of long-term efforts
focused on representing orographic precipitation enhancements
in data-sparse areas (Funk et al., 2003). In CHIRPS, these
effects are represented by a high-resolution climatology and
localized precipitation estimation parameters. This results in
strong performance in east Africa’s complex terrain (Dinku et al.,
2018).

Dekadal RefET values (RefETi) are represented by 0.1◦

Penman-Monteith-based RefET (Hobbins et al., 2016). 5 The
RefET is calculated using MERRA-2 reanalysis data. Radiation
and near-surface wind speeds, temperatures, and humidity are
used to calculate the amount of evapotranspiration that would
be expected if an alfalfa-like well-watered “reference” crop was
grown in each grid cell. In general, increases in radiation,
increases in temperature, and decreases in humidity make
the atmosphere more “thirsty,” increasing the associated crop
water demand.

At each location, the start of the growing season (SOS)
begins if a pixel receives more than 25mm of rain, and
is followed by two dekads that total more than 20mm of

3https://data.chc.ucsb.edu/products/CHIRPS-2.0/.
4https://data.chc.ucsb.edu/products/CHPclim/.
5https://psl.noaa.gov/eddi/globalrefet/.
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FIGURE 1 | A schematic representations of the seasonal progressions of precipitation and plant Water Requirements, (B) The calculation of Growing Season

Precipitation, and (C) The calculation of seasonal Water Requirement totals.
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rain combined (AGRHYMET, 1996). Time-varying crop-stage-
dependent coefficients (Kc) are then used to modify RefET based
on the phenological cycle of crop growth during a growing season
(WRi = RefETi x Kc).

The length of the growing period (LGP) is typically
determined by the specific genotype of the specific crop,
but farmers typically use longer LGP (more slowly maturing)
crops when they can, since longer seasons support more
photosynthesis, more production of biomass, and higher yields.
More details regarding the specifications of SOS, LGP, and crop
types can be found in our accompanying paper in this Frontiers
collection (Funk et al., 2021).

METHODS

The core of the PWB is a comparison of the amount of water
supply (precipitation) and plant water demand accumulated
over the growing season, from the first dekad associated with
SOS through to the end of season at a dekad corresponding to
SOS+LGP. The dekadal totals of precipitation andWR are shown
schematically in Figures 1B,C. Beginning with each location’s
SOS date, and assuming a fixed LGP value at each pixel, GSP
values can be accumulated over each year’s growing season’s
dekadal precipitation (Pi ).

GSP =

∑SOS+LGP

i=SOS
Pi (1)

GSP represents the amount of rainfall, in mm, between the
beginning and end of the growing season (Figure 1B). GSP can
be compared with WR, which estimates the total amount of
growing season moisture, in mm, required by crops or fields
to maintain maximum “water satisfaction.” Each dekad’s AET
value is a function of that dekad’s RefET and time-varying crop
coefficients (Kc).

At the start of the season, at emergence, Kc values start
low. They then increase during the vegetative and grain-
filling stages. In cereal crops, Kc drops during senescence,
while grassland Kc terms stay high throughout the short
(7 dekad) growing season. The WR can be calculated from
the beginning to the end of the growing season as follows
(Figure 1C).

WR =

∑SOS+LGP

i=SOS
Kci × RefETi (2)

The GSP andWR terms can then be combined to yield the PWB.

PWB = 100×
GSP + ε

WR+ ε

(3)

The epsilon term (10mm in this study) is added to both the
numerator and denominator to increase numerical stability in
arid regions. Our companion article compares PWB with WRSI
and Kenya crop yield data, exploring the utility of PWB in routine
agro-meteorological monitoring and forecast settings. Here, we
focus on the use of PWB as a basis for trend analyses and
risk assessment.

EXAMINING THE UTILITY OF THE PWB
FRAMEWORK AS A BASIS FOR
EXAMINING TRENDS IN AGRO-PASTORAL
HAZARDS?

Examining Changes in Mean Climate
Conditions
Since the early 2000s, when the FEWS NET science team first
identified the decline in the east African boreal rains (Funk
et al., 2005), dozens of papers have studied the pattern, timing,
and causes of these changes. While this is not the right venue
for a review of that literature, we do wish to briefly show how
the WR framework can provide a useful analytic foundation
for exploring decadal variations in agro-pastoral hazard trends.
Seasonal WR totals and PWB index values help to translate
changes in precipitation into impacts on crop water availability.

There is almost universal agreement among experts that the
eastern east Africa region has been substantially drier since about
1999.We contrast, therefore, changes between 1999 and 2020 and
1981–1998 (Figure 2). Figure 2A displays the well-documented
declines in GSP. Central and coastal Kenya and eastern Ethiopia
have seen substantial declines, which relate to 4 to 14% declines
in WRSI (Figure 2B). Note that change shown here is in terms of
the WRSI, which estimates the fraction (%) of the plant’s water
requirement that is satisfied. In some pastoral regions, recent
rains have often failed to meet the criteria for season onset,
and, therefore, we find large increases (i.e. delays) in the onset
dates in these areas (Figure 2C). It is interesting to note that, in
areas that rely on the boreal spring rains, we find little change
in RefET (Figure 2D). While some increases are found in Sudan
and South Sudan, that region tends to be associated with a boreal
summer rainfall maxima. This is an important result. Warming
temperatures do not appear to be associated with increasing
WR trends, at least as represented via the Penman-Monteith
calculation used in the Hobbins RefET data set. But we will return
to this point momentarily, in the context of dry seasons, and
reach a more nuanced, and more concerning, conclusion.

Figure 2E shows changes in PWB. While these maps closely
follow the changes in precipitation, it is interesting to contrast
these with the WRSI changes (panel 2B), which miss the
substantial increases in western Kenya PWB values. Finally, PWB
changes in terms of standardized anomalies (not shown) indicate
that these declines are sufficient in magnitude to tilt the odds
toward substantially more frequent droughts in central-eastern
Kenya, southern Somalia, and eastern Ethiopia.

These results help demonstrate the value of WR framing.
What we see is a tendency for TGP to increase in places where
it is not generally needed (i.e., in wet areas) and decrease
in arid regions where precipitation is desperately needed.
One recent global Standardized Precipitation Evapotranspiration
Index (SPEI) analysis (Funk et al., 2019a) found a robust global
tendency toward higher RefET in arid regions, when SPI values
were lower than −0.7. We find a similar result here. Figure 2F
shows the difference between dry season (SPI < −0.7) WR
averages over the 1999–2020 and 1981–1998 time periods. The
+30 to +70mm WR increases suggest that WR values, during
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FIGURE 2 | Changes in 1999–2020 vs. 1981–1998 agro-climatic indicators. (A) Change in growing season precipitation. (B) Change in WRSI. Note that ‘change in

%’ in this instance refers to changes in the fraction of the plant’s water requirement satisfaction. (C) Change in Start of Season (SOS). (D) Change in growing season

WR. Note that these WR changes have been inverted (multiplied by −1), to express the desiccating impacts of increasing WR. (E) Change in growing season PWB.

(F) Change in 1999–2020 vs. 1981–1998 WR when SPI values are <-0.7.

meteorological droughts, are increasing. The spatial pattern of
these increases, unfortunately, tends to align with some of the
most food-insecure areas of eastern east Africa.

Examining Changes in Extreme Growing
Season Precipitation
One interesting application of the PWB metric, not available
with the WRSI, is to examine changes in the frequency of very
wet seasons; seasons for which precipitation far exceeds WR.
To demonstrate this, Figure 3A shows the change in frequency
of the number of seasons for which GSP was more than twice
the seasonal WR values. These results could suggest that the
increases in PWB (Figure 2E), in areas that are already very
wet (Figure 3B), might actually be detrimental. An example of
this can be seen in the areas around Lake Victoria and across
southwestern Ethiopia. In non-water-limited regions, increased
cloudiness can reduce insolation and photosynthesis, while water
logging, extreme precipitation, and flooding can have detrimental
effects. In 2020, sites reporting flood impacts listed numerous
crises in these regions.6 While more detailed analyses can be

6http://floodlist.com/africa/.

carried out using hydrologic simulations from systems like the
FLDAS (McNally et al., 2017), the PWB and PWB forecasts seem
like a useful tool for interpreting hydrological extremes from
a crop-water perspective. Simply put, above-normal rains are
more likely to be detrimental when they occur in regions that
have climatologically high PWB values. A map of the recent
mean PWB values (Figure 3B) reveals quite stunning gradients.
In Kenya, for example, mean PWB values exceed 200% near
the shores of Lake Victoria, then drop to near 100% over the
span of about 100 kilometers. The same steep gradients hold
for the western highlands of Ethiopia. When rainfall increases
in places that are very wet, that will increase the frequency of
exceptionally wet growing seasons. Hence, increase precipitation
could be associated with increased agricultural disruption.

While extreme precipitation and floods can happen anywhere,
it is often very difficult to distinguish beneficial vs. hazardous
above-normal rainfall amounts in arid regions. A reference to
drought monitoring can help make this case. An experienced
agricultural drought analyst will pay special attention to rainfall
deficits in more marginal crop-growing regions. A 75mm
rainfall deficit (Figure 2A) will be much more impactful in
regions with mean PWB values of<100 (Figure 3A). Conversely,
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FIGURE 3 | (A) Change in the frequency of extreme PWB values (PWB > 200%). (B) Mean 1999–2020 east African boreal spring season PWB values.

exceptionally heavy rains are much less likely to be beneficial
when they occur in a region in which precipitation almost always
exceedsWR by a widemargin. Such considerationsmight be used
to identify more probable risk areas in forecasts and observations.

Examining Long Time-Series of PWB
Estimates
While the PWB and WRSI changes are quite similar, the
simplicity of the PWB framework makes it easy to link with
longer precipitation records, such as the Centennial Trends
archive (Funk et al., 2015a), which are almost exclusively
monthly. There are very few long-period-of-record sub-monthly
rainfall archives in Africa. The Centennial Trends and CHIRPS
data sets are built using the same high-resolution climatology
and the same stations, and hence, tend to be quite similar
on regional/seasonal time-scales. We can use the Centennial
Trends data set to place recent PWB variations in a deeper
historic context. We do so for two regions: Kenya’s main crop
growing regions7 and “eastern east Africa,” which is defined
as Ethiopia, Kenya, and Somalia east and south of 38◦E, 8◦N.
Strong linear relationships exist between regional March-April-
May Centennial Trends and CHIRPS GSP, and CHIRPS GSP
andWR. Hence, Centennial Trends PWB estimates that correlate
well with the CHIRPS/Hobbins RefET values during their period
of overlap can be constructed (RKenya =0.9, REEA =0.89). This
allows us to plausibly extend the PWB back to the early 1900s
(Figure 4). As discussed in our Centennial Trends paper, Kenya

7The counties of Baringo, Elgeyo-Marakwet, Kajiado, Kiambu, Kirinyaga, Kwale,

Laikipia, Lamu, Murang’a, Nakuru, Narok, Nyandarua, Nyeri, Taita Taveta, Tana

River, Trans Nzoia, Uasin Gishu, Kilifi.

actually has quite a few stations during this time period. The
eastern east Africa region has lower station densities, especially
prior to the 1920s.

For Kenya (Figure 4A), we see juxtaposed both a tendency
toward drier conditions and two exceptionally wet seasons (2018
and 2020). A deeper historical record reinforces how extremely
wet 2018 and 2020 actually were. This deeper record, however,
also suggests that recent (post-2009) droughts, like 2011, 2017,
and 2019, really were not too severe, given the historical archive.
These dry seasons had PWB values of around 110 percent. The
historical archive has many examples of more severe droughts
with PWB values on the order of 90 percent.

For eastern east Africa (Figure 4B), we find a much higher
level of aridity, with a 1920-to-1989 Centennial Trends PWB
mean of 59, which decreased to 52 over the 1999–2014 period—a
15% decrease. Between 1999 and 2020, 8 years were exceptionally
dry (PWB < 46). The depth of drought during these dry
seasons has also intensified as WR values increase (Figure 2F),
resulting in frequent shocks that can erode resilience and increase
vulnerability. These dry seasons can be contrasted with four very
wet seasons (2010, 2013, 2018, 2020), with PWB values twice
as large as dry seasons, i.e., 80 as opposed to 40. The skewed
distribution of rain in this region, combined with the covariance
of RefET and precipitation, sets the stage for volatile sequences
of droughts and pluvials. As with Kenya, we note that the most
recent dry seasons (2017, 2019) have not been as intense as
prior severe droughts such as 1999, 2000, 2009, and 2011, which
were associated with moderate-to-strong La Niña conditions.
Disaster mitigation strategies, such as the Sendai Framework for
Disaster Risk Reduction (SFDRR), emphasize the need to address
underlying causes of disaster risk. Long time-series of historical
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FIGURE 4 | Long time-series of (A) Kenyan and (B) Eastern east Africa PWB time-series.

PWB values (Figure 4) help inform drought management plans
by helping us anticipate the magnitude of a “typical” drought
sequence. What Figure 4 tells us is that a) there have been
many recent droughts—three out of the last five seasons (2017,
2019, and 20218)— but the actual magnitude of those droughts
has been moderate in comparison to the longer-term record.
DRR practices use past extremes as inputs into future disaster
management plans. Hence, we should prepare for substantially
more severe future droughts akin to 1999, 2000, 2009, and 2011.

EXAMINING THE UTILITY OF THE PWB
FRAMEWORK AS A BASIS FOR
ASSESSING 1-IN-10 AND 1-IN-25-YEAR
CROP PRODUCTION DROUGHT RISKS

We next turn to the topic of disaster risk management,
combining our PWB and Centennial Trends analyses with
population and agricultural statistics to construct plausible
near-term, low-yield scenarios. The intent is to demonstrate
how the PWB can be used to inform national drought risk
management planning, such as that advocated by the Sendai
Framework for Disaster Risk Reduction and the United Nations
Office for Disaster Risk Reduction.9 The first priority of the
Sendai Framework focuses on understanding risk. Agro-pastoral
hydro-climatic risks arise through the interaction of exposure,
vulnerability, and weather-related shocks. Here, we develop
plausible 1-in-10 and 1-in-25-year Kenyan yield reduction
scenarios. There are numerous actions that countries can
take to prepare for agricultural shocks: store grain to offset

8https://fews.net/east-africa/alert/may-19-2021.
9https://www.undrr.org/implementing-sendai-framework/what-sendai-

framework.

crop production deficits, establish cash reserves that can be
used to help smooth out grain price shocks, and fund social
safety net programs that can help poor households cope with
reductions in food availability and access. But investments
in these risk reduction activities diverts funds from other
potentially important sectors: health, education, transportation,
etc. It is important, therefore, to provide quantitative assessment
of drought risk. The 1-in-10 and 1-in-25-year Kenyan yield
reduction scenarios explored here provide plausible scenarios
that can be used to develop risk management planning.

As context, it is important to recognize that despite rapidly
growing economies, countries like Kenya and Ethiopia still face
serious levels of acute food insecurity. A growing wage gap
may be one factor that helps drive such insecurity. While the
annual per capita inflation-adjusted incomes of the poorest 20%
of Ethiopians and Kenyans climbed dramatically between 1993
and 2019 (Figure 5A), the gap between these incomes and the
national average income climbed even more rapidly (Figure 5B),
such that the ratio between poor and middle incomes essentially
tripled between 1993 and 2018. Poor households have to compete
with the rest of society for access to goods and services. And
countries like Kenya continue to see high food-price volatility.
Figure 5C shows wholesale maize prices in Kenya. In 2008/09,
2011, and 2017, the region experienced sequential October-
November-December and March-April-May droughts (Funk
et al., 2018), and large spikes in maize prices.

One concerning result discussed above is the fact that
the 2011 and 2017 Kenyan drought events were not actually
all that extreme, based on the historical record (Figure 4A).
Nevertheless, maize prices skyrocketed (Figure 5C). While a
huge variety of factors influence prices, some insights can be
gained from evaluating per capita maize cereal production.
This metric can be composed into a yield term and per
capita harvested area term (Funk and Brown, 2009). For
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FIGURE 5 | (A) World Bank estimates of per capita income for the poorest 20% of Ethiopians and Kenyans. (B) The gap between the per capita incomes of average

and poor Ethiopians and Kenyans. (C) Monthly nominal wholesale maize prices in Kenya. Price data obtained from the FAO price monitoring tool.
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many countries, this decomposition tends to highlight opposing
tendencies, with yields increasing and per capita harvested areas
declining. For Kenya, however, maize yield statistics suggest
stagnation around a fairly low baseline of about 1.7 tons per
hectare (ha) (Figure 6A). Kenya has primarily relied on increases
in cultivated area to increase production, with the area harvest
increasing by about 70% since the early 1980s (Figure 6B). Since
2009, however, the rate of this increase appears to have slowed.

Combining maize harvested area statistics and projections
with UN’s population statistics and projections (Figure 6C)
reveals declining per capita-harvested area. Since the 1960s, this
value has fallen precipitously, and in 2019, per capita-harvested
area was very low—just 0.042 ha person−1. Expectations for the
future trends are difficult to bracket, given the changing behavior
in harvested area trends, which grew rapidly in the 2000s and
then stagnated in the 2010s. Hence, the 2000–2019 downward
trend in per capita HA is much smaller than the 2010–2019 trend
(0.002 ha person−1 year−1 vs. −0.008 ha person−1 year−1). In
panel 6C, we have picked a value halfway between these trends to
project out through 2050. This moderate assumption leads to a
concerning 14% reduction between 2030 and 2019.

We can use this projection, along with yield assumptions,
to generate per capita cereal projections (Figure 6D). For the
average yield scenario, we have used the 2000–2019 FAOSTAT
mean (1.71 tons ha−1). The 1-in-10 and 1-in-25-year yield
assumptions are largely guided by an analysis of long records
of PWB time-series. There are 40 years of CHIRPS-driven PWB
estimates, and in that record, 4 years stand out as substantially
drier than the rest (1984, 1993, 2000, and 2008) (Figure 4A).
Using the average yield of these four seasons (1.43 tons ha−1)
as a 1-in-10-year low yield value seems plausible. This value also
matches closely with the 10th percentile value of the 1982–2019
FAOSTAT yields. Yields of 1.43 tons ha−1 would be associated
with a ∼16% reduction in national yields. Kenya’s relatively low
variability seems realistic, given that many of themost productive
crop-growing regions are in highland areas with high mean PWB
values (Figure 3B). While vigorously defending any 1-in-25-year
assumption is challenging, given substantial non-stationarity in
both society and climate, wemight select the low-2009 yield value
(1.3 tons ha−1) as a realistic worst-case scenario. This would
correspond with a 24% reduction in yields.

When examining changes in per capita crop production
(Figure 6D), it is important to recognize that the 10-year trend
in per capita harvested area effect (∼14%) is on par with the
1-in-10-year yield shock (16%). This may help explain why many
recent Kenyan food crises (2011, 2017, 2019) were induced by
moderate, not extreme, drought and yield shocks. When the next
1-in-10-year drought comes, a drought event similar to 1984,
2000, or 2009, increases in population and slowing agricultural
expansion will interact with, and likely amplify, the impact of
water deficit-induced yield reductions. By 2028, for example,
average per capita production may resemble the low value from
the 2017 drought year (∼64 kg maize person−1). A severe (1-
in-10-year) drought in 2028 could result in per capita maize
production of just 53 kg maize person−1(Figure 6D), a value
much lower than the 2009 value of ∼64 kg maize person−1. It
is very likely, therefore, that trends in population and harvested

area, combined with typical year-to-year rainfall and RefET
variability, will produce an unprecedented national-level food
shock in the near future.

DISCUSSION

Our results emphasize that many climatologically dry
areas in eastern east Africa (Figure 3B) have become drier
(Figures 2A,B,E). For dry areas in the east, recent low-rainfall
seasons have also been accompanied by larger positive WR
anomalies (Figure 2F); WR acts to amplify precipitation deficits
in eastern east Africa. While we did not find an upward tendency
in most of east Africa (Figure 2D), we did find modest WR
increases during low-rainfall seasons (Figure 2F).

Looking at longer time-series of PWB estimates (Figure 4),
it is interesting to note that recent drought years like 2017
and 2019 were not actually as bad as the strong La Niña-
related droughts in 2000, 2009, and 2011. It is not clear
whether this represents a shift in the mean or a stochastic
outcome. Perhaps recent combinations of large-scale forcing and
random weather fluctuations have not combined to produce
a really strong drought. When such a drought occurs, it
will likely be exacerbated by WR increases (Figure 2F) and
decreasing per capita-harvested areas (Figure 6D). Such an
outcome would obviously be concerning, given the serious food-
security concerns associated with 2017 and 2019 rainfall deficits.

The PWB analyses presented here also provides valuable
insights into extreme seasonal precipitation outcomes. In
general, we find a “wet-getting-wetter” and “dry-getting-drier”
tendency—in climatologically humid regions in western Ethiopia
and Kenya (Figure 3B), we find >14% increases in PWB
(Figure 2E), which are also associated with an increased
frequency of excessively wet rainy seasons (Figure 3A). Unlike
the WRSI, the PWB lets us identify and explore “excessive”
rainfall. The extreme Kenyan PWB values and increased
frequencies of extreme PWB events found near Lake Victoria and
in southwestern Ethiopia are quite concerning. To date, much
more attention has been focused on the agricultural impacts of
droughts. Relatively little work has focused on the potentially
negative impacts of extreme growing season precipitation and
associated reductions in radiation and RefET. Upward rainfall
trends in areas with high climatological PWD are unlikely to
improve crop production. This limit can also have a seasonal
interpretation. In 2018 and 2020, we found extensive areas with
PWB values of more than 200%. Even in an arid region, this
“extra” water will be unlikely to enhance agricultural outcomes.

In both humid and arid regions, and wet and dry seasons, the
complementary relationship between AET and RefET (Hobbins
et al., 2016) provides a useful way to contextualize rainfall
extremes and changes. Figure 7 shows a schematic describing
the complementary hypothesis. We have used “WR” in place of
RefET to emphasize the phenological filtering associated with the
time-varying KC coefficients.

In wet regions and seasons, where TGP > WR, AET is
energy limited. Cloudiness and cool air temperatures will tend
to reduce RefET, which acts as a cap on AET, and ultimately,
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FIGURE 6 | (A) FAOSTAT Kenyan maize yields. (B) FAOSTAT maize harvested area. (C) Observed and projected per capita harvested area, based on an assumed

decline of−0.0002 hectare per person per year for 2020 to 2050. (D) Observed and projected per capita maize production. Projections based on recent observed

yield values, and 1-in-10 year and 1-in-25-year drought year estimate (1.71, 1.43, and 1.3 tons ha−1).

photosynthesis. Furthermore, since a coarse approximation of
the local water balance can be written as runoff = GSP –
WR, when GSP is much greater than WR, runoff can increase
dramatically, helping to set the stage for floods.

In dry regions and seasons, where TGP < WR, AET is water
limited. Under such conditions, the PWB and WRSI are likely
to perform similarly. Furthermore, as aridity increases, AET and
WR are expected to be complementary, with WR increasing as
AET decreases (Figure 7). Extraction and analysis of the WR
component has really emphasized this relationship, as many of
the driest regions and seasons exhibit the largest anomalous
WR increases during below-normal rainfall seasons. In these
regions and seasons, the PWB, WRSI, or hydrologic modeling

systems like FLDAS are likely to perform better than simple
rainfall observations, because they can capture WR/precipitation
covariations in very dry regions.

The Bouchet-Morton complementary relationship (Hobbins
et al., 2016) helps us understand the spatial and temporal
covariations of RefET and precipitation. These covariations
amplify the impacts of rainfall deficits in dry areas, as well as the
impact of rainfall excesses in wet areas. Ironically, east Africa may
be experiencing more crop water deficits in dry areas and more
extreme growing season rainfall in some very wet areas.

In the literature discussing climate change and precipitation
extremes, it is common to discuss dynamic and thermodynamic
drivers (Emori and Brown, 2005). Thermodynamic controls
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FIGURE 7 | A schematic diagram of the Bouchet-Morton complementary relationship.

relate to warming in the atmosphere, and the expectation
that atmospheric saturation vapor pressure will increase with
increasing temperatures at approximately 7% per degree Celsius
of warming. Ironically, these increases can both increase
the frequency and magnitude of extreme precipitation events
(Figure 3A), while also exacerbating the intensity of droughts,
especially in dry areas (Figure 2F).

Theoretically, at global scales, climate scientists expect
mean precipitation to remain fairly stable, while extreme
precipitation increases (Trenberth et al., 2003; Allan
and Soden, 2008). Mean precipitation is fundamentally
constrained by an energy balance that involves radiation,
condensation/diabatic heating, and surface and latent
heat fluxes. Because radiation changes are quite small,
overall, changes in mean precipitation—both in models
and observations—are quite small. This constraint does not
hold at small and short spatial and temporal scales, scales
in which experts expect both dynamic and thermodynamic
exacerbation of extremes (Emori and Brown, 2005). Stable
means and more extremes imply that the frequency of dry days
would increase.

Globally (Donat et al., 2016), there is substantial evidence that
extreme precipitation is becoming more frequent. In areas of
sub-Saharan Africa with quality daily precipitation data, robust
trends over 1950–2013 indicate that extreme events have become
wetter, but that annual totals have decreased due to fewer rain
days (Harrison et al., 2019). While this study has only examined
seasonal totals, further analyses of sub-seasonal precipitation and
temperature statistics, such as consecutive dry days and growing
degree days, would be informative. For example, one recent study
(Laudien et al., 2020) found that monitoring consecutive dry days
was the best overall predictor for Tanzanian yields. Using theWR
phenological framework, multiple statistics, arising from a host of
potential data sources, could be examined during the vegetative
and grain-filling stages. Compositing multiple crop scenarios,
such as the combination of maize and grasslands analyzed here,
seems useful from a decision analytics perspective.

In Kenya and Ethiopia, these highlands are densely populated.
So, the increases in the frequency of extreme wet season
precipitation (Figure 3A) are occurring in areas with millions
of people. East of ∼38◦E, densely populated highland areas in
Kenya and Ethiopia are much more drought prone, and in these
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regions, we find substantial increases in water stress (Figure 2E).
Below and between the highlands, sparsely populated but very
food-insecure pastoralists in eastern east Africa are seeing more
frequent water deficits being exacerbated by increasing WR
demands (Figure 2F).

Our deeper dive into Kenya crop conditions and per capita
cereal production suggests that persistence of the current
trends—stagnant yields and rapidly growing population—will
likely lead, very soon, to unprecedented low levels of per capita
cereal production. Intensification of agriculture through the
adoption of improved seeds and fertilizer can help improve
yields (Davenport et al., 2018). In addition, the results presented
here point toward adaptation strategies that manage climate
(Figure 4) and price volatility (Figure 5C). Kenyan climate is
strongly impacted by the Indian Ocean Dipole and the El
Niño Southern Oscillation, and climate projections anticipate
that these drivers will become more extreme (Cai et al., 2013,
2015a,b).

In addition to planning for future food production shocks
(Figure 6D), the results presented here provide hopeful evidence
supporting improved water management as a path toward
increased resilience and more stable agricultural production.
In arid regions, well-maintained boreholes can provide access
to water during droughts (Thomas et al., 2019), and “drought
emergencies can be mitigated by investing in resilience efforts
that make safe water reliably available at strategic groundwater
abstraction locations during cycles of water stress” (Thomas et al.,
2020). In humid areas, improved water storage and expanded
irrigation could reduce risks during extremely wet seasons and
provide supplemental water during dry seasons.

In closing, we note that, while this study has focused on
an important season in an important food-insecure region,
the general methods employed here could be expanded to
multiple growing seasons and regions. This could then be
used to further explore global increases in dryland RefET
during drought (Funk et al., 2019a), as results similar to
Figure 2F are explored across larger domains. Similarly, excessive
precipitation amounts, as evaluated in Figure 3A, could be
examined globally.
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