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The Indian Ocean Dipole is a leading phenomenon of climate variability in the tropics,

which affects the global climate. However, the best lead prediction skill for the Indian

Ocean Dipole, until recently, has been limited to ∼6 months before the occurrence of the

event. Here, we show that multi-year prediction has made considerable advancement

such that, for the first time, two general circulation models have significant prediction

skills for the Indian Ocean Dipole for at least 2 years after initialization. This skill

is present despite ENSO having a lead prediction skill of only 1 year. Our analysis

of observed/reanalyzed ocean datasets shows that the source of this multi-year

predictability lies in sub-surface signals that propagate from the Southern Ocean into

the Indian Ocean. Prediction skill for a prominent climate driver like the Indian Ocean

Dipole has wide-ranging benefits for climate science and society.

Keywords: Indian Ocean (Dipole), decadal prediction, CanCM4, MIROC5, Southern Ocean, IOD and Southern

Ocean, Antarctic Circumpolar Current (ACC), decadal prediction in tropics

INTRODUCTION

The Indian Ocean Dipole (IOD) is an inter-annual coupled ocean–atmosphere phenomenon in the
tropical Indian Ocean that peaks during the boreal fall season (September to November; SON).
Positive IODs are associated with anomalously warmer western Indian Ocean and anomalously
cooler eastern Indian Ocean. Negative IOD events are associated with opposite anomalous sea
surface temperatures (SSTs) across the Indian Ocean (Saji et al., 1999; Webster et al., 1999;
Murtugudde et al., 2000). The IOD is a well-known driver of global climate (Saji and Yamagata,
2003). In addition to affecting the neighboring Maritime Continent to the east and East Africa
to the west (Behera et al., 2005), the positive IOD events, for example, have been associated with
reduced rainfall over western and southern Australia (Ashok et al., 2003; Ashok and Saji, 2007;
Cai et al., 2011), enhanced seasonal Indian summer monsoon (ISM) rainfall (Ashok et al., 2001;
Ashok and Saji, 2007), and climates of even distant regions of South America (Chan et al., 2008)
and Europe (Hardiman et al., 2020). In addition to its own coupled dynamics (Gualdi et al., 2003;
Yamagata et al., 2004; Behera et al., 2006; Ha et al., 2017; Tanizaki et al., 2017; Saji, 2018; Marathe
et al., 2021), the IOD is suggested to be triggered by other inter-annual processes such as the El
Niño–Southern Oscillation (ENSO), the dominant climate driver from the tropics.

Attempts to predict the IOD on a seasonal scale have been on-going for about two decades
(Iizuka et al., 2000; Shinoda et al., 2004; Luo et al., 2007; Doi et al., 2016) and havemet with relatively
shorter lead time skills, the highest being of 4 months. This is in contrast to the 12–17 months of
lead prediction skill for the ENSO as shown in recent studies (Barnston et al., 2012; Park et al., 2018;
Tang et al., 2018). Several papers claim that prediction skills for the IOD and ENSO are linked and
intertwined (Wajsowicz, 2005; Izumo et al., 2010; Luo et al., 2010).
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The emerging discipline of decadal prediction, i.e., prediction
of climate information for the near future, shows great
promise for societal needs and economic policymakers.
Decadal prediction lies between weather prediction and climate
projection. Therefore, decadal prediction has to resolve initial
value problems like in weather prediction and seasonal to
inter-annual forecasts and climate variability and trends effective
from boundary conditions, including slow varying oceanic
processes, snow cover, and anticipated changes in anthropogenic
greenhouse gases and aerosols (Meehl et al., 2009, 2014; Smith
et al., 2013; Boer et al., 2016). Interestingly, the inter-annual
ENSO and the IOD can also be modulated by decadal processes
(Ashok et al., 2004; Tozuka et al., 2007). Such processes should
enhance the decadal prediction skill of these inter-annual events.

Given the limited lead skill of the IOD on seasonal scales, its
prediction at multi-year lead times is exceptionally challenging.
Remarkably, in this study, we show that two model hindcasts
from the CMIP5 (Coupled Model Intercomparison Project—
Phase 5) decadal prediction datasets are found to show successful
prediction skill for IOD events. These sets give us an opportunity
to track the lead prediction skill of an event at a lead of up to
2 years.

DATA AND METHODS

Data
We have mainly used a sub-set of the decadal hindcast outputs
from the CMIP5 decadal runs (Meehl et al., 2009, 2014; Taylor
et al., 2012; Smith et al., 2013; Boer et al., 2016). These runs have
anthropogenic and natural forcing in them, and comprise several
independent decade-long ensemble-runs by each model. For
example, the four members of the first ensemble are initialized
in 1960 and run up to 1970 (Figure 1). Such runs are available
with initial conditions from 1960 to 2011. Together, we have 51
ensemble members of decadal hindcasts for each model, each
differing from the other in the initialization year (from 1960
to 2011). For each model, we average multiple ensembles with
same initialization dates. These averages are referred to as the
model hindcasts for the initial conditions of that particular year.
The models, whose hindcasts we consider, are the CanCM4
(Merryfield et al., 2013), MIROC5 (Watanabe et al., 2010),
BCC-CSM (Wu et al., 2013), and the GFDL (Delworth et al.,
2006; Zhang et al., 2007) models. The output data from all the
models are divided into 10 groups depending on the year after
initialization (Figure 1). Yr1, yr2, yr3. . . indicate 1, 2, 3 . . . year(s)
after initialization.

We used Hadley Center Sea Ice and Sea Surface Temperature
(HadISST; Rayner et al., 2003) and Ocean Reanalysis data from
the European Center for Medium-Range Weather Forecasts
(ORAS4; Balmaseda et al., 2013) for ocean temperatures. As
for ENSO indices, we calculate the NINO3 and NINO4 indices
as anomalies of SSTs in area averaged over the boxes 150–
90◦W, 5◦S−5◦N and 160◦E−150◦W, 5◦S−5◦N, respectively. We
calculate the Indian Ocean Dipole Mode Index (IODMI) as the
SST gradient between the western equatorial Indian Ocean (50–
70◦E and 10◦S−10◦N) and the south-eastern equatorial Indian
Ocean (90–110◦E and 10◦S−0◦). We take into consideration the

IODMI only during themonths of September to November as the
IOD peaks during this season.

Statistical Methods
We have carried out correlation and regression analysis. We
have used the two-tailed Student’s t-test to determine the
significance of the correlation coefficients. We ascertained the
robustness of the skills by applying a boot-strapping test for
1,000 simulations (using NCL) and found our results to be
significant at 90% for up to 4 years. For verifying the skill of
persistence for both the models and observations, we use the
auto-correlation (Supplementary Figure 1). To illustrate briefly,
say in the case of CanCM4, we correlate the predicted IODMI
at lead 1 with that at lead 2 to get the persistence skill at
lead 1. Similarly, the persistence skill at lead 2 is obtained by
correlating the predicted IODMI at lead 0 with that at lead 2,
and so on. We have used the Empirical Orthogonal Function
(EOF) analysis technique (von Storch and Zwiers, 1999) to
determine the dominant patterns of spatio-temporal variability in
the equatorial Indian Ocean, as an additional analysis to compare
the simulated IODs with the observations. The EOF analysis is a
multivariate statistical technique to calculate the eigenvalues and
eigenvectors of a spatially weighted anomaly covariance matrix.
The corresponding eigenvalues quantify the variance percent
explained by each pattern, which is, by definition, orthogonal to
the other patterns.

To have an estimate of the inter-annual variability of IOD
that could be attributed to the Southern Ocean (20◦W:50◦E;
60◦S:40◦S), we projected the IODMI on to the corresponding
area-averaged subsurface temperatures (vertically averaged over
300–800m depth), i.e., through a regression analysis, and
measured the goodness-of-fit (figure not shown).

RESULTS

Lead Prediction Skills for ENSO and IOD
ENSO events peak during the boreal winter (through December),
while the IOD events peak during boreal fall (September–
November). Our analysis shows that the hindcasts analyzed in
this study (Figure 2A) predict the peakNINO3 index (Trenberth,
1997) significantly at leads up to 12–13 months, in agreement
with earlier studies (Sun et al., 2018; Pal et al., 2020).

Surprisingly, the hindcasts from the MIROC5 and CanCM4
predict the IODMI during the fall season with significant lead
prediction skill for at least 2–3 years (Figure 2B). The skill levels
for most of the lead times are not only statistically significant at
the 95% confidence level from a two-tailed Student’s t-test but
also are better than persistence (Supplementary Figure 1).While
the lead prediction skills of the IODMI from the CanCM4 fall
below 95% confidence level at 4–5-year leads, these skill levels
are still significant at a 90% confidence level. The MIROC5 also
shows a weak skill for the eighth year, still significant at 80%
confidence level.

It is noteworthy that this skill is present despite the maximum
lead predictability of only 1 year for the NINO3 index in all the
models. We also ascertain that the maximum lead time skill for
the NINO4 is similar to those for the NINO3 index. The ISM
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FIGURE 1 | The output data from all the models are divided into 10 groups depending on the year after initialization. Yr1, yr2, yr3… indicates 1, 2, 3 … year(s) after

initialization, which is represented by individual colors.

rainfall is an ocean–atmosphere coupled phenomenon occurring
every year from June to September bringing copious amount of
rainfall over the Indian subcontinent. ISM is strongly influenced
by ENSO and IOD, along with other factors. Our study shows that
ISM has no predictability in the analyzedmodels, presumably due
tomodel inadequacies in representingmonsoon processes (figure
not shown). Nevertheless, rainfall predictions could be improved
by exploiting known statistical relationships between ENSO-ISM
or IOD-ISM (Jourdain et al., 2013; Swapna et al., 2015; Dutta and
Maity, 2018).

Fidelity of the Simulated IOD
To further ascertain whether the IODMI computed from the two
hindcast datasets represents some of the observed features of
the IOD (Yamagata et al., 2003), we compare the second leading
simulated EOF modes of the SST from the hindcasts of MIROC5
and CanCM4 with that from the corresponding observations.
Figure 3, derived from the EOF analysis at 1-year lead, shows that
the models indeed capture the observed dominant IOD variance
pattern associated with the EOF2 in terms of the location of the
two centers of action. The simulated variance explained by this
statistical mode from theMIROC5 is 12.2%, comparable with the
corresponding observed value of 12% (Saji et al., 1999; Ashok
et al., 2004). EOF2 of CanCM4 is 27.4%, which is higher than

the expected value as the dipole-like structure shows more spread
in the eastern Indian Ocean (Figure 3). The simulated EOF1,
associated with IndianOcean Basinmode, and the corresponding
variance explained are also realistic.

Source of the IOD Prediction Skill
A question arises as to what processes are responsible for the IOD
predictability. Earlier studies have shown that the key component
of improved decadal prediction lies in ocean physical processes,
which internally generate decadal climate variability (Meehl et al.,
2014; Farneti, 2017). Thus, the memory of the upper ocean
(∼800m) provides an improved predictability of SST variability
in models on decadal timescales (Yeager et al., 2012; Wang et al.,
2014). Motivated by these, we looked for a source of predictability
of IOD at several levels in the subsurface temperature (every
50m). We found the maximum signal in the Southern Ocean at
300 to 800m depth 7–10 years before the occurrence of the IOD
event. From an analysis of the ORAS4 and SODA3 reanalysis
datasets, we find a signal for the IODMI in the Southern Ocean.
This is evidenced by significant correlations between depth-
averaged 300–800m temperatures in the Southern Ocean, which
lead the IODMI by 10–6 years, respectively (Figure 4). The
significant positive correlations in the Southern Ocean indicate
that a positive temperature anomaly in the Southern Ocean leads
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FIGURE 2 | (A) Anomaly correlations between observed NINO3 index with the corresponding predicted NINO3 index at different lead years for various models, shown

in different colors. The significant correlation value at 95% confidence level is 0.27 and is shown by dashed lines. Details of how the correlations at different leads were

obtained, from the sets of ∼51 year-long decadal prediction runs with different initial years, are available from section Statistical Methods and Figure 1. (B) Same as

(A) but for the IODMI. The lines with circles in (B) are the two models of interest for this study.

FIGURE 3 | The second mode from the EOF analysis of the tropical Indian Ocean SST, from (A) HadISST (1961–2011 period). (B,C) are the same as that of (A) but

derived from MIROC5 and CanCM4 hindcasts for the same period (also see Supplementary Figure 2).
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to a positive IOD event after 8–10 years, whereas a similar lead
negative correlation coefficient in the Southern Ocean indicates a
negative IOD event after such a time period. The signal leading
the IODMI first appears in the sub-surface temperatures of the
Southern Ocean just south-west of Africa between the depths of
300–800m, 10 years before the occurrence of the IOD event. This
signal is seen to propagate toward the east along the Antarctic
Circumpolar Current (ACC, or West wind drift) to about 50–
60◦E about 6 years prior to the IOD event. From here, the signal
in the heat content further propagates north, along the east of
Madagascar, all the way to the Somali coast in a pathway that
is coincident with the East Madagascar undercurrent (EMUC)—
an intermediate undercurrent at the depth of thermocline and
below. The period of the propagation is in agreement with the
EMUC as described by Nauw et al. (2008). The EMUC transports
about 2.8± 1.4 Sv of intermediate water equatorward. The signal
upwells to the surface near Somalia (Somali upwelling) along
with its propagation north (Figure 5).

The propagation of the signal from the deeper layers in
the extra-tropics to the surface layers in the equatorial region
can be explained by the Indian Ocean Meridional Overturning
Circulation (IOMOC; Wang et al., 2014). The time period of
the propagation is in agreement with the IOMOC. From the
Somali coast, the lead heat content signal is seen to move east,
reaching the central equatorial Indian Ocean 3 years before the
IOD event. The signal remains in the equatorial Indian Ocean
for the last 2–3 years before the occurrence of the IOD event
(Figure 6). Furthermore, our correlation in Figure 6 suggests an
anomalous SST structure of opposite polarity in the equatorial
IndianOcean about a year before the occurrence of an IOD event.
This is in conformation with Saji et al. (1999), who not only note
a tight coupling between the intensity of the SST dipole anomaly
and zonal wind anomaly but emphasize on a biennial tendency.
The biennial tendency of the IOD is also noted by Meehl and
Arblaster (2001), Ashok et al. (2003), etc. It is intriguing why
the signal from the sub-surface at the equator does not manifest
as an IOD event immediately. There are several studies that
suggest potential drivers that can force an IOD such as the Indian
summer monsoon, ENSO, and can account for the lead signals
associated with the IOD with 1–2-year lead (Ashok et al., 2001;
Ashok and Saji, 2007). As the current models do not show any
lead skills of the Indian summer monsoon beyond a season, we
can rule out that the long lead skills for the IODMI in the models
come from the lead skills of monsoon or those related to ENSO
(see Figure 2A). This might be explained by the fact that some
IOD events are triggered by an atmospheric signal substantial
enough to trigger the coupled evolution of the IOD (Shinoda
et al., 2004; Saji, 2018) and hence this delay of 2–3 years.

A linear regression analysis carried out using HadISST and
ORAS4 ocean temperature datasets (slope value= 0.46) indicates
that the Southern Ocean signals at decadal lead explain about
18% of the inter-annual variability of IOD as suggested by a
goodness-of-fit measure. To put it in perspective, ENSO, known
as the most prominent driver of the Indian summer monsoon
interannual variability, explains about 30% of the latter.

The source of decadal predictability for IOD in the
MIROC5 and CanCM4 also apparently comes from the
Southern Ocean (Supplementary Figure 3). We find statistically

FIGURE 4 | Spatial distribution of the anomaly correlation of HadISST derived

IODMI with vertically averaged subsurface temperatures from ORAS4 (over

300–800m depth) from previous years averaged annually. The “lag number” is

the years over which the IOD lags the Southern Ocean signal. In all panels,

significant correlations at 95% confidence are shown as contour lines (value at

0.27).

significant anomaly correlations between the depth averaged
from surface until∼800m hindcast heat content with the IODMI
with the heat content leading at 10–5 years, conforming to our
results from the reanalysis. The source of signal is the Southern
Ocean for both the models, but the simulated signal path from
here to the equatorial Indian Ocean are, however, weaker and
remain unclear specifically in the MIROC5 model. However, the
signals re-emerge finally 2–3 years before the occurrence of the
simulated IOD. The models also do not capture the biennial
tendency of the IOD as in observations. Further understanding of
other possible factors affecting IOD variability on decadal scales
is needed.

DISCUSSION

Our analysis of the CMIP5 decadal retrospective prediction
products for the 1960–2011 period shows that two CMIP5
decadal prediction systems exhibit multi-year skill in predicting
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FIGURE 5 | Vertical distribution of anomaly correlation of IODMI with previous years’ subsurface temperatures, averaged annually over longitudes 50–100◦E.

Significant correlations at 90% confidence (0.23) and at 95% confidence (0.27) are contoured.

FIGURE 6 | Same as Figure 4 but vertically averaged annually over surface to 100m depth for the last 4 years leading up to an IOD event. Significant correlations at

95% confidence are shown as contour lines (value at 0.27).

the IODMI, higher than the 17-month lead skills for the ENSO,
a leading climate driver. The physical processes responsible for
the skill levels seems to originate in the Southern Ocean up
to a decade before emerging in the Indian Ocean, suggesting
that this multi-year skill could be extended even further. To
our knowledge, this is the first study to show decadal skill in
predicting the IOD.

Skill levels for surface fields and, in particular, rainfall, are not
statistically indistinguishable from zero. This is in common with
long-term predictions of other climate phenomena (Scaife and
Smith, 2018) and indicates the relative immaturity of this form
of forecasting. It remains a challenge to both improve models
and to fully exploit decadal prediction skill. Nevertheless, the
potential for long-term planning in both public and private sector
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organizations that could be facilitated by such skillful predictions
is great.
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