
TECHNOLOGY AND CODE
published: 10 February 2022

doi: 10.3389/fclim.2021.782909

Frontiers in Climate | www.frontiersin.org 1 February 2022 | Volume 3 | Article 782909

Edited by:

Michael C. Kruk,

National Oceanic and Atmospheric

Administration (NOAA), United States

Reviewed by:

Mark Capece,

General Dynamics Information

Technology, Inc., United States

MIcah James Wengren,

National Oceanic and Atmospheric

Administration (NOAA), United States

*Correspondence:

Ryan Abernathey

rpa@ldeo.columbia.edu

Specialty section:

This article was submitted to

Climate Services,

a section of the journal

Frontiers in Climate

Received: 25 September 2021

Accepted: 30 November 2021

Published: 10 February 2022

Citation:

Stern C, Abernathey R, Hamman J,

Wegener R, Lepore C, Harkins S and

Merose A (2022) Pangeo Forge:

Crowdsourcing Analysis-Ready, Cloud

Optimized Data Production.

Front. Clim. 3:782909.

doi: 10.3389/fclim.2021.782909

Pangeo Forge: Crowdsourcing
Analysis-Ready, Cloud Optimized
Data Production
Charles Stern 1, Ryan Abernathey 1*, Joseph Hamman 2,3, Rachel Wegener 4,

Chiara Lepore 1, Sean Harkins 5 and Alexander Merose 6

1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States, 2CarbonPlan, San Francisco, CA,

United States, 3National Center for Atmospheric Research, Boulder, CO, United States, 4Department of Atmospheric and

Ocean Science, University of Maryland, College Park, MD, United States, 5Development Seed, Washington, DC,

United States, 6Google Research, Mountain View, CA, United States

Pangeo Forge is a new community-driven platform that accelerates science by providing

high-level recipe frameworks alongside cloud compute infrastructure for extracting data

from provider archives, transforming it into analysis-ready, cloud-optimized (ARCO) data

stores, and providing a human- and machine-readable catalog for browsing and loading.

In abstracting the scientific domain logic of data recipes from cloud infrastructure

concerns, Pangeo Forge aims to open a door for a broader community of scientists

to participate in ARCO data production. A wholly open-source platform composed of

multiple modular components, Pangeo Forge presents a foundation for the practice of

reproducible, cloud-native, big-data ocean, weather, and climate science without relying

on proprietary or cloud-vendor-specific tooling.

Keywords: data, community, cloud, ARCO, NetCDF, Zarr, Python

1. INTRODUCTION

In the past 10 years, we have witnessed a rapid transformation in environmental data access and
analysis. The old paradigm, which we refer to as the download model, was to search for files from
a range of different data providers, download them to a local laptop or workstation, and analyze
the data in a traditional desktop-based analysis environment (e.g., IDL, MATLAB, and ArcGIS).
The new paradigm, which we call data-proximate computing, instead brings compute resources
adjacent to the data, with users performing their data analysis in a web browser and retrieving
data on demand via APIs or HTTP calls (Ramamurthy, 2017). Data-proximate environmental data
analysis tools and platforms are often deployed in the commercial cloud, which provides scalable,
on-demand computing and high-throughput data access, but are not necessarily limited to cloud
environments. Data-proximate computing removes the burden on the data user to provide local
computing; this has the potential to massively expand access to environmental data, empowering
communities that have been historically marginalized and lack such local computing resources
(Gentemann et al., 2021). However, this democratization is not guaranteed. FAIR data, open
standards, and equitable access to resourcesmust be actively pursued by the community (Wilkinson
et al., 2016; Stall et al., 2019).

Many different platforms exist to analyze environmental data in the cloud; e.g., Google Earth
Engine (GEE) and Microsoft’s Planetary Computer (Gorelick et al., 2017; Microsoft, 2021). A
common need for all such platforms is access to analysis-ready, cloud optimized (ARCO) data.
While a range of powerful ARCO data formats exist (e.g., Cloud Optimized GeoTIFF, Zarr, TileDB
Embedded, and Parquet), ARCO data production has remained a bespoke, labor-intensive process.

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2021.782909
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2021.782909&domain=pdf&date_stamp=2022-02-10
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rpa@ldeo.columbia.edu
https://doi.org/10.3389/fclim.2021.782909
https://www.frontiersin.org/articles/10.3389/fclim.2021.782909/full

Stern et al. Pangeo Forge

Recent sessions devoted to cloud computing at meetings of
the American Geophysical Union (AGU) and Earth System
Information Partners (ESIP) enumerated the considerable toil
involved in creating ARCO data in the cloud (Hua et al., 2020;
Quinn et al., 2020). For example, when GEE partnered with
the European Center for Medium-Range Weather Forecasting
(ECMWF) to bring a portion of the ERA5 reanalysis data to
GEE, the data ingestion process was incredibly time and resource
intensive, spanning 9 months and involving a suite of specialized
tools (Wagemann, 2020).

In addition to demanding computing resources and
specialized software, ARCO data production also requires
knowledge in a range of areas, including: legacy and ARCO data
formats, metadata standards, cloud computing APIs, distributed
computing frameworks, and domain-specific knowledge
sufficient to perform quality control on a particular dataset. In
our experience, the number of individuals with this combination
of experience is very small, limiting the rate of ARCO data
production overall.

This paper describes Pangeo Forge, a new platform for the
production of ARCO data (Pangeo Forge Community, 2021).
A central goal of Pangeo Forge is to reduce the toil associated
with downloading, cleaning, and preparing data for analysis,
particularly for the large, complex datasets associated with high-
bandwidth observing systems, Earth-system simulations, and
weather reanalyses. Recognizing that individuals with domain-
specific data knowledge are not necessarily experts in cloud
computing or distributed data processing, Pangeo Forge aims to
lower the barrier for these scientists to contribute to ARCO data
curation. Finally, we hope to build a platform that encourages
open and inclusive participation, crowdsourcing ARCO data
production from the diverse community of environmental data
specialists across the world, for the mutual benefit of all.

At the time of writing, Pangeo Forge is still a work on progress.
This paper describes the motivation and inspiration for building
the platform (section 2) and reviews its technical design and
implementation (section 3). We then describe some example
datasets that have been produced with Pangeo Forge (section 4)
and conclude with the future outlook for the platform (section 5).

2. MOTIVATION AND INSPIRATION

2.1. Analysis-Ready, Cloud-Optimized Data
In the context of geospatial imagery, remote sensing instruments
collect raw data which typically requires preprocessing, including
color correction and orthorectification, before being used for
analysis. The term analysis-ready data (ARD) emerged originally
in this domain, to refer to a temporal stack of satellite images
depicting a specific spatial extent and delivered to the end-user
or customer with these preprocessing steps applied (Dwyer et al.,
2018; Holmes, 2018). In the context of this paper, however, we
use the term “analysis-ready” more generally to refer to any
dataset that has been preprocessed such that it fulfills the quality
standards required by the analysis which will be performed on
it. This may include merging and alignment of many individual
source files or file-like objects into a single cohesive entity. For
remotely sensed measurements, it may involve signal processing

to correct for known atmospheric or other distortions. For
synthetic (i.e., simulation) data, quality control may include
ensuring that output values fall within test parameters defined
by the model developers, as well as homogenization of metadata
across simulation ensembles.

Analysis-ready data is not necessarily or always cloud-
optimized. One way of understanding this is to observe that just
because an algorithm can be applied to a given dataset, that fact
alone does not guarantee the algorithm will execute expediently
or efficiently. In a context where even efficient algorithms can
take hours or days to run, optimization matters. Computational
performance is affected by many factors including algorithm
design and hardware specifications, but in the case of big
data analytics, the rate-limiting aspect of the system is often
I/O throughput, i.e., the rate at which bytes can be read
into the algorithm from the data storage location (Abernathey
et al., 2021). This rate is itself influenced by variables such as
network bandwidth, hardware characteristics, and data format.
When we refer to “cloud-optimized” data it is this third
variable, format, which we are most concerned with. Cloud-
optimized data formats are unique insofar as they support direct
access to data subsets without the computational overhead of
opening and navigating through a massive data object simply
to retrieve a small subset of bytes within it. Implementations
of this functionality vary according to the specific cloud-
optimized format: some formats include a metadata header
which maps byte-ranges within a single large data object,
while others opt to split a large object up into many small
blocks stored in an organized hierarchical structure. Regardless
of the specific implementation, the end result is an interface
whereby algorithms can efficiently access data subsets. Efficient
access to data subsets is especially impactful in the context of
cloud object storage, where simultaneous read/write of arbitrary
numbers of data subsets does not decrease the throughput to
any individual subset. As such, parallel I/O dramatically increases
cumulative throughput.

Analysis-ready, cloud-optimized datasets are, therefore,
datasets which have undergone the preprocessing required to
fulfill the quality standards of a particular analytic task and which
are also stored in formats that allow efficient, direct access to
data subsets.

2.2. Open Science, Open Source
The Pangeo Forge codebase, which is written in Python, is
entirely open source, as are its Python dependencies including
packages such as NumPy, Xarray, Dask, Filesystem Spec, and
Zarr (Dask Development Team, 2016; Hoyer and Hamman,
2017; Harris et al., 2020; Durant, 2021; Miles et al., 2021). We
see open source software as a scientific imperative. Production
of ARCO datasets involves considerable preprocessing and
reformatting. Data corruptions can easily be introduced at
any step of these multi-stage transformations, either due to
user error or, less commonly but more consequentially, due
to bugs in the software packages used to perform the ARCO
transformation. In an open source context, the scientific user
community can readily introspect every step of the process,
building trust in its effectiveness as well as contributing to

Frontiers in Climate | www.frontiersin.org 2 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

its robustness by identifying bugs when they arise. The core
scientific tenet of reproducibility is also served by open source:
the exact provenance of each byte of data that passes through
Pangeo Forge is entirely transparent, traceable, and recreatable.

Where Pangeo Forge must unavoidably rely on commercial
technology providers, we strive always to uphold the user’s Right
to Replicate (2i2c.org, 2021). In practice, this means that even
if an underlying cloud provider technology is closed source, the
application code defining our particular implementation of that
technology is always open source, allowing anyone the option
to replicate our system exactly as we’ve deployed it. Version
control hosting, continuous integration, compute infrastructure,
storage resources, and workflow automation are arenas in
which commercial solutions are implemented. The former two
services are provided through GitHub repositories and GitHub
Actions, respectively, and the latter three through the “big three”
cloud service providers (Google Cloud, Amazon Web Services,
Microsoft Azure) and Prefect, a dataflow automation provider.

2.3. Crowdsourcing Complexity: the Conda
Forge Model
The incredible diversity of environmental science datasets
and use cases means that a fully generalized and automatic
approach for transforming archival data into ARCO stores
is likely neither achievable nor desirable. Depending on the
analysis being performed, for example, two users may want the
same archival source data in ARCO form, but with different
chunking strategies (Chunking, i.e., the internal arrangement
of a dataset’s bytes, is often adjusted to optimize for different
analytical tasks). Transforming just a single dataset from its
archival source into an ARCO data store is an incredibly
complex task which unavoidably requires human expertise to
ensure the result is fit for the intended scientific purpose.
Fantasies of cookie-cutter algorithms automatically performing
these transformations without human calibration are quickly
dispelled by the realities of just how unruly archival data often
are, and how purpose-built the ARCO data stores created from
them must be. As with all of science, ARCO transformations
require human interpretation and judgement.

The necessity of human participation, combined with the
exponentially increasing volumes of data being archived, means
that ARCOdata production is more work than any individual lab,
institution, or even federation of institutions could ever aspire to
manage in a top-down manner. Any effort to truly address the
present scarcity of high-quality ARCO data must by necessity
be a grassroots undertaking by the international community
of scientists, analysts, and engineers who struggle with these
problems on a daily basis.

The software packaging utility Conda Forge, from which
Pangeo Forge draws both inspiration and its name, provides
a successful example of solving a similar problem via
crowdsourcing (Conda-Forge Community, 2015). Conda
Forge emerged in 2015 in response to frustrations scientific
software users consistently faced when attempting to install
system package dependencies in the course of their research.
Just like ARCO data production, installing open source software
packages with binary dependencies is frequently a multi-step
process involving an intricate sequence of software compilation.

FIGURE 1 | Number of software installation recipes hosted on Conda Forge

by year.

If any one step is completed out of order, or perhaps if one of
the sub-packages installed is of the wrong version, the end result
will be non-functional. This struggle devoured countless years
worth of human effort on the part of researchers who required a
specific software configuration to pursue their investigations.

Conda Forge introduced the simple yet revolutionary notion
that two people, let alone hundreds or thousands, should not
be duplicating effort to accomplish the same tedious tasks.
As an alternative to that toil, Conda Forge established a
publicly-licensed and freely-accessible storehouse, hosted on the
open internet, to hold blueprints for performing these arcane
yet essential engineering feats. It also defined a process for
contributing blueprints to that storehouse and established a
build system compatible with the Conda package manager, a
component of the open-source Anaconda Software Distribution,
itself a popular collection of data science tooling (Anaconda Inc.,
2021). This interconnection with the Conda package manager, in
addition to serving as the inspiration for Conda Forge’s name,
means that a given Conda Forge package can be built from the
public storehouse onto a community member’s system with just
a one-line command: conda install .

It is not an understatement to say that this simple invocation,
conda install , and the system built by Anaconda
undergirding it, fundamentally transformed for the better
the practice of computational science with open source software.
The crowdsourcing model defined by Conda Forge then
leveraged this technology to maximal advantage for the open
source scientific community. For evidence of this fact, we need
look no further than the incredible growth rate of community
contributed “recipes” (as these installation blueprints are known)
in the Conda Forge storehouse (Figure 1). The summed impact
of this solution totals untold numbers of reclaimed hours
which are now dedicated to scientific research itself, rather than
tinkering with finicky engineering issues.

In the case of Conda Forge, community members contribute
recipes to a public storehouse which define steps for building
software dependencies. Then they, along with anyone else, can

Frontiers in Climate | www.frontiersin.org 3 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

avoid ever needing to revisit the toil and time of manually
building that specific piece of software again. Contributions
to Conda Forge, while they often include executable software
components, consist minimally of a single metadata file, named
meta.yaml , which conforms to a specification established in
accordance with the build system. This design is explicitly copied
in Pangeo Forge.

3. TECHNICAL DESIGN AND
IMPLEMENTATION OF PANGEO FORGE

Pangeo Forge follows an agile development model, characterized
by rapid iteration, frequent releases, and continuous feedback
from users. As such, implementation details will likely change
over time. The following describes the system at the time
of publication.

At the highest level, Pangeo Forge consists of three primary
components:

• pangeo-forge-recipes : A standalone Python package
which provides a data model (“recipes”) and scalable
algorithms for ARCO data production. This package can be
used by itself, without the platform’s cloud automation tools.

• An automation system which executes recipes using
distributed processing in the cloud.

• A catalog which exposes the ARCO data to end users.

3.1. Recipes: Object-Oriented Extraction,
Optimization, and Storage (EOS)
Algorithms
Inspired directly by Conda Forge, Pangeo Forge defines the
concept of a recipe, which specifies the logic for transforming a
specific data archive into an ARCO data store. All contributions
to Pangeo Forge must include an executable Python module,
named recipe.py or similar, in which the data transformation
logic is embedded (Figure 2). The recipe contributor is expected
to use one of a predefined set of template algorithms defined by
Pangeo Forge. Each of these templated algorithms is designed to
transform data of a particular source type into a corresponding
ARCO format, and requires only that the contributor populate
the template with information unique to their specific data
transformation, including the location of the source files and
the way in which they should be aligned in the resulting ARCO
data store.

Pangeo Forge implements template algorithms with object-
oriented programming (OOP), the predominant style of software
design employed in Python software packages. In this style,
generic concepts are represented as abstract classes which gain
meaning once instantiated with details relevant to a particular
use case. Once instantiated, class instances (as they are known)
can perform operations on or with the attributes (i.e., details)
they ve been given. In Pangeo Forge, the operations embedded
in the template algorithms are, broadly speaking, those of data
extraction, optimization, storage (EOS). First, data is extracted
from a traditional source file server, most commonly via HTTP or
FTP request; next, the source data is transformed into an ARCO
format; and finally, the data is deposited into cloud object storage.

Within a given class of these EOS algorithms, it’s possible to
largely generalize the esoteric transformation logic itself, while
leaving the specific attributes, such as source file location and
alignment criteria, up to the recipe contributor to fill in. The
completed recipe.py module containing a specific instance
of the generic EOS algorithm can then be executed in one of a
number of ways. While recipe developers are certainly free to
run these open source algorithms on private compute clusters,
they are strongly encouraged to submit their recipes to be run
on Pangeo Forge’s shared infrastructure, which has the dual
benefit of being a freely accessible resource and, perhaps even
more importantly, results in the ARCO data being written to
a publicly-accessible cloud storage bucket and added to the
Pangeo Forge catalog for discovery and shared use by the global
community. It is through scaling contributions to our public
ARCO data catalog that Pangeo Forge aspires to do for ARCO
data production what Conda Forge has already accomplished for
software dependency management.

3.2. Base Abstractions: Insulating
Scientific Domain Expertise From Cloud
Automation Concerns
Pangeo Forge consists of multiple interrelated, modular
components. Each of these components, such as the recipes
described above, consists of some abstracted notions about how a
given aspect of the system typically functions. These abstractions
are for the most part implemented as Python classes. They
include classes related to source file location, organization, and
access requirements; the recipe classes themselves; classes which
define storage targets (both for depositing the eventual ARCO
data store, as well as for intermediate caching); and multiple
different models according to which the algorithms themselves
can be executed.

The boundaries between these abstraction categories have
been carefully considered with the aim of insulating scientific
domain expertise (i.e., of the recipe contributor) from the equally
rigorous yet wholly distinct arena of distributed computing and
cloud automation. Among ocean, weather, and climate scientists
today, Python is a common skill, but the ability to script advanced
data analyses by no means guarantees an equivalent fluency
in cloud infrastructure deployments, storage interfaces, and
workflow engines. Moreover, Pangeo Forge aims to transform
entire global datasets, the size of which is often measured in
terabytes or petabytes. This scale introduces additional technical
challenges and tools which are more specialized than the skills
required to convert a small subset of data.

By abstracting data sourcing and quality control (i.e., the
recipe domain) from cloud deployment and workflow concerns,
Pangeo Forge allows recipe contributors to focus exclusively on
defining source file information along with setting parameters
for one of the predefined recipe classes. Recipe contributors
are, importantly, not expected to understand or manipulate
the storage and execution aspects of the system, which are
maintained by community members with expertise in those
areas. In what follows, well examine four aspects of the system
in closer detail.

Frontiers in Climate | www.frontiersin.org 4 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

FIGURE 2 | A recipe in relation to Pangeo Forge architecture.

3.2.1. Source File Patterns
In Pangeo Forge, all data transformations begin with a
FilePattern . This Python class encodes information about
archival source files including their location, access requirements,
and alignment criteria. Data providers such as NASA and NOAA
commonly distribute source files over HTTP. File Transfer
Protocol (FTP) is also a common means for distribution of
source data in the earth and atmospheric sciences. In either case,
contributors specify the access URLs for their source files as part
of a FilePattern . If the archival data URLs correspond to a
dynamic API such as OPeNDAP (Cornillon et al., 2009; Hankin
et al., 2010), rather than a static file server, that information is
specified at this stage. In cases where authorization credentials
such as a password or API token are required to access the source
data, the names of environment variables which will point to
these values at runtime are included here as well.

from pangeo_forge_recipes.patterns import (
ConcatDim,
FilePattern,
MergeDim,

)

def make_full_path(variable, time):
url_base = "http://data-provider.org/data"
return f "{url_base}/{variable}_{time}.nc"

merge_dim = MergeDim(
"variable" , ["temperature" , "humidity"],

)
concat_dim = ConcatDim("time" , list (range (1, 11)))
pattern = FilePattern(

make_full_path, merge_dim, concat_dim,
)

Listing 1 | Defining a source file pattern with alignment criteria.

Almost all ARCO datasets are assembled from many source
files which are typically divided by data providers according

to temporal, spatial, and/or variable extents. In addition to
defining the location(s) of the source files, the FilePattern
is where contributors define how the specified set of source files
should be aligned to create a single cohesive ARCO dataset.
Alignment operations include concatenation, for arranging files
end-to-end; and merging, for layering files which cover the
same spatial or temporal extent, but for different variables.
Listing 1 demonstrates how a recipe contributor would define
a FilePattern for archival data accessed via the imaginary
file server http://data-provider.org/ . The pattern
defined in the final line of this snippet encodes not just the
location of the source files, but also the fact that any resulting
ARCO data store should concatenate these files in the time
dimension, and merge them in the variable dimension. This
encoding relies on the near-universal practice among data
providers of defining URL naming schemes which are descriptive
of a given file server’s contents; i.e., the access endpoint for a
file covering specific extents will name those extents as part of
its URL. The objects merge_dim and concat_dim , in the
example provided in Listing 2, map our imaginary file server’s
URL character string representation of dataset dimensions onto
Pangeo Forge internal datatypes for consumption by downstream
recipe classes.

3.2.2. Recipe Classes
Ocean, climate, and weather data is archived in a wide range
of formats. The core abstractions of Pangeo Forge, including
FilePattern , are designed to be agnostic to data formats, and
can be leveraged to transform any archival source file format
into any corresponding ARCO format. The transformation
from a specific archival format (or category of formats) into a
corresponding ARCO format does require a dedicated algorithm,
however. In Pangeo Forge, recipe classes are the modular
template algorithms which perform a specific category of ARCO
transformation. As modular components, an arbitrary number

Frontiers in Climate | www.frontiersin.org 5 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

of these classes can be added to the platform over time, with
each new class adding support for a new type of ARCO
data production.

As of the writing of this paper, Pangeo Forge defines
two such recipe classes, XarrayZarrRecipe and
HDFReferenceRecipe , each of which is most commonly
used to transform one or many NetCDF files into a single
consolidated Zarr dataset. The difference between these
algorithms lies in the nature of their outputs. Whereas,
XarrayZarrRecipe creates an actual Zarr store
by mirroring the source file bytes into a new format,
HDFReferenceRecipe leverages the Python library
kerchunk to write lightweight metadata files which map
the location of bytes within the archival source files, allowing
users to read the original data in a cloud-optimized manner with
the Zarr library, but without duplicating bytes (Durant et al.,
2021).

from pangeo_forge_recipes.recipes import (
XarrayZarrRecipe

)

recipe = XarrayZarrRecipe(pattern)

Listing 2 | Instantiating a recipe algorithm with a source file pattern.

As an algorithm case study, we ll take a closer look at the
internals of the XarrayZarrRecipe . To begin, let’s consider
howwewould create an instance of this algorithm. In the simplest
case each algorithm instance requires only a FilePattern
instance as input. Using the instance we defined in Listing 1,
we define a recipe as shown in Listing 2. In just these few
simple lines, we have created an algorithm containing all of the
information needed to extract data from our specified provider
archive and transform it into the cloud-optimized Zarr format.

Real-world use cases will likely necessitate additional options
be specified for the XarrayZarrRecipe instance. Pangeo
Forge supports many such options. One worth highlighting is
the target_chunks option, which is used to indicate the
desired chunking scheme of the resulting ARCO data store. As
mentioned in section 2.3, chunking, the internal subsetting of a
large dataset, is often optimized for a particular analytical aim,
with a classic example being the divergent chunking required
for optimizing timeseries vs. spatial analyses. Contributors pass
a mapping of a dimension name to an integer value to specify
their desired chunking; e.g., target_chunks={"time":
10} tells the algorithm to divide the ARCO dataset into chunks
of length 10 in the time dimension. Should downstream data
users require a variation on this or another contributor-defined
option, they canmake or request changes to the recipe and release
those changes as a new dataset version (see section 3.3.2 for
further discussion of dataset versioning).

A full treatment of the Zarr specification is beyond the scope
of this paper, but a brief overview will provide a better context
for understanding. In a Zarr store, compressed chunks of data
are stored as individual objects within a hierarchy that includes a
single, consolidated JSONmetadata file. In actuality, cloud object
stores do not implement files and folders, but in a colloquial
sense we can imagine a Zarr store as a directory containing a

FIGURE 3 | XarrayZarrRecipe algorithm.

singlemetadata file alongside arbitrary numbers of data files, each
of which contains a chunk of the overall dataset (Miles et al.,
2021). The XarrayZarrRecipe algorithm which transforms
archival data into this format consists of four sequential steps,
each of which performs a series of sub-operations. Depending on
the specific use case, one or more of these steps may be omitted,
but we will consider them here for the scenario in which they are
all performed (Figure 3).

Caching input files is the first step of the
XarrayZarrRecipe algorithm. This step copies all archival
files required for the dataset into temporary storage in a cloud
storage bucket. This affords downstream steps of the algorithm
fast, parallelizable access to the source data. Typically, the cached
source files will be in NetCDF format (Rew et al., 2006). As the
name of the algorithm suggests, however, the actual requirement
is not for NetCDF inputs specifically, but rather for input files
compatible with Xarray, a widely-used Python interface for
labeled multidimensional arrays that supports multiple backend
file formats, including GRIB, COG, and some flavors of HDF5
(Hoyer and Hamman, 2017).

Before any actual bytes are written to the Zarr store, the
target storage location must first be initialized with the skeletal
structure of the ARCO dataset. We refer to this step, which
immediately follows caching, as prepare_target . Preparing
the target entails reading metadata from a representative subset
of the source files to establish an empty Zarr store of the proper
dimensions at the target location.

Once this framework has been established, the algorithm
moves on to actually copying bytes from the source data into
the Zarr store, via the store_chunks task. Internally, this
step performs a lot of heavy lifting, insofar as it determines

Frontiers in Climate | www.frontiersin.org 6 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

which specific byte ranges within which source files are required
to build each output chunk. Because both the cached source
bytes and target dataset reside on cloud object storage, which
supports scalable parallel reads and writes, this computationally
intensive step is designed to be executed in parallel; specifically,
each store_chunks task can be executed in any order,
without communication or synchronization needed between
processes. Parallelization of this step is essential to Pangeo Forge’s
performance, given that ARCO datasets are often hundreds
of gigabytes in size on the low end, and can easily reach
multi-petabyte scale.

Following the mirroring of all source bytes into their
corresponding Zarr chunks, the XarrayZarrRecipe
algorithm concludes with a finalization step which consolidates
the dataset’s metadata into a single lightweight JSON object.

Duplicating bytes is a costly undertaking, both
computationally, and because cloud storage on the order of
terabytes is not inexpensive. This is a primary reason why
sharing these ARCO datasets via publicly accessible cloud
buckets is so imperative: a single copy per cloud region or
multi-region zone can serve hundreds or thousands of scientists.
A clear advantage of the HDFReferenceRecipe algorithm is
that it does not require byte duplication, however it has certain
limitations. This approach requires that the data provider’s
server support random access to source file subsets, a common
but non-universal feature of HTTP and FTP servers. Because
the bytes on the data provider’s server are not duplicated,
use of HDFReferenceRecipe precludes forms of data
preprocessing which modify the data itself; only metadata
preprocessing is supported. Finally, opening data stores created
by this algorithm requires the Python package kerchunk ,
effectively preventing access from languages other than Python,
as of writing. The interface specification for virtual Zarr stores
is clearly defined in the kerchunk documentation, therefore
we anticipate it may be implemented in other languages in the
future (Durant et al., 2021). HDFReferenceRecipe presents
a remarkably efficient pathway for certain use cases, however as
with most efficiencies, it comes with inevitable tradeoffs.

Pangeo Forge’s initial algorithms produce Zarr outputs
because this format is well-suited to ARCO representation
of the gridded multidimensional array data that our early
scientific adopters use in their research. Disadvantages of
Zarr include the fact that popular data science programming
languages such as R do not yet have an interface for the
format (Durbin et al., 2020). As our community grows, we
anticipate future recipe implementations to include support for
most common ARCO formats. These include TileDB Embedded,
for multidimensional arrays; Cloud Optimized GeoTIFF (COG),
which is widely used in the geospatial imagery community;
Parquet, for optimized tabular data stores; and the recently
announced Cloud Optimized Point Cloud (COPC) format
for, among other uses, light detection and ranging (LiDAR)
measurements (Holmes, 2021; Le Dem and Blue, 2021; Hobu,
Inc., 2021; TileDB, Inc., 2021). As with our Zarr algorithms,
which depend on Xarray as an I/O interface, our path to
implementing these algorithms will build on the standard Python
interfaces for each data structure; e.g., Rasterio for raster data and

Pandas for tabular data (Gillies et al., 2013; Pandas Development
Team, 2021).

3.2.3. Storage Abstractions
In the discussion of source file patterns, above, we referred
to the fact that input data may be arbitrarily sourced from a
variety of different server protocols. The backend file transfer
interface which enables this flexibility is the Python package
Filesystem Spec, which provides a uniform API for interfacing
with a wide range of storage backends (Durant, 2021). This same
package provides the engine behind our storage abstractions, a
set of modular components which handle various permutations
of file caching, reading, and writing. These classes need not
be enumerated here; the interested reader can find details
about them in the Pangeo Forge documentation. One aspect
of these components worth highlighting, however, is that even
though cloud object storage is the typical destination of datasets
processed by Pangeo Forge, the platform is just as easily
able to read from and write to a local POSIX file system
or, for that matter, any Filesystem Spec-compatible storage
location. Among other things, this capability allows recipe
contributors to experiment with recipe algorithms by writing
ARCO dataset subsets to local disk during the development
process. For our typical cloud storage interfaces, the Filesystem
Spec implementations we employ most frequently are s3fs (for
Amazon Web Services S3), gcsfs (for Google Cloud Storage),
and adlfs (for Azure Datalake and Azure Blob Storage).

3.2.4. Execution Modes
Instantiating a recipe class does not by itself result in any data
transformation actually occurring; it merely specifies the steps
required to produce an ARCO dataset. In order to actually
perform this workflow, the recipe must be executed. A central
goal of the software design of pangeo-forge-recipes is
to be as flexible as possible regarding the execution framework.
A wide range of frameworks for parallel and/or distributed
computing exist, and pangeo-forge-recipes seeks to be
compatible with as many of these as possible. For example,
high-performance computing (HPC) users may prefer to use
traditional job-queue based execution, while cloud users may
want to use Kubernetes (Brewer, 2015).

pangeo-forge-recipes does not directly implement
any parallel computing. Rather, the library has the ability to
compile recipes into several different formats used by common
distributed computing frameworks. As of writing, we currently
support four different flavors of compilation:

• Compilation to a single Python function: This is a reference
implementation for serial execution.

• Compilation to Dask Delayed graph: Dask is a general
purpose parallel computing framework widely used
in the scientific Python world (Dask Development
Team, 2016). By compiling recipes to Dask graphs,
pangeo-forge-recipes users are able to leverage
the variety of different schedulers Dask has implemented for
a wide range of different computing platforms. These include
dask-jobqueue for HPC systems using PBS, SLURM,

Frontiers in Climate | www.frontiersin.org 7 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

SGE, etc. (Henderson, 1995; Gentzsch, 2001; Yoo et al.,
2003); Dask Kubernetes for cloud; and Dask-Yarn for Hadoop
(Shvachko et al., 2010). Dask’s single machine schedulers
enable recipes to be executed in parallel using threads or
processes on a single large server.

• Compilation to Prefect Flow: Prefect is a suite of workflow
automation tools encompassing both open source and
software-as-a-service (SaaS) components: Prefect Core is an
open source workflow engine for Python; a Prefect Flow is
a set of interrelated individual tasks, structured in a graph;
and Prefect Cloud is a SaaS platform which helps manage and
monitor Flow execution (Prefect Technologies, Inc., 2021).
Prefect provides a robust and observable way of running
recipes and is our current default model for the Pangeo Forge
cloud automation.

• Compilation to Apache Beam Pipeline: Apache Beam is
an open source framework for defining parallel processing
pipelines for batch and streaming data (Apache Software
Foundation, 2016). Beam Pipelines are high-level dataflow
graphs, composed of distributed datasets and globally
optimized, lazily evaluated processing steps. By compiling
to Beam Pipelines, pangeo-forge-recipes can be
executed on major distributed computation systems including
Apache Spark (Zaharia et al., 2016), Apache Fink (Apache
Software Foundation, 2015), and Google Cloud Dataflow
(Akidau et al., 2015), as well as through intermediaries such as
Hadoop, Yarn, Mesos, and Kubernetes (Shvachko et al., 2010;
Hindman et al., 2011; Brewer, 2015). Beam is a multi-language
framework capable of executing multiple languages in a single
Pipeline. This makes it possible to incorporate recipes into
execution workflows outside of the Python ecosystem.

In addition to these execution frameworks, recipe steps can be
manually run in sequential fashion in a Jupyter Notebook or
other interactive environment (Ragan-Kelley et al., 2014). This
facilitates user introspection and debugging.

3.3. Cloud Automation Platform
The nuclei of Pangeo Forge cloud automation are Bakeries, cloud
compute clusters dedicated specifically to executing recipes.
Bakeries provide a setting for contributors to run their recipes
on large-scale, distributed infrastructure and deposit ARCO
datasets into performant publicly-accessible cloud storage, all
entirely free of cost for the user. By running their recipes in a
Bakery, contributors are not only gaining access to free compute
and storage for themselves, but are also making a considerable
contribution back to the global Pangeo Forge community in the
form of ARCO datasets which will be easily discoverable and
reusable by anyone with access to a web browser.

Pangeo Forge follows the example of Conda Forge in
managing its contribution process through the cloud-hosted
version control platform GitHub. Recipe contributors who
wish to run their recipes in a Bakery first submit their
draft recipes via a Pull Request (PR) to the Pangeo Forge
staged-recipes repository which, as the name implies, is a
holding area for incoming recipes. Following an iterative review
process, described in detail below, recipe PRs are approved

by Pangeo Forge maintainers, at which point their contents
are automatically transferred out of the staged-recipes
repository and incorporated into a new, standalone repository
known as a Feedstock. It is from this Feedstock repository that
recipe execution is dispatched to the Bakery compute cluster. The
details of and rationale behind this workflow are provided in the
following subsections.

3.3.1. Contribution Workflow
Continuous integration (CI) is a software development practice
whereby code contributions are reviewed automatically by a
suite of specialized test software prior to being incorporated into
a production codebase. CI improves code quality by catching
errors or incompatibilities that may escape a human reviewer’s
attention. It also allows code contributions to a large project
to scale non-linearly to maintainer effort. Equipped with a
robust CI infrastructure, a single software package maintainer
can review and incorporate large numbers of contributions
with high confidence of their compatibility with the
underlying codebase.

Pangeo Forge currently relies on GitHub’s built-in CI
infrastructure, GitHub Actions, for automated review of
incoming recipe PRs (Figure 4). The first stage of this review
process consists of checks that the submitted files, including the
meta.yaml metadata and the recipe.py algorithm module,
conform to the technical and stylistic specifications defined in
the Pangeo Forge documentation. If errors are identified at this
stage, the contributor is notified automatically and given a list
of recommended changes, which must be incorporated prior to
advancing to the next stage of evaluation.

Once the PR passes this first gate, a human project maintainer
dispatches a command to run an automated execution test of
the recipe. This test of a reduced subset of the recipe runs
the same Prefect workflows on the same Bakery infrastructure
which will be used in the full-scale data transformation.
Creation of the reduced recipe is performed by a Pangeo
Forge function which prunes the dataset to a specified subset
of increments in the concatenation dimension. Any changes
required to the recipe’s functionality are identified here. For
datasets expected to conform to Climate and Forecast (CF)
Metadata Conventions, we plan to implement compliance checks
at this stage using established validation tooling such as the
Centre for Environmental Data Analysis (CEDA) CF Checker
and the Integrated Ocean Observing System (IOOS) Compliance
Checker (Adams et al., 2021; Eaton et al., 2021; Hatcher, 2021).
Following an iterative process of corrections based on the results
of the automated execution test (or a series of such tests, as
necessary), the recipe PR is accepted by a human maintainer.
At this point, a Feedstock repository is programmatically
generated by incorporating the recipe PR files into a predefined
repository template.

Creation of a Feedstock repository from the recipe PR triggers
the full build of the ARCOdataset, after which the only remaining
step in the contribution workflow is the generation of a catalog
listing for the dataset, an automated process dispatched by
GitHub Actions.

Frontiers in Climate | www.frontiersin.org 8 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

FIGURE 4 | Pangeo Forge contribution workflow.

3.3.2. Feedstocks
Feedstocks are GitHub repositories which place user-contributed
recipes adjacent to Pangeo Forge’s cloud automation tools and

grant access to Pangeo Forge credentials for authentication

in a Bakery compute cluster. The Feedstock repository

approach mirrors the model successfully established in

Conda Forge. Those familiar with software version control

processes will know that, most often, merging a PR results in

proposed code changes being incorporated into an existing
repository’s codebase. As in Conda Forge, merging a PR to
staged-recipes takes on a slightly different meaning in
Pangeo Forge. Rather than incorporating a recipe’s code into
staged-recipes , merging a recipe PR results in the creation
of a new, dedicated GitHub repository for the recipe called
a Feedstock.

We can think of this new Feedstock repository as the deployed
or productionalized version of the recipe. The template from
which GitHub Actions automatically generates this repository
includes automation hooks which register the recipe’s ARCO
dataset build with the specified Bakery infrastructure. All of
these steps are orchestrated automatically by GitHub Actions and
abstracted from the recipe code itself. As emphasized throughout
this paper, this separation of concerns is intended to provide a
pathway for scientific domain experts to participate in ARCO
data curation without the requirement that they understand the
highly-specialized domain of cloud infrastructure automation.

As public GitHub repositories, Feedstocks serve as invaluable
touchstones for ARCO dataset provenance tracking. Most users
will discover datasets through a catalog (more on cataloging
in section 3.4). Alongside other metadata, the catalog entry for

Frontiers in Climate | www.frontiersin.org 9 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

each dataset will contain a link to the Feedstock repository
used to create it. This link connects the user to the precise
recipe code used to produce each ARCO dataset. Among other
benefits, transparent provenance allows data users to investigate
whether apparent dataset errors or inconsistencies originate in
the archival source data, or are artifacts of the ARCO production
process. If the latter, the GitHub repository provides a natural
place for collaboration on a solution to the problem. Each time
a Feedstock repository is tagged with a new version number, the
recipe it contains is re-built to reflect any changes made since the
prior version.

Pangeo Forge implements a two-element semantic versioning
scheme for Feedstocks (and, by extension, the ARCO datasets
they produce). Each Feedstock is assigned a version conforming
to the format MAJOR.MINORand beginning at 1.0 . Increments
to the minor version are made for changes which are likely to
be backwards-compatible with user code that relies on an earlier
version of the data. Such updates include metadata corrections,
adding new variables, or extending the temporal range of existing
variables. Major version increments are triggered for non-
backwards-compatible edits such as changing existing variable
names or revising preprocessing functions such that they alter
existing variable arrays. Pangeo Forge will maintain prebuilt
copies of all major versions of a given dataset, but in the interest of
storage efficiency will only retain the latest minor version for each
of these major versioned datasets. (For example, if prebuilt copies
of 1.0 and 2.0 exist in storage when 2.1 is released, 1.0 will
be retained but 2.0 will be overwritten by 2.1 .) In cases where a
user may have a need for a specific minor version of a dataset that
has already been superseded in storage by a new minor version
release, the corresponding Feedstock can be used to rebuild any
version of the ARCO data store on an as-needed basis.

3.3.3. Bakeries: On-Demand Cloud Clusters Paired

With Cloud Storage Targets
As in Conda Forge, the majority of Pangeo Forge users will
not execute recipes themselves, but rather interact with recipe
outputs which are pre-built by shared cloud infrastructure. As
such, execution typically only occurs once per recipe (or, in
the case of updated recipe versions, once per recipe version).
This one-time execution builds the ARCO dataset to a publicly-
accessible cloud storage bucket. Arbitrary numbers of data users
can then access the pre-built dataset directly from this single
shared copy. This approach has many advantages for our use
case, including:

• Shared compute is provisioned and optimized by cloud
infrastructure experts within our community to excel at the
specific workloads associated with ARCO dataset production.

• As a shared resource, Pangeo Forge cloud compute can be
scaled to be larger and more powerful than most community
users are likely to be able to provide themselves.

• Storage and compute costs (financial, and in terms of
environmental footprint) are not duplicated unnecessarily.

Costs for these shared resources are currently covered through
a combination of free credits provided by technology service
providers and grants awarded to Pangeo Forge.

Bakeries, instances of Pangeo Forge’s shared cloud
infrastructure, can be created on Amazon Web Services,
Microsoft Azure, and Google Cloud Platform cloud
infrastructure. In keeping with the aforementioned Right
to Replicate, an open source template repository, tracing a
clear pathway for reproducing our entire technology stack,
is published on GitHub for each supported deployment
type (2i2c.org, 2021). In practice, the cost and complexity of
these deployments likely means they will be undertaken by
organizations rather than individuals. Over time, we anticipate
the benefits of participating in Pangeo Forge will motivate a wide
range of both non-profit and commercial partners to establish
Bakeries for community use. The greater the number and scale
of Bakeries in operation, the greater the capacity of Pangeo Forge
to democratize the means of ARCO data production.

When a community member submits a Pangeo Forge
recipe, they use the meta.yaml file included as part of
each recipe submission to specify the Bakery on which to
execute it, and the target storage location within that Bakery
in which to deposit the resulting dataset. Each Bakery will
manage their own compliment of storage buckets. Available
Bakeries and their specifications, including storage bucket
protocols and locations, are recorded in a public database
for reference. Selection of one Bakery over another may be
based on factors including the geographic location of the
associated storage bucket(s), given that physical proximity
of compute resources to data impacts performance for big
data analytics.

3.4. Cataloging and Loading
The SpatioTemporal Asset Catalog (STAC) is a human and
machine readable cataloging standard gaining rapid and
broad traction in the geospatial and earth observation (EO)
communities (Alemohammad, 2019; Emanuele, 2020; Holmes
et al., 2021). The value of STAC is enhanced by its tooling
ecosystem, which includes interfaces for many programming
languages and a community-supported web frontend (Emanuele
et al., 2021; Fitzsimmons et al., 2021). STAC was not originally
conceived as a cataloging solution for the Earth-system model
(ESM) data which will constitute a majority of Pangeo Forge’s
ARCO data holdings, however extensions such as the Datacube
Extension bring descriptive cataloging of ESM data with STAC
within reach (Mohr et al., 2021). Despite the imperfect fit of ESM
data into STAC, the momentum behind this specification and
its associated ecosystem recommends it as the best option for
implementation of our user-facing catalog.

Following the completion of each ARCO production build,
GitHub Actions automatically generates a STAC listing for
the resulting dataset and adds it to the Pangeo Forge root
catalog. Information which can be retrieved from the dataset
itself (including dimensions, shape, coordinates, and variable
names) is used to populate the catalog listing whenever possible.
Fields likely not present within the dataset, such as a long
description and license type, are populated with values from
the meta.yaml file which contributors include as part of
each recipe.

Frontiers in Climate | www.frontiersin.org 10 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

STAC provides not only a browsing interface, but also
defines a streamlined pathway for loading datasets. Catalog-
mediated loading simplifies the user experience as compared to
the added complexity of loading directly from a cloud storage
Uniform Resource Identifier (URI). Pangeo Forge currently
provides documentation for loading datasets with Python into
Jupyter Notebooks, given that our early adopters are likely
to be Python users (Perkel, 2018). One distinct advantage of
STAC’s JSON-based specification over other language-specific
cataloging options is its current (or in some cases, planned)
interoperability with a wide variety of programming languages.
We look forward to documenting catalog access from JavaScript,
R, Julia, and many other contemporary languages as our user
community grows.

Discoverability is the ease with which someone without prior
knowledge of a particular dataset can find out about its existence,
locate the data, and make use of it. As the project grows, we
aspire to enhance data discoverability by offering a range of
search modalities for the Pangeo Forge ARCO dataset catalog,
enabling users to explore available datasets by spatial, temporal,
and variable extents.

4. EXAMPLES

In the course of development and validation, we employed
Pangeo Forge to transform a selection of archival NetCDF
datasets, collectively totalling more than 2.5 terabytes in size, into
the cloud-optimized Zarr format. The resulting ARCO datasets
were stored on theOpen Storage Network (OSN), anNSF-funded
instance of Amazon Web Services S3 storage infrastructure, and
have already been featured in multiple presentations and/or
played a central role in ongoing research initiatives. We offer
a brief summary of these example results below followed by
some general reflections, drawn from these experiences, on the
performance of the platform to date.

4.1. SWOT Ocean Model Intercomparison
The upcoming Surface Water and Ocean Topography (SWOT)
satellite mission will measure sea-surface height at high
resolution with synthetic aperture radar (Morrow et al., 2019). In
coordination with this mission, an international consortium of
oceanographers are currently undertaking modeling and in-situ
field campaigns for purposes of comparison to the forthcoming
SWOT satellite measurements (Li, 2019). As part of these
efforts, we have transformed portions of the outputs from the
FESOM, GIGATL, HYCOM, eNATL60, and ORCA36 ocean
models into ARCO datasets with Pangeo Forge (Chassignet et al.,
2007; Danilov et al., 2017; Brodeau et al., 2020; Castrillo, 2020;
Gula, 2021). From a technical perspective, these transformations
involved caching approximately a terabyte of ocean model data
from FTP servers in France and Germany onto Google Cloud
Storage in Iowa, USA via Pangeo Forge’s internal file transfer
utilities. This experience highlighted the persisting influence of
geographic distance on network communication speeds and led
to many improvements in how we manage file transfer internally
within the platform. From the standpoint of data structure, the
multigigabyte-scale array sizes contained within some of these

model outputs encouraged the development of a specialized
subsetting pathway within pangeo-forge-recipes for
handling larger-than-memory input arrays.

4.2. NOAA Optimal Interpolation Sea
Surface Temperature
NOAA’s Optimal Interpolation Sea Surface Temperature (OISST)
is a daily resolution data product combining in-situ field
measurements with satellite temperature observations from the
Advanced Very High Resolution Radiometer (AVHRR) (Huang
et al., 2021). With Pangeo Forge, we created a single consolidated
Zarr store from 14,372 NOAA OISST source files spanning a
time range from 1981 to 2021. This Zarr store was subsequently
used as part of investigations into the morphology of ocean
temperature extremes (Scannell et al., 2021). In many ways, this
flavor of recipe (concatenation of NetCDF timeseries archives
into a consolidated ARCO store) is what the earliest versions
of Pangeo Forge were designed to excel at. We therefore relied
heavily on this recipe during early development as a useful test
case for our cloud automation infrastructure.

import gcsfs
import xarray as xr
open data
url = (

'gs://pangeo-forge-us-central1/pangeo-forge/'
'cmems/sea-level-anomalies.zarr'

)
gcs = gcsfs.GCSFileSystem(requester_pays= True)
ds = xr.open_zarr(

gcs.get_mapper(url), consolidated= True ,
)
calculate mean
sla_zm = ds.sla.mean('longitude' , keep_attrs= True)
compute using Dask cluster
with cluster.get_client():

sla_zm.load()
sla_zm.plot(robust= True , x= 'time')

Listing 3 | Code used to generate Figure 5 from the Pangeo Forge ARCO

sea-level data.

4.3. CMEMS Sea Surface Altimetry
A 70 gigabyte ARCO dataset of gridded sea surface altimetry
measurements was assembled by Pangeo Forge from nearly 9,000
files sourced from the Copernicus Marine Service (Copernicus
Marine Environment Monitoring Service, 2021). For researchers
wishing to study trends in sea level, downloading so many files
is a laborious barrier to science. With the Pangeo Forge ARCO
dataset, a reduction over the entire dataset to visualize the global
patterns of sea-level rise can be accomplished in less than a
minute and with just a few lines of code (shown in Listing 3).
This calculation was performed as part of live demonstrations of
Pangeo Forge presented at recent ESIP and Research Running
on Cloud Compute and Emerging Technologies (RRoCCET)
conferences (Barciauskas et al., 2021; Stern, 2021).

4.4. CESM POP 1-Degree
Processing this low-resolution output of the Community
Earth System Model (CESM) became an unexpected but

Frontiers in Climate | www.frontiersin.org 11 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

welcome opportunity to examine how Pangeo Forge handles
user credentials for accessing source files and resulted
directly in the addition of query string authentication
features to pangeo-forge-recipes . Regarding the data
transformation itself, the source files for this recipe represented
yet another example of containing larger-than-memory variable
arrays (National Center for Atmospheric Research, 2021). The
development team’s swift and successful adaptation of Pangeo
Forge to accommodate this use case is a testament to the
extensibility of the platform’s base abstractions.

4.5. SODA 3.4.2 ICE
The Simple Ocean Data Assimilation (SODA) model aims to
reconstruct twentieth century ocean physics (Carton et al., 2018).
We transformed a subset of this model’s output consisting of
roughly 2,100 source files into a consolidated ARCO data store
to aid a colleague’s ongoing research.

4.6. Challenges, Performance, and Costs
We have had no difficulty converting any of the NetCDF files
from our use cases into Zarr, thanks to Xarray’s sophisticated
metadata and encoding management. Xarray faithfully replicates
all variables, metadata, and datatypes present in the archival
NetCDF files into their Zarr analogs such that the resulting
Zarr stores, when opened with Xarray, are identical to the
dataset present in the original (aggregated) NetCDF files. The
main known limitation of Xarray’s Zarr interface is that it
does not support hierarchically nested NetCDF groups, only flat
groups; this particular limitation has not affected our above-listed
use cases.

Pangeo Forge is generally I/O bound. The greatest challenge
we have experienced is slow downloading from source data
archives during the caching phase of recipe execution. If too
many simultaneous requests are made to an HTTP or FTP source
server, this will typically result in the per-file transfer throughput
decreasing considerably. Therefore, caching source files for a
given recipe is not highly parallelizable. As noted in section
4.1, transcontinental data transfer can be slow process, even for
sequential requests. Once the source files are cached into the
cloud, however, platform performance scales out well, since all
I/O is happening against cloud object storage.

We have not yet made a systematic assessment of cost
and performance. Regarding minimum hardware requirements,
Bakery workloads are typically distributed across large numbers
of lightweight compute nodes. In a typical implementation, each
node may be provisioned with roughly 4 gigabytes of RAM
and one CPU core. The larger-than-memory archival arrays
referenced in sections 4.1, 4.4 challenged this computational
model and prompted the addition of subsetting routines
to the platform that facilitate division of arbitrarily-sized
input arrays along one or multiple dimensional axes. This
allows our lightweight compute nodes to handle inputs in
excess of their RAM allocation. As we move from the
initial software development phase into productionalization of
increasing numbers of Bakeries, we look forward to sharing
more fine-grained assessments of the platform’s performance and
resource requirements.

5. FUTURE OUTLOOK

As of the time of writing this paper, all of the major components
of Pangeo Forge (with the exception of the data catalog)
have been released openly on GitHub, tested thoroughly, and
integrated through end-to-end workflows in the cloud. Dozens
of actual and potential users have interacted with the project via
GitHub issues and bi-weekly meetings. However, the platform
has not been officially “launched,” as in, advertised broadly to the
public as open for business.We anticipate taking this step in early
2022. After that point, development will continue indefinitely
into the future as we continue to refine and improve the service
in response to user feedback.

The current development of Pangeo Forge is supported
by a 3 year grant from the National Science Foundation
(NSF) EarthCube program. Storage expenses are covered
through our partnership with the Open Storage Network
(OSN), which provides Pangeo Forge with 100 terabytes of
cloud storage space, accessible over the S3 protocol for free
(Public cloud storage buckets often implement a “requester-
pays” model in which users are responsible for the cost
of moving data; our OSN storage does not). All three
major cloud providers offer programs for free hosting of
public scientific datasets. We anticipate engaging in these
programs as our storage needs grow. We have also begun to
evaluate distributed, peer-to-peer storage systems such as the
InterPlanetary FileSystem (IPFS) and Filecoin as an alternative
storage option.

Pangeo Forge is not itself an archival repository but
rather a platform for transforming data, sourced from archival
repositories, into optimized formats. We therefore do not
commit to preserving every recipe’s materialized data in
perpetuity. In nearly all cases, recipes source data from archival
repositories with a long-term stewardship plan. It should
therefore almost always be possible to regenerate a Pangeo
Forge ARCO dataset by re-running the recipe contained in the
versioned Feedstock repository fromwhich it was originally built.

We hope that the platform we create during the course of
our NSF award will gain traction that merits long-term financial
support for the project. The level of support required will
depend on the volume of community interest and participation.
In any scenario, however, it is not feasible for Pangeo Forge
core development team to personally maintain every Feedstock.
Instead, via the crowdsourcing model, we aspire to leverage the
expertise of a large community of contributors, each of whomwill
be responsible for keeping their recipes up to date. The core team
will support these maintainers to the greatest degree possible,
via direct mentorship as well as more scalable modes of support
such as documentation and automated integration tests. Recipe
contribution is not the only thing we envision crowdsourcing.
Indeed, the platform itself is designed to be “franchisable”: any
organization can run a Bakery. We envision Pangeo Forge not
as a single system with one owner but rather as a federation.
Participating organizations will bear the compute and storage
costs of the datasets they care about supporting and recipes
will be routed to an appropriate Bakery as part of the GitHub
contribution workflow.

Frontiers in Climate | www.frontiersin.org 12 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

FIGURE 5 | Daily zonal mean sea-level anomaly, calculated from Pangeo Forge ARCO dataset.

In the remainder of this final section, we conclude by
imagining a future state, several years from now, in which Pangeo
Forge has cultivated a broad community of recipe contributors
from across disciplines, who help populate and maintain a multi-
petabyte database of ARCO datasets in the cloud. How will this
transform research and applications using environmental data?
What follows is inherently speculative, and we look forward to
revisiting these speculations in several years time to see how
things turn out.

5.1. An Ecosystem for Open Science
Pangeo Forge and the ARCO data repositories it generates are
most valuable as part of a broader ecosystem for open science
in the cloud (Gentemann et al., 2021). In particular, Pangeo
Forge ARCO data is designed to be used together with scalable,
data-proximate computing. For interactive data analysis, Jupyter
(including Jupyter Lab and Jupyter Hub) is emerging as a
consensus open-source platform for the scientific community
(Kluyver et al., 2016). Jupyter supports interactive computations
in all major scientific computing languages, including Python,
R, and Julia (We note especially that, although Pangeo Forge
itself is written in Python, the data formats and catalogs it
generates are all based on open standards, accessible from any
major programming language). Jupyter in the cloud, combined
with cloud-native parallel computing tools such as Dask (Rocklin,
2015) and Spark (Zaharia et al., 2016), creates a complete end-to-
end solution for data-intensive research based purely on open-
source software. By accelerating the production and sharing of
ARCO data, we hope to stimulate further development and broad
adoption of this new model for scientific research.

Beyond expert analysis, we also hope that the datasets
produced by Pangeo Forge will enable a rich downstream
ecosystem of tools to allow non-experts to interact with large,
complex datasets without writing code. ARCO formats like
Zarr are ideal for powering APIs, dashboards, and interactive

websites, since they are based on open standards and can be read
quickly from any programming language, including JavaScript,
the language of the web. As an example, the sea-level data
shown in Figure 5 could be used to create an interactive data
visualization website for high-school students to study sea level
change. Students wishing to go beyond the visual exploration
could transition to an interactive Jupyter notebook and write
their first lines of code, all pointing at the same underling data.
Similarly, industry experts and policymakers could use such tools
to examine climate impacts on their sector of interest. The direct
provenance chain from the interactive tool, to the ARCO data
copy, to the original upstream data provider would provide a fully
transparent and trustworthy foundation for decision making.

5.2. Collaboration and Recognition Around
Data Production
While nearly all scientists recognize the importance of data
for research, scientific incentive systems do not value data
production nearly as much as other types of scientific work, such
as model development (Pierce et al., 2019). This was emphasized
in a recent paper from Google Research, warning of the impact
of data quality issues in the context of artificial intelligence
research (Sambasivan et al., 2021). The undervaluing of “data
work” is pervasive in the sciences, as evidenced by the existence
of pejorative terms such as “data janitor.” Data work often occurs
in the shadows of science, not talked about much in papers or
recognized via honors and awards. One of our central hopes
with Pangeo Forge is that the preparation of well curated, quality
controlled datasets immediately accessible to high-performance
computing will become an area of increased collaboration and
visibility in environmental science research. By leveraging the
interactivity inherent in GitHub discussions, we hope to see
researchers from different institutions and countries coming
together around building shared datasets of use to many different

Frontiers in Climate | www.frontiersin.org 13 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

groups. By establishing a community storehouse of datasets
themselves, as well as Feedstock repositories containing dataset
provenances, we hope to offer citable artifacts of data production
which, if reused and credited by the community, may serve to
elevate the profile of this essential scientific work. Perhaps 1 day
we will give an award for “most valuable recipe”!

Pangeo Forge does not currently implement a system for
assigning unique persistent identifiers, such as Digital Object
Identifiers (DOIs), to either Feedstocks or the datasets they
produce. We certainly appreciate the tremendous benefit such
identifiers provide, particularly for purposes of academic citation.
As noted above, at this stage of our development we are not
making a commitment to keeping datasets online in perpetuity,
as would be required for a DOI. This reflection leads us
to conclude that the Pangeo Forge Feedstock, a lightweight
repository which will be permanently stored on GitHub, may
in fact be the most appropriate object for DOI-assignment
and citation. Feedstocks (and within them, recipes) are also
the products which are most plainly expressive of contributors’
technical and domain expertise. We welcome community
feedback on how to best support contributors to receive the credit
and recognition they deserve.

5.3. Asking More Ambitious Questions
From Data
A recurring theme of the examples in section 4 is the relative
simplicity of aligning thousands of source files into a single
consolidated dataset with Pangeo Forge. The ARCO datasets
which result from this process are not simply faster to work
with than archival data, in many cases they enable an entirely
new worldview. When working within the confines of traditional
filesystems, it can be difficult for the scientific imagination to fly
nimbly across the grand spatial and temporal scales permitted
by ARCO workflows. By making entire worlds (observed or
synthetic, past or future) accessible in an instant through shared
ARCO data stores, we wholly expect that Pangeo Forge to not
only accelerate existing science, but to also play a pivotal role
in the reimagination of what’s possible in ocean, weather, and
climate science at scale.

5.4. Reproducibility in Action
Each Pangeo Forge recipe encodes data provenance starting from
an archival source, all the way to the precise derived version used
for a given research project. Tracking an unbroken provenance
chain is particularly important in the context of ARCO data,
which undergoes significant transformation prior to being used
for analysis. The algorithms used to create ARCO datasets
encode assumptions about what types of homogenization
and/or simplification may serve the investigation for which
the dataset is being produced. These judgement calls can
easily be as impactful to the scientific outcome as the
analysis itself. By tracking the ARCO production methodology
through a recipe’s Feedstock repository, Pangeo Forge affords
visibility into the choices made at the data curation stage
of research.

The oft-quoted eighty-twenty rule describes a typical
ratio of time required for cleaning and preparing data vs.

actually performing analysis. Depending on the type of
preprocessing applied to a dataset, the time and technical
knowledge required to reproduce previous derived datasets,
let alone results, represents a major barrier to reproducibility
in computational science. Duplication of data preparation
is unnecessary and can be avoided if the dataset used for a
given study, along with the recipe used to create it, are made
publicly accessible.

5.5. Broadening Participation
Traditionally, working with big environmental datasets has
required considerable infrastructure: big computers, hard drives,
and IT staff to maintain them. This severely limits who
can participate in research. One of the great transformative
potentials of cloud-native science is the ability to put powerful
infrastructure into the hands of anyone with an internet
connection (Gentemann et al., 2021). In our recent experience,
we have observed that it is easy enough to get started with cloud
computing; the hard part is getting the right data into the cloud
in the right format.

Pangeo Forge not only shifts the infrastructure burden
of data production from local infrastructure to the
cloud; it also lightens the cognitive burden for potential
contributors by encouraging them to focus on the
domain-specific details of the data, rather than the data
engineering. As a recipe contributor to Pangeo Forge,
anyone with a laptop can run their ARCO transformation
algorithm at a scale previously only available to a small
organizationally-affiliated group.

The true success of Pangeo Forge depends on creation of
a space where a diverse community of recipe contributors
can come together to curate the ARCO datasets which
will define the next decade of cloud-native, big-data
ocean, weather, and climate science. How we best nurture
this community, and ensure they have the education,
tools, and support they need to succeed, remains an
open question, and an area where we seek feedback from
the reader.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CS drafted the manuscript with contributions from
all other authors. All authors contributed to the
design and implementation of Pangeo Forge. All
authors read and approved the submitted version of
the manuscript.

FUNDING

Pangeo Forge development is funded by the National Science
Foundation (NSF) Award 2026932.

Frontiers in Climate | www.frontiersin.org 14 February 2022 | Volume 3 | Article 782909

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

ACKNOWLEDGMENTS

Pangeo Forge benefits from the thoughtful contributions
and feedback of a broad community of scientists and

software engineers. We extend heartfelt thanks to all
those who have contributed in any form including code,
documentation, or via participation in community meetings
and discussions.

REFERENCES

2i2c.org (2021). The Customer Right to Replicate. Available online at: https://2i2c.

org/right-to-replicate/ (accessed September 22, 2021).

Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-Luca, C. C., Crone,

T. J., Gentemann, C. L., et al. (2021). Cloud-native repositories for big scientific

data. Comput. Sci. Eng. 23, 26–35. doi: 10.1109/MCSE.2021.3059437

Adams, B., Campbell, L., Kell, D., Fernandes, F., Fratantonio, B., Foster, D., et al.

(2021). IOOS Compliance Checker. Available online at: https://github.com/ioos/

compliance-checker

Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma,

R. J., Lax, R., et al. (2015). The dataflow model: A practical approach to

balancing correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing. Proc. VLDB Endowment 8, 1792–1803. Available online

at: https://research.google/pubs/pub43864/

Alemohammad, H. (2019). “Radiant mlhub: A repository for machine learning

ready geospatial training data,” in AGU Fall Meeting Abstracts, (IN11A–05)

(Washington, DC).

Anaconda Inc. (2021).Anaconda Software Distribution. Available online at: https://

docs.anaconda.com/

Apache Software Foundation (2015).Apache Fink. Available online at: https://flink.

apache.org/

Apache Software Foundation (2016). Apache Beam. Available online at: https://

beam.apache.org/

Barciauskas, A., Shrestha, S., Casey, R., Signell, R., Friesz, A., Olson, S., et al.

(2021). “The saga continues: cloud-optimized data formats,” in Earth Science

Information Partners (ESIP) Summer Meeting 2021 (Severna Park, MD: ESIP).

Brewer, E. A. (2015). Kubernetes and the path to cloud native. in Proceedings of

the Sixth ACM Symposium on Cloud Computing, SoCC ’15, (Association for

Computing Machinery) (New York, NY), 167.

Brodeau, L., Sommer, J. L., and Albert, A. (2020). Ocean-next/eNATL60: Material

Describing the Set-up and the Assessment of NEMO-eNATL60 Simulations

(Version v1). Zenodo. doi: 10.5281/zenodo.4032732

Carton, J. A., Chepurin, G. A., and Chen, L. (2018). Soda3: a new ocean

climate reanalysis. J. Climate 31, 6967–6983. doi: 10.1175/JCLI-D-18-

0149.1

Castrillo, M. (2020). “The nemo orca36 configuration and approaches to

increase nemo4 efficiency,” in The 6th European Network for Earth System

Modelling (ENES) Workshop on High Performance Computing for Climate and

Weather (ENES). Available online at: https://www.esiwace.eu/events/6th-hpc-

workshop/presentations/the-nemo-orca36-configuration-and-approaches-

to-increase-nemo4-efficiency

Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan,

P. J., Wallcraft, A. J., et al. (2007). The hycom (hybrid coordinate

ocean model) data assimilative system. J. Marine Syst. 65, 60–83.

doi: 10.1016/j.jmarsys.2005.09.016

Conda-Forge Community (2015). The Conda-Forge Project: Community-Based

Software Distribution Built on the Conda Package Format and Ecosystem.

Zenodo. doi: 10.5281/zenodo.4774217

Copernicus Marine Environment Monitoring Service (2021).

Global Ocean Gridded l4 Sea Surface Heights and Derived

Variables Reprocessed (1993-ongoing). Available online at:

https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY

_L4_REP_OBSERVATIONS_008_047/INFORMATION

Cornillon, P., Adams, J., Blumenthal, M. B., Chassignet, E., Davis, E., Hankin, S.,

Kinter, J., et al. (2009). Nvods and the development of opendap. Oceanography

22, 116–127. doi: 10.5670/oceanog.2009.43

Danilov, S., Sidorenko, D., Wang, Q., and Jung, T. (2017). The finite-

volume sea ice–ocean model (fesom2). Geosci. Model Develop. 10, 765–789.

doi: 10.5194/gmd-10-765-2017

Dask Development Team (2016). Dask: Library for Dynamic Task Scheduling.

Avaialable online at: https://dask.org

Durant, M. (2021). fsspec: Filesystem Interfaces for Python. Avaialable online at:

https://filesystem-spec.readthedocs.io/

Durant, M., Sterzinger, L., Signell, R., Jelenak, A., Maddox, L., Bell, R., et al. (2021).

kerchunk. Avaialable online at: https://github.com/fsspec/kerchunk

Durbin, C., Quinn, P., and Shum, D. (2020). Task 51-cloud-optimized format study.

NTRS—NASA Technical Reports Server.

Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., and Lymburner,

L. (2018). Analysis ready data: Enabling analysis of the landsat archive. Remote

Sens. 10, 1363. doi: 10.3390/rs10091363

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Blower, J., et al. (2021).

NetCDF Climate and Forecast (CF) Metadata Conventions. Available online at:

https://cfconventions.org/

Emanuele, R. (2020). “Using spatiotemporal asset catalogs (stac) to modularize

end-to-end machine learning workflows for remote sensing data,” in AGU Fall

Meeting Abstracts, (IN007–01) (Washington, DC).

Emanuele, R., Duckworth, J., Engmark, V., Kassel, S., Schwehr, K., Olaya, V., et al.

(2021). PySTAC: A library for working with SpatioTemporal Asset Catalog in

Python 3. Available online at: https://github.com/stac-utils/pystac

Fitzsimmons, S., Mohr, M., Emanuele, R., Blackmon-Luca, C., et al. (2021). STAC

Browser: A Vue-Based STAC Browser for Static Catalogs and APIs. Available

online at: https://github.com/radiantearth/stac-browser

Gentemann, C. L., Holdgraf, C., Abernathey, R., Crichton, D., Colliander,

J., Kearns, E. J., et al. (2021). Science storms the cloud. AGU Adv.,

2:e2020AV000354. doi: 10.1029/2020AV000354

Gentzsch, W. (2001). Sun grid engine: towards creating a compute power grid.

in Proceedings First IEEE/ACM International Symposium on Cluster Computing

and the Grid, 35–36. doi: 10.1109/CCGRID.2001.923173

Gillies, S. et al. (2013). Rasterio: Geospatial Raster I/O for Python Programmers.

Mapbox. Available online at: https://github.com/rasterio/rasterio

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.

(2017). Google earth engine: Planetary-scale geospatial analysis for everyone.

Remote Sens. Environ. 202, 18–27. doi: 10.1016/j.rse.2017.06.031

Gula, J. (2021). Mesharou/GIGATL: Description of the GIGATL Simulations

(v1.1). Zenodo. doi: 10.5281/zenodo.4948523

Hankin, S. C., Blower, J. D., Carval, T., Casey, K. S., Donlon, C., Lauret, O.,

et al. (2010). Netcdf-cf-opendap: Standards for ocean data interoperability and

object lessons for community data standards processes. in Oceanobs 2009,

Venice Convention Centre, 21-25 septembre 2009, Venise.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,

357–362. doi: 10.1038/s41586-020-2649-2

Hatcher, R. (2021). cf-checker. Available online at: https://github.com/cedadev/cf-

checker

Henderson, R. L. (1995). “Job scheduling under the portable batch system,” in Job

Scheduling Strategies for Parallel Processing, eds D. G. Feitelson and L. Rudolph

(Berlin; Heidelberg: Springer), 279–294.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H.,

et al. (2011). Mesos: A platform for fine-grained resource sharing in the data

center. in NSDI, vol. 11. 22–22. Available online at: https://scholar.google.

com/scholar?hl=en&as_sdt=0%2C5&q=+Mesos%3A+A+platform+for+fine-

grained+resource+sharing+in+the+data+center.&btnG=

Hobu, Inc. (2021). Cloud Optimized Point CLoud (COPC). Available online at:

https://copc.io/

Holmes, C. (2018). Analysis Ready Data Defined. Available online at: https://

medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815.

(accessed September 09, 2021).

Holmes, C. (2021). Cloud Optimized GeoTIFF Specification. Available online at:

https://github.com/cogeotiff/cog-spec

Frontiers in Climate | www.frontiersin.org 15 February 2022 | Volume 3 | Article 782909

https://2i2c.org/right-to-replicate/
https://2i2c.org/right-to-replicate/
https://doi.org/10.1109/MCSE.2021.3059437
https://github.com/ioos/compliance-checker
https://github.com/ioos/compliance-checker
https://research.google/pubs/pub43864/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://flink.apache.org/
https://flink.apache.org/
https://beam.apache.org/
https://beam.apache.org/
https://doi.org/10.5281/zenodo.4032732
https://doi.org/10.1175/JCLI-D-18-0149.1
https://www.esiwace.eu/events/6th-hpc-workshop/presentations/the-nemo-orca36-configuration-and-approaches-to-increase-nemo4-efficiency
https://www.esiwace.eu/events/6th-hpc-workshop/presentations/the-nemo-orca36-configuration-and-approaches-to-increase-nemo4-efficiency
https://www.esiwace.eu/events/6th-hpc-workshop/presentations/the-nemo-orca36-configuration-and-approaches-to-increase-nemo4-efficiency
https://doi.org/10.1016/j.jmarsys.2005.09.016
https://doi.org/10.5281/zenodo.4774217
https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047/INFORMATION
https://doi.org/10.5670/oceanog.2009.43
https://doi.org/10.5194/gmd-10-765-2017
https://dask.org
https://filesystem-spec.readthedocs.io/
https://github.com/fsspec/kerchunk
https://doi.org/10.3390/rs10091363
https://cfconventions.org/
https://github.com/stac-utils/pystac
https://github.com/radiantearth/stac-browser
https://doi.org/10.1029/2020AV000354
https://doi.org/10.1109/CCGRID.2001.923173
https://github.com/rasterio/rasterio
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.5281/zenodo.4948523
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/cedadev/cf-checker
https://github.com/cedadev/cf-checker
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Mesos%3A+A+platform+for+fine-grained+resource+sharing+in+the+data+center.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Mesos%3A+A+platform+for+fine-grained+resource+sharing+in+the+data+center.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Mesos%3A+A+platform+for+fine-grained+resource+sharing+in+the+data+center.&btnG=
https://copc.io/
https://medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815
https://medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815
https://github.com/cogeotiff/cog-spec
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

Stern et al. Pangeo Forge

Holmes, C., Mohr, M., Hanson, M., Banting, J., Smith, M., Mathot, E., et al. (2021).

SpatioTemporal Asset Catalog Specification-Making Geospatial Assets Openly

Searchable and Crawlable. Available online at: https://github.com/radiantearth/

stac-spec

Hoyer, S. and Hamman, J. (2017). xarray: N-D labeled arrays and

datasets in Python. J. Open Res. Softw. 5, 10. doi: 10.5334/jo

rs.148

Hua, H., Barciauskas, A., Chang, G., and Lynnes, C. (2020). “In042-lessons

learned on supporting analysis ready data (ard) with analytics optimized data

stores/services (aods) in collaborative analysis platforms posters,” in American

Geophysical Union (AGU) Fall Meeting 2020 (Washington, DC: AGU).

Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., et al. (2021).

Improvements of the daily optimum interpolation sea surface temperature

(doisst) version 2.1. J. Climate 34, 2923–2939. doi: 10.1175/JCLI-D-20-

0166.1

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,

J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., et al. (2016).

“Jupyter notebooks a publishing format for reproducible computational

workflows,” in Positioning and Power in Academic Publishing: Players, Agents

and Agendas, eds F. Loizides and B. Scmidt (Amsterdam: IOS Press), 87–90.

Available online at: https://www.iospress.com/catalog/books/positioning-and-

power-in-academic-publishing-players-agents-and-agendas

Le Dem, J., and Blue, R. (2021). Apache Parquet. Available online at: https://github.

com/apache/parquet-format

Li, J. (2019). SWOT Adopt-A-Crossover Consortium has been endorsed by CLIVAR.

Available online at: https://www.clivar.org/news/swot-%E2%80%98adopt-

crossover%E2%80%99-consortium-has-been-endorsed-clivar (accessed

September 09, 2021).

Microsoft (2021). The Planetary Computer. Available online at: https://

planetarycomputer.microsoft.com/

Miles, A., Bussonnier, M., Moore, J., Fulton, A., Bourbeau, J., Onalan,

T., et al. (2021). zarr-developers/zarr-python: v2.10.3. Zenodo.

doi: 10.5281/zenodo.5712786

Mohr, M., Hanson, M., Augspurger, T., Emanuele, R., Holmes, C., Scott, R., et al.

(2021). Datacube Extension Specification. Available online at: https://github.

com/stac-extensions/datacube

Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., et al.

(2019). Global observations of fine-scale ocean surface topography with the

surface water and ocean topography (swot) mission. Front. Marine Sci., 6:232.

doi: 10.3389/fmars.2019.00232

National Center for Atmospheric Research. (2021). One degree, standard

resolution CESM simulation from the Accelerated Scientific Discovery Phase

of Yellowstone. NCAR Climate Data Gateway. Available Online at: https://

www.earthsystemgrid.org/dataset/ucar.cgd.asd.cs.v5_rel04_BC5_ne30_g16.

ocn.proc.daily_ave.html

Pangeo Forge Community (2021). Pangeo Forge. Available online at: https://

pangeo-forge.readthedocs.io/

Perkel, J. M. (2018). Why jupyter is data scientists’ computational

notebook of choice. Nature 563, 145–147. doi: 10.1038/d41586-018-

07196-1

Pierce, H. H., Dev, A., Statham, E., and Bierer, B. E. (2019). Credit data

generators for data reuse. Nature 570, 30–32. doi: 10.1038/d41586-019-

01715-4

Prefect Technologies, Inc. (2021). Prefect. Available online at: https://docs.prefect.

io/

Quinn, P., Abernathey, R., Signell, R., Neufeld, D., Privette, A., Killick, P., et al.

(2020). “Cloud-optimized data,” in Earth Science Information Partners (ESIP)

Summer Meeting 2020. ESIP.

Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., et al.

(2014). “The jupyter/ipython architecture: a unified view of computational

research, from interactive exploration to communication and publication,” in

AGU Fall Meeting Abstracts, vol. 2014, H44D–07.

Ramamurthy, M. (2017). “Geoscience cyberinfrastructure in the cloud: data-

proximate computing to address big data and open science challenges,”

in 2017 IEEE 13th International Conference on e-Science (e-Science),

444–445.

Rew, R., Hartnett, E., Caron, J., et al. (2006). “Netcdf-4: software implementing an

enhanced data model for the geosciences,” in 22nd International Conference on

Interactive Information Processing Systems for Meteorology, Oceanography, and

Hydrology, vol. 6.

Rocklin, M. (2015). “Dask: Parallel computation with blocked algorithms and task

scheduling,” in Proceedings of the 14th python in science conference, vol. 130,

136. Citeseer.

Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P. K., and Aroyo,

L. M. (2021). “Everyone wants to do the model work, not the data work”: Data

cascades in high-stakes ai.

Scannell, H., Abernathey, R., Busecke, J., Gagne, D. J., Thompson, L., and Whitt,

D. (2021). Ocetrac: morphological image processing for monitoring ocean

temperature extremes. in Scientific Computing with Python (SciPy) 2021. SciPy.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). “The hadoop

distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), 1–10.

Stall, S., Yarmey, L., Cutcher-Gershenfeld, J., Hanson, B., Lehnert, K.,

Nosek, B., et al. (2019). Make scientific data fair. Nature 570, 27–29.

doi: 10.1038/d41586-019-01720-7

Stern, C. (2021). “Analysis ready data in the cloud,” in Research Running on

Cloud Compute and Emerging Technologies (RRoCCET) 2021. RRoCCET.

Available at Available online at: https://na.eventscloud.com/file_uploads/

25629138ed86f9d6e6b4d8b8189e3b87_ConferenceProceedings.v2.pdf

(accessed September 09, 2021).

The Pandas Development Team. (2021). pandas-dev/pandas: Pandas. Zenodo.

doi: 10.5281/zenodo.3509134

TileDB, Inc. (2021). TileDB. Available online at: https://docs.tiledb.com/

Wagemann, J. (2020). ERA5 Reanalysis Data Available in Earth Engine. Available

online at: https://www.ecmwf.int/en/newsletter/162/news/era5-reanalysis-

data-available-earth-engine (accessed September 09, 2021).

Wilkinson,M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,M., Baak,

A., et al. (2016). The fair guiding principles for scientific data management and

stewardship. Sci. Data 3:160018. doi: 10.1038/sdata.2016.18

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “Slurm: Simple linux utility

for resource management,” in Job Scheduling Strategies for Parallel Processing,

eds D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Berlin; Heidelberg:

Springer), 44–60.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., et al. (2016).

Apache spark: a unified engine for big data processing. Commun. ACM 59,

56–65. doi: 10.1145/2934664

Conflict of Interest: AMwas employed by company Google. SH was employed by

company Development Seed.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Stern, Abernathey, Hamman, Wegener, Lepore, Harkins and

Merose. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Climate | www.frontiersin.org 16 February 2022 | Volume 3 | Article 782909

https://github.com/radiantearth/stac-spec
https://github.com/radiantearth/stac-spec
https://doi.org/10.5334/jors.148
https://doi.org/10.1175/JCLI-D-20-0166.1
https://www.iospress.com/catalog/books/positioning-and-power-in-academic-publishing-players-agents-and-agendas
https://www.iospress.com/catalog/books/positioning-and-power-in-academic-publishing-players-agents-and-agendas
https://github.com/apache/parquet-format
https://github.com/apache/parquet-format
https://www.clivar.org/news/swot-%E2%80%98adopt-crossover%E2%80%99-consortium-has-been-endorsed-clivar
https://www.clivar.org/news/swot-%E2%80%98adopt-crossover%E2%80%99-consortium-has-been-endorsed-clivar
https://planetarycomputer.microsoft.com/
https://planetarycomputer.microsoft.com/
https://doi.org/10.5281/zenodo.5712786
https://github.com/stac-extensions/datacube
https://github.com/stac-extensions/datacube
https://doi.org/10.3389/fmars.2019.00232
https://www.earthsystemgrid.org/dataset/ucar.cgd.asd.cs.v5_rel04_BC5_ne30_g16.ocn.proc.daily_ave.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.asd.cs.v5_rel04_BC5_ne30_g16.ocn.proc.daily_ave.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.asd.cs.v5_rel04_BC5_ne30_g16.ocn.proc.daily_ave.html
https://pangeo-forge.readthedocs.io/
https://pangeo-forge.readthedocs.io/
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1038/d41586-019-01715-4
https://docs.prefect.io/
https://docs.prefect.io/
https://doi.org/10.1038/d41586-019-01720-7
https://na.eventscloud.com/file_uploads/25629138ed86f9d6e6b4d8b8189e3b87_ConferenceProceedings.v2.pdf
https://na.eventscloud.com/file_uploads/25629138ed86f9d6e6b4d8b8189e3b87_ConferenceProceedings.v2.pdf
https://doi.org/10.5281/zenodo.3509134
https://docs.tiledb.com/
https://www.ecmwf.int/en/newsletter/162/news/era5-reanalysis-data-available-earth-engine
https://www.ecmwf.int/en/newsletter/162/news/era5-reanalysis-data-available-earth-engine
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1145/2934664
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

	Pangeo Forge: Crowdsourcing Analysis-Ready, Cloud Optimized Data Production
	1. Introduction
	2. Motivation and Inspiration
	2.1. Analysis-Ready, Cloud-Optimized Data
	2.2. Open Science, Open Source
	2.3. Crowdsourcing Complexity: the Conda Forge Model

	3. Technical Design and Implementation of Pangeo Forge
	3.1. Recipes: Object-Oriented Extraction, Optimization, and Storage (EOS) Algorithms
	3.2. Base Abstractions: Insulating Scientific Domain Expertise From Cloud Automation Concerns
	3.2.1. Source File Patterns
	3.2.2. Recipe Classes
	3.2.3. Storage Abstractions
	3.2.4. Execution Modes

	3.3. Cloud Automation Platform
	3.3.1. Contribution Workflow
	3.3.2. Feedstocks
	3.3.3. Bakeries: On-Demand Cloud Clusters Paired With Cloud Storage Targets

	3.4. Cataloging and Loading

	4. Examples
	4.1. SWOT Ocean Model Intercomparison
	4.2. NOAA Optimal Interpolation Sea Surface Temperature
	4.3. CMEMS Sea Surface Altimetry
	4.4. CESM POP 1-Degree
	4.5. SODA 3.4.2 ICE
	4.6. Challenges, Performance, and Costs

	5. Future Outlook
	5.1. An Ecosystem for Open Science
	5.2. Collaboration and Recognition Around Data Production
	5.3. Asking More Ambitious Questions From Data
	5.4. Reproducibility in Action
	5.5. Broadening Participation

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

