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Climate services can contribute to alleviating a range of climate-sensitive development

challenges, including those of agricultural production and food security. However, the

use of climate data for research and applications in Africa has been scanty, mainly due

to poor availability of and access to quality climate data. Weather stations are sparse,

and their number has been declining. Access to existing climate data is a challenge

mainly because of national data policies, low financial investment, lack of dissemination

capacity and tools, and high access costs. The ENACTS (Enhancing National Climate

Services) initiative led by the International Research Institute for Climate and Society

(IRI) at Columbia University has been tackling this problem by working with National

Meteorological Services (NMS) in Africa and in other developing countries. This initiative

helps NMS to improve data availability and quality, by combining quality-controlled data

from national observation networks with satellite estimates for rainfall and climate model

reanalysis products for temperature. This requires access to an easy-to-use and freely

available tool for preforming the tasks required to generate the data, as well as using the

generated data. Most NMS in Africa do not have access to such a tool. To meet this

significant need, the IRI developed such a tool in-house. This is the Climate Data Tool

(CDT), which is an open-source, R-based software with an easy-to-use a graphical user

interface (GUI). It can be used for data organization, quality control, combining station

data with satellite and reanalysis data, evaluatingmerged and inputs datasets, performing

an array of analyses, and visualization. The CDT software has been evolving over that last

seven years with inputs from the NMS themselves. Now, it has become a powerful and

user-friendly tool, and has been installed in over 20 countries in Africa alone.

Keywords: climate, climate data, data quality, data errors, climate services, CDT, data tool

INTRODUCTION

There has always been a close relationship between socio-economic development, human
wellbeing, and a varying and changing climate. However, climate change is expected to impede
and undo development gains by increasing the frequency and severity of extreme weather events,
shifting suitability zones for crops and diseases, and endangering coastal areas with sea-level rise
(IPCC, 2014). These changes threaten many essential sectors such agriculture, forestry, water
resources, tourism, transportation, energy, and health. However, because about 80% of the world’s
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cultivated land is rain-fed (UNESCO, 2009), agriculture is widely
regarded as the most climate-sensitive human activity and sector
of all. Climate variability in agriculture not only affects the
availability, access, and consumption of food, but also the income
of smallholder farmers (Shumetie and Yismaw, 2018).

In the face of these challenges, “effective” use of climate
information offers a way for agricultural practitioners to make
better informed decisions at different levels, ultimately aiding
them on their quest to make agriculture more resilient to
increasingly erratic precipitation and temperature patterns. For
example, it might inform which types of seed varieties, such as
those that are drought or flood-resistant, an extension system
promotes, or when a farmer chooses to plant.

No matter the decision at hand, the information should be
useful, usable, and used to achieve the goals of climate risk
management and adaptation. Climate services, defined by the
Climate Services Partnership (2011) as “production, translation,
transfer, and use of climate knowledge and information in
climate-informed decision making and climate-smart policy
and planning,” play a pivotal role in making this happen.
However, even when researchers or meteorological agencies
strive to produce information that users need, significant
barriers may still remain that inhibit that potentially “useful”
information from actually being “usable” (McNie, 2013; Vincent
et al., 2018). Some of these barriers include the relevance
of the information itself, which can be limited by problems
with the underlying data—the spatial scale at which data is
available, the quality of the data, or even the presence at all
data observations.

As a result, information and products that are sorely needed
for anticipating, managing, and responding to agriculture or food
security risks triggered by climate extremes, as well as adapting to
longer-term risks associated with climate change, can simply be
limited (De Leeuw et al., 2014; Hansen et al., 2014; WMO, 2014).

This is the case in many places around the world, including
most African countries. It is here that collection of climate data
has been seriously inadequate, and even when available, poorly
accessible (Dinku, 2019).Where data does exist, it is often of poor
or inconsistent quality, limiting decision-makers at all levels from
taking appropriate adaptive actions in the face of a changing and
varying climate.

The Enhancing National Climate Services (ENACTS)
initiative of the International Research Institute for Climate and
Society (IRI), Columbia University, has been helping countries
to address such gaps in data quantity and quality, as well as
access to and use of climate information products by working
closely with National Meteorological Services (NMS) in Africa
and beyond (Dinku et al., 2014, 2018). These NMS have the
primary responsibility to provide observed and forecast weather
information, climate information, and warnings of impending
hydro-climatic threats to a variety of users, and any limitations
in their data are thus felt widely.

To ensure such limitations are addressed and the data upon
which information is based is robust, the ENACTS approach
works directly with NMS in Africa and other developing
countries on data quality and availability issues. One of the core

ways this is done is by combining quality-controlled data from
national observation networks with satellite estimates for rainfall
and climate model reanalysis products for temperature (Dinku
et al., 2013, 2018).

This data blending process involves the organization of station
and proxy data, quality control and check of station and proxy
data, combination of quality-controlled station data with proxies,
evaluation of the combined data, and further analysis and
visualization of station and combined data.

However, many NMS do not have access to an easy-to-use and
freely available tool for performing these and other tasks. Tomeet
this need, the Climate Data Tool (CDT), was developed in-house
by the IRI, and is now used by 24 countries in primarily in Africa,
but also Asia and Latin America. CDT is an open-source, R-based
software package with an easy-to-use a graphical user interface
(GUI), which can be run under multiple operating systems,
including Windows and Linux. The only system requirement
is the installation of the latest version of R. After 5 years of
evolution and thanks to the iterative feedback from NMS around
Africa, CDT has now become a powerful, dynamic, intuitive, and
user-friendly tool. The main functionalities of CDT include (see
Figure 1):

• Organization of station and proxy data;
• Assessment of data availability;
• Assessment and correction of data quality;
• Merging station observation with proxies;
• Extraction of data from gridded products, including satellite,

reanalysis and combined data products, at any point, for a
selected box, and for any administrative boundary; and

• Analysis and visualization of station and gridded datasets.

Though it has a graphical user interface (GUI), CDT can also be
run at script level for advanced users who need more flexibility.
As any R-package, there are manuals for the different modules.

Implementation of CDT at NMS includes installation of
the tool, as well as training. In other words, beyond just
a technology or software package, implementation CDT also
includes a standard training package. Technological and human
resources are addressed in tandem. The training package is
generally comprised of three steps:

• Theoretical background on the basics of climate data quality
control, remote sensing of rainfall, climate reanalysis products,
interpolation of climate data, and combination of climate data
from different sources;

• Practical, hands-on training starting with installation of
the system;

• Actual use of CDT for data quality control and generation
of merged rainfall and temperature data for those who
implement ENACTS.

The CDT has so far been installed in 15 ENACTS countries,
nine non-ENACTS countries, and two Regional Climate Centers
(RCCs) shown in Figure 2. Installation and training in the
ENACTS countries and the two RCCs was done mostly by the
IRI, while most of the installation and training in the non-
ENACTS countries has been done by the RCCs.
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FIGURE 1 | CDT graphical user interface.

FIGURE 2 | Countries where CDT has been implemented (installation and training) either as part of ENACTS implementation or independent of ENACTS

(implemented by Regional Climate Centers).

The next section, Methodology, provides summary
descriptions of the different CDT functionalities, while
Section Results presents some results. The paper concludes
with discussion in Section Discussion.

METHODOLOGY

The CDT allows users, particularly NMS staff, to perform an
array of tasks, from data preparation to extensive analyses and

Frontiers in Climate | www.frontiersin.org 3 February 2022 | Volume 3 | Article 787519

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Dinku et al. The Climate Data Tool (CDT)

FIGURE 3 | CDT data preparation menu.

visualizations. This is accomplished through an interactive GUI
as well as command line execution within the R environment.
The main modules that are accessed through the GUI include the
following (Figure 1):

• Data preparation
• Quality control of station observations;
• Interpolation of station observations and merging data from

different sources
• Validation of merged and other data
• Various analytical tools
• Visualization of stations and gridded data as well as

analyses results

An overview of these different modules is presented below.

Data Preparation
The CDT offers a suite of operations dedicated to data
preparation (Figure 3), which include organizing observations
from meteorological stations, assessing availability of
observations, downloading, and processing proxy data (satellite
rainfall estimates and climate model reanalysis products). This
can also be used for obtaining some ancillary data such as
digital elevation models (DEM) and shape files for country
administrative boundaries.

Users can upload station data into CDT in text and comma-
separated-values (CSV) formats. CDT can also use data from
theWMO-supported climate data management systems (CDMS)
used by NMS in Africa. It can directly access data from the
CLINMSOFT database while data from other databases such
CLISYS and CLIDAT have to be converted to text or CSV format
firs. These input are converted into a format used by CDT for
further analyses. This is a text file format, and CDT allows users
to convert data into this format. The converted data can then be
aggregated to different temporal scales, including pentad (5-day),
dekadal (10-day), monthly and seasonal. CDT also lets the user
explore availability of data in the NMS database (what is available

and what is missing) using various formats including, tables,
graphs of average number of stations reporting each year, graphs
showing number of non-missing data per year for each station
over the years, and percentage of data available for all stations
plotted on a map. These offer a full picture of the available
data, which is important information for both the NMS and
their users.

Downloading and Processing Proxy and Ancillary

Data
The CDT also allows users to download and process
various proxy and ancillary data used in meteorological
and climatological analysis. These include six different satellite
rainfall estimates:

• ARC (Africa Rainfall Climatology; Novella and Thiaw, 2013);
• CHIRP/S (the Climate Hazards Group Infrared Precipitation

and combined with station data; Funk et al., 2015).
• CMORPH [Climate Prediction Center (CPC) Morphing

Techniques; Joyce et al., 2004],
• GPM (Global Precipitation Measurement Mission; Hou et al.,

2014)
• PERSIANN (Precipitation Estimation from Remotely Sensed

Information using Artificial Neural Networks; Nguyen et al.,
2018)

• RFE [Famine Early Warning System NETwork (FEWS NET)
satellite rainfall estimate; Xie et al., 2017],

• TAMSAT [Tropical Applications of Meteorology using
SATellite and ground-based observations (TAMSAT); Grimes
et al., 1999; Thorne et al., 2001]

• TMPA (TRMM Multi- Satellite Precipitation Analysis;
Huffman et al., 2010).

There are also three climate reanalysis products that
can be downloaded through CDT for generating merged
temperature data:

• Japanese 55-year Reanalysis (JRA55);
• Modern-Era Retrospective Analysis 2 (MERRA2); and
• European Center for Medium-Range Weather

Forecasts (ECMWF-ERA5).

The main advantage of CDT here is that the users can specify
the spatial and temporal domain and time resolution of interest
and download only the data they actually need. Most of these
products can be downloaded either from the IRI Data Library
(Blumenthal et al., 2014) or from the original data source
for that particular data product. CDT can also be used to
download ancillary data such as digital elevation models country
administrative boundaries.

Once downloaded, the satellite and reanalysis data can be
processed further using some simple aggregation functions such
as sum, average, minimum, maximum, count, etc. These datasets
could also be aggregated to coarser spatial resolutions. CDT uses
NetCDF as a native gridded data format, but can also export
data to other formats such as Climate Predictability Tool (CPT),
GeoTiff, and GrADS.
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Quality Control
Quality of climate data is a serious challenge for many countries
in Africa (e.g., Dinku, 2019). This includes poor accuracy or
precision of observations, as well as missing data. These errors
can stem from multiple sources that include instrument error,
observer error, digitization, summarization, etc. (reference).
These errors need to be identified and fixed. However, manyNMS
lack appropriate tools to perform quality control or the capacity
to use existing tools.

The CDT offers a robust quality check process for identifying
and, when possible, fixing erroneous observations. The tool
enables checking for a multitude of error types and presents the
outputs in different formats that enables the NMS staff to easily
identify the errors and fix or remove the data from the database.
These could be done at different temporal scales including daily,
dekadal, and monthly. The NMS staff have the options to replace
suspicious values by a missing data code, replace the suspected
values with correct observations, or leave the data as it is.

The quality check process implemented in CDT includes
the following:

(i) checking for station coordinates;
(ii) checking for false zero values (for rainfall);
(iii) checking for suspicious observations (outliers); and
(iv) checking for homogeneity of climate time series.

Coordinate Check
It would be difficult to automatically check for the accuracy of the
coordinates of a given station. Thus, CDT simply checks whether
a station is located within the country boundary. It also displays
the location of the stations on Google Map. The display enables
the NMS staff to check whether the station is located where it is
supposed to be. CDT can also check for duplicate and missing
coordinates, which happen frequently.

False Zero Check
In many instances, observers may not enter zero values in the
data register when there is no rainfall; instead, they may leave the
specific dates on the register blank. The data register could also
be blank for the days when observations were not taken (missing
data). However, during data transfer to computers, data entry
staff may enter both (zero observation and missing data) as zero,
leading to false zeros. To check for false zeros, CDT compares
the percentage of zero values for each month at the target station
and the average of the neighboring stations. If the ratio of the
stations zero count for that month is greater than a user-defined
threshold, that month is flagged as suspicious. Then the NMS
staff can choose to investigate or replace the suspicious month
with missing data.

Checking for Outliers
There are different ways to check for outliers or suspicious
observations. The methods implanted in CDT include, limit
check, internal consistency check, temporal check, and spatial
check. Limit check involves comparing an observation to
previously defined upper and lower limits of the specific element
for the specific climate. For instance, no negative values are

expected for maximum temperature over locations in Africa, and
there could also be upper limits for daily rainfall amounts.

In internal consistency checks, an observation is compared
with other parameter values to see if they are physically or
climatologically consistent, either instantly or for time series
according to adopted observation procedures. Normally, more
than one meteorological parameter is measured at an observing
station at the same time. Some of these parameters are
physically related and the internal consistency check tests if
values of related parameters are free of contradictions. The only
internal consistency check implemented in CDT is making sure
minimum temperature is less than maximum temperature, and
vice versa.

Temporal consistency checks if an observation of a given
station for a given month is significantly different compared to
the long time series for that particular month. This test is based
on the fact that many climatological variables show significant
serial correlation. In CDT, this comparison is done for each
of the 12 months separately in order to make sure data from
climatological periods (e.g., cold months vs. warm months) are
not compared. The outputs are presented both in tabular and
graphical formats, which will be shown in the next section. These
presentations allow easy inspection of suspected values, and one
can either keep or change these outlier values just by making
changes directly on the table.

The spatial check compares the observation to be checkedwith
the observations from nearby stations or the expected value at the
station that is estimated using the observations from neighboring
stations. This may be accomplished either by interpolation
between observations, by checking against numeric prognostic
values (on the basis of values frommany different stations), or by
comparing statistics. Those data for which there is a significant
difference between the expected and actual observations are
flagged as suspect. The following conditions are checked in
CDT: isolated rainfall (rainfall observed at station of interest
but surrounding stations reported zero), isolated zero (opposite
of the previous one), and outlier (observation too high or too
low compared to nearby observations). These suspected values
can be viewed both in graphical and tabular formats. Values can
be viewed on map with the options of adding administrative
boundaries, digital elevation model as well as gridded proxy
data. This enables use of background data (e.g., DEM for
temperature and satellite estimates for rainfall) that provides
additional information to decide whether the observation is
actually an outlier. For instance, nearby station could report
significantly different temperature observation because of the
altitude at which they are located. A DEM background could be
used to check if this is the case.

The user can correct the suspicious values in different
ways. The easiest one would be replacing all suspected values
with missing code. A better way would be consulting paper
records to confirm whether the suspicious values is a wrong
observation or just wrong entry, and in the latter case replace
the suspicious value with the correct one. CDT offers both
options. For the second option, the user just needs to enter
the correct value to the table presenting the errors (Table 1),
and then CDT will replace the value in the original data
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TABLE 1 | Example table of errors in CDT.

STN.ID DATE STN.VAL OUT.SPATIAL NOT.REPLACE REPLACE.VAL

01001DAM 19810430 24.7 isolated.precipitation 1 NA

01001DAM 19810707 28.4 too.large.deviation.above 1 NA

01001DAM 19810711 56 too.large.deviation.above 1 NA

01001DAM 19810730 36.9 too.large.deviation.above 1 NA

01001DAM 19810828 39 too.large.deviation.above 1 NA

01001DAM 19820320 13 too.large.deviation.above 1 NA

01001DAM 19820326 7.6 isolated.precipitation 1 NA

01001DAM 19820409 38.5 too.large.deviation.above 1 NA

01001DAM 19820608 23.7 too.large.deviation.above 1 NA

01001DAM 19820725 8.4 isolated.precipitation 1 NA

01001DAM 19830214 12 isolated.precipitation 1 NA

file. This is very convenient and saves NMS staff a lot
of time.

Homogeneity Check
Homogeneity checks are used to determine if a climate time
series is homogeneous over a period of time. Data inhomogeneity
can affect the quality of climate studies, particularly the domain
of climate trends, variability and climate extreme analysis.
Inhomogeneity can stem from many factors such as changes
in observational routine (Hansel et al., 2016), changes in
instruments, observation methods, station relocation, etc. (Li-
Juan and Zhong-Wei, 2012). Homogenization of climate data
consists of two main parts: detecting breaks and adjusting the
specific segment for inhomogeneity (Squintu et al., 2020). The
CDT offers four approaches for detecting breaks in a climate
time series. The first approach is Pettit test, which is a non-
parametric rank-based method used for detecting shift in the
mean value of the distribution of the variable under study
(Mallakpour and Villarini, 2016). The other approach adapted
in CDT is the normal standard test (SNHT) (Alexandersson and
Moberg, 1997). The other two approaches use cumulative sum
(CUMSUM) approach with and without trends (Gallagher et al.,
2013). For adjusting inhomogeneities, CDT offers two methods:
mean and quantile matching. Mean method compares the mean
before and after the break and quantile matching compares
quantiles before and after the break (Squintu et al., 2020).

Gridding
CDT’s Gridding menu offers options for simple spatial
interpolation using different methods, as well as combining
station observations with gridded proxies such as satellite rainfall
estimate and temperature reanalysis products. The latter option is
a critical component of the ENACTS approach described earlier.
Themerging process can also be done in a cross-validationmode,
which enables evaluation of the merged product.

Spatial Interpolation
CDT offers for spatial interpolation, which include nearest
neighbor (Shope and Maharjan, 2015), nearest neighbor with
elevation, inverse distance weighted average, modified Shephard

(Renka, 1988), spheremap (Kluver et al., 2016), ordinary kriging,
and universal kriging (Bargaoui and Chebbi, 2009). The tool
enables users explore different methods as well as different
parameters (grid seize and resolution, interpolation radius,
minimum/maximum number of neighbors, variogram type,
. . . etc.) for the different interpolation methods. Thus, users can
choose the most suitable method and parameter for their specific
needs. Interpolation can be done at multiple time steps (days,
dekads, months, seasons, etc.). One can display and examine the
outputs or can perform validation using independent datasets as
described later in this section.

Merging Station Observations and Proxy Data
Combining observations from meteorological stations and
proxies such as satellite rainfall estimates or climate model
reanalysis products can help alleviate challenges with evaluability
of data owing to sparse distributions of meteorological
observations. In CDT, satellite rainfall estimates are combined
with rain gauge measurements while reanalysis products are used
for minimum and maximum temperature. CDT uses NetCDF
data format both input and output gridded data. The approach
adopted in CDT involves the following steps:

• Downscale proxy data (only for reanalysis for temperature);
• Use historical station data to calculate climatological

adjustments factors;
• Apply the adjustment factors to all proxy data;
• Merge the output from the previous step with

contemporaneous observations for each time step (day,
pentad, dekad, month, etc.).

The reanalysis data would need to downscale the reanalysis
data from its coarse resolution to a higher resolution (4 km
ENACTS data). We can utilize lapse rate for each month to
downscale reanalysis data. This involves using digital elevation
model (DEM) and station temperature observations to Compute
Downscaling Coefficients which are then applied to time series of
reanalysis data.

Bias correction aims to remove the bias from proxy data
using station data. CDT offers four approaches for mean bias
correction: multiplicative bias with variable time step, or for
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each month, and quantile mapping with fitted distribution and
quantile method with empirical distribution. First the correction
factors are computed using any one of the four methods. This
will create a file with bias coefficients associated with the method
selected by the user. The next step would be applying the
corrections to the time series of the satellite and reanalysis data.

Next, the bias-corrected time series of proxy data is merged
with contemporaneous stations observations. CDT offers four
different methods for merging proxy data with station data,
which are, simple bias adjustment, Cressman scheme (Mateus
et al., 2016), Barnes scheme (Rozante and Demerval, 2010), and
regression kriging (Hengl et al., 2007).

Validation
The CDT tool offers a robust validation scheme both to assess
the input proxy data, as well as the merged output data.
There are several statistics that can be used for doing this
comparison, and CDT offers an array of validation statistics,

which include correlation coefficient, mean error, Nash-Sutcliffe
efficiency coefficient, percent bias, probability of detection and
false alarm ratio. The merged data could be validated either using
independent data that was not used in the merging or using cross
validation. Calculated validation statistics could be displayed as
tables or could be visualized on maps.

Analysis and Visualization
Analysis
The CDT tool can perform number of data analyses that are
pertinent to climate data analysis. The “Analysis” Menu bar
offers different functionalities that include computing summary
statistics (minimum, maximum, mean, median, number of
missing values, 1st quartile, 3rd quartile and standard deviation),
calculating some derived climate variables (e.g., calculating
potential evapotranspiration), computing climatologies and
anomalies, daily rainfall analysis (rainfall intensity, number of
dry days, number of wet days, number of dry spells, and number

FIGURE 4 | CDT analysis menu.

TABLE 2 | Number of reported data for each year and month for a given station.

STN.ID DATE STN.VAL OUT.TEMPORAL OUT.SPATIAL NOT.REPLACE REPLACE.VAL

ARABOM11 19891209 18.2 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19891218 19 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19930127 16.5 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19930207 15.4 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19930208 15.7 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19930417 17.5 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19961118 19 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19961119 18.5 lower.outliers spatial.not.outliers 1 NA

ARABOM11 19980501 10.3 TMIN >= TMAX spatial.low.value NA NA

ARABOM11 20010108 16.5 lower.outliers spatial.low.value 1 NA

ARABOM11 20110101 45.5 upper.outliers spatial.high.value 1 NA

ARABOM11 20120811 33.5 upper.outliers spatial.high.value 1 NA
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of wet spells), rainy season characteristics (rainy season onset,
rainy season cessation and rainy season length), climate extremes,
and various spatial analyses. The results are presented in maps
and different graphs such as line chart, bar plot, probability of
exceeding for El Nino, La Nina or neutral years, anomaly bar plot,
etc. These indices climate extremes are similar to those offered
by CLIMDEX from this address: https://www.climdex.org/learn/
indices/. Drought indices such as standardized precipitation

index (SPI) and standardized precipitation evapotranspiration
index can also be calculated using CDT. Figure 4 shows the CDT
Analysis menu.

Visualization
The CDT tools offer an extensive visualization feature for
presenting input data and the outputs of the different analyses
performed. Many of these visualization tools are part of the

FIGURE 5 | Average number of stations reporting observations for each year for precipitation. The red bar represents the minimum and maximum number of days

with observations for each year.

FIGURE 6 | Active stations and reported data from the same stations.
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specific analysis menu and include tables, graphs, and maps.
However, CDT also has a separate Menu bar for visualizing
different data types such as CDT stations data, CDT gridded data
and NetCDF data. One can plot either a single NetCDF files, time
sequence of NetCDF files (such as a time series), NetCDF files
with multiple variables and even a combination of different data
types such as station data andNetCDF data. The later allows users
to compare data from different sources (e.g., station, satellite, and
merged) as required.

RESULTS

This section will illustrate the varied usage and multiple
applications of the CDT tool presented above with examples.
As the functionality of CDT is very extensive, only the
salient features are covered here. The examples presented in
this section are actual outputs from the relevant activities
at the different NMS as part of the implementation
of ENACTS.

FIGURE 7 | Percentage of available daily rainfall data from each station over Zambia during the period 1981–2020. This shows the completeness of the data for each

station.

FIGURE 8 | CDT output of temporal check for minimum temperature for the month of May. The red bars show what CDT identifies as outliers (values that are too

large or too small compared to what is expected for that month). The blank spaces show missing data.
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FIGURE 9 | Result of CDT spatial check for daily rainfall, station ID: 10035011 on April 13, 1984. A value of 307mm (red) is shown as an outlier comparted to the

neighboring stations (all reporting zero rainfall).

FIGURE 10 | Comparison of temperature observations for neighboring

stations with elevation as a background.

Assessing Data Availability
This functionality offers NMS different options to look at the
rainfall and temperature data available in their climate data base.
This may sound trivial, but many NMS in Africa, and elsewhere,

FIGURE 11 | Station observation, satellite rainfall estimates, bias adjusted

satellite output and final merged product (1983, June 2nd dekad).

do not have an easy-to-use tool that enables them to clearly see
what data are available, where and when these data are available,
and what is missing. CDT presents data availability in tabular
(Table 2), graph (Figures 5, 6), and map (Figure 7) formats.
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FIGURE 12 | Similar as Figure 11 but for temperature, along with elevation map (DEM) (2000, May 15th).

Table 2 summarizes the number of reported data for each year
and month for a given station. Figure 5 shows the average
number of stations that reported each year (in this case for
rainfall), while Figure 6 compares howmany stations were active
and how any of the active stations were reporting for each year.
The map in Figure 7 presents the percentage of data (relative to
what is expected) available for each station over Zambia.

Quality Control
Quality control of station observation (rainfall and temperature)
is one of the most useful functionalities of CDT. These involve
checking station coordinates, as well as suspicious data outliers.
The outliers are detected using both temporal and spatial checks.
A temporal check is performed for each month to ensure that
each observed value is consistent with the expected climatology
of each station. Suspicious values detected by the quality test
are flagged as outliers and would need to be checked by NMS
staff. Figure 8 shows an example of CDT output from a temporal
check for minimum temperature for the given station during

the month of May. The red bars represent suspicious values
identified by the quality check procedure. This figure shows
both low and high extremes in consecutive years (1981–1983).
The high extreme could be maximum temperature entered as
minimum temperature, while the lower values could be data
from another station. Sometimes, particularly for rainfall, it is
possible that a station could revive a higher than usual rainfall
amount. However, this may not happen just at one station. In
such cases, would be good to compare the suspicions observation
with values from the surrounding stations. This is part of the
spatial check, which is demonstrated in Figure 9. In this figure,
the extreme value (shown in red) is compared to observations
from the neighboring stations (shown in blue). In this case,
it is very unlikely that one station receives a daily rainfall
amount of 307mm, while the neighboring station records zero
rainfall. However, one may need to be careful when comparing
temperature observations from nearby stations as nearby stations
could have significantly different values because of elevations.
The CDT enables comparison of neighboring stations with
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elevation as a background (Figure 10). Satellite rainfall estimates
could also be used as a background when comparing rainfall
observations from nearby stations.

TABLE 3 | Validation outputs.

Stat Value Full name

CORR 0.801 Correlation

NSE 0.634 Nash-Sutcliffe Efficiency

BIAS 0.95 Bias

MAE 41.279 Mean Absolute Error

ME −5.082 Mean Error

RMSE 71.026 Root Mean Square Error

POD 0.902 Probability of Detection

FAR 0.057 False Alarm Ratio

FBS 0.957 Frequency Bias

CSI 0.855 Critical Success Index

HSS 0.544 Heidke Skill Score

VHI 0.983 Volumetric Hit Index

QPOD 0.902 Quantile Probability of Detection

VFAR 0.01 Volumetric False Alarm Ratio

QFAR 0.057 Quantile False Alarm Ratio

VMI 0.017 Volumetric Miss Index

VCSI 0.974 Volumetric Critical Success Index

QCSI 0.855 Quantile Critical Success Index

Merging Data
The next step after quality control is combining station
observations with satellite or reanalysis proxies. This a very
important step in implementing ENACTS, and it corresponds
to the “Improving Availability” component of ENACTS. As
described in the previous section, CDT provides different options
for merging station observations and proxy data, starting with
simple mean bias adjustment and then combining the bias
adjusted proxy with contemporaneous station observations.
Figure 11 presents the two inputs (station observation and
satellite rainfall estimates), the intermediate output (bias adjusted
satellite) and the final merged product. The approach for
temperature is similar, except that the reanalysis data need to
be downscaled. Figure 12 shows the different input and output
products along with elevation map (DEM) used for downscaling.

Validation
In the implementation of ENACTS, validation is needed to
evaluate the different satellite rainfall estimates and reanalysis
products for a specific country as well as assess the accuracy
merged products. However, the tool can also be used to evaluate
any gridded climate data in NetCDF format. Thus, it could be
used for research purposes as well. The evaluation of the merged
data could be done either in a cross-validation approach or using
different training and validation datasets. The validation uses
different validation statics, including both categorical (mainly

FIGURE 13 | Probability of detection for daily rainfall over Ethiopia.
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used for daily rainfall) and continuous variables. The output
could be presented as a table (Table 3), graphs (e.g., scatter plots),
and maps (Figures 13, 14). For instance, Figure 13, shows a plot
of the probability of detection (POD) statics at station locations
over Ethiopia. The main advantage of this kind of presentation
would be to understand the spatial distributions of the errors. As
shown in Figure 14, a background variable (such as DEM) could
also be used to see the dependence of the errors on elevation or
other factors.

Analysis
As described in Section Methodology above, the Analysis menu
offers an array of option for data analysis, ranging from summary
statistics for station observations to more involved computations
in spatial analysis. Outputs are presented in tabular and graphic
formats. Figure 15 is an example of graphic output for onsets
dates over Ethiopia. One strength of CDT in computing onset,
cessation and length season is that different parts of the country
could be treated separately with different onsets/cessation
criteria. This enables definition of onsets/cessation that fits
different agroclimatic zones.

DISCUSSION

The Climate Data Tool (CDT) has been developed to address
specific needs of National Meteorological Services (NMS),
particularly in Africa. The understanding of the need of NMS
comes from over two decades of International Research Institute
for Climate and Society (IRI) engagement with NMS in Africa.
The CDT is now being used by many NMS for organizing
station and other proxy (e.g., satellite rainfall estimates and
climate model reanalysis products) data, performing rigorous
quality control of station data, combining station observations
with relevant proxies, evaluating proxy and combined gridded
datasets, preforming specific analyses and visualizing the results.
The tool has undergone significant improvements over the last
seven years, mainly in response to feedback from the NMS.
This feedback is collected in three different ways: (i) while
training the NMS staff; (ii) while working with NMS to generate
ENACTS (Enhancing National Climate Services) datasets; and
(iii) feedback sent by email either reporting issues or suggesting
additional functionalities. As a result, CDT has now become
an indispensable tool for the 24 NMS and the two RCCs in
Africa and five NMS outside Africa that have implemented it.
CDT has also started attracting the attention of universities as
a tool for climate data analyses, and the IRI has been receiving
requests for training. For instance, 28 teachers and graduate
students were trained at Arba Minch University in Ethiopia
during August 2021.

This is a tool designed to address specific challenges faced
specifically by NMS, and it has been developed in consultation
with NMS. This consolation process has helped in addressing
most of the initial limitations of the tool. However, there
are still some limitations that users need to be aware of.
The first limitation is the fact that the tool is based on
another tool (R), and users need to install the system before
installing and running CDT. This could be an inconvenience

FIGURE 14 | Correlation Coefficients from cross-validation of monthly RR

plotted with DEM as background.

for some users. Another limitation is that users cannot add
their own statistical methods or replace the graphical software to
improve visualization.

Limited input and outputs data formats could also be another
inconvenience. For instance, many NMS wish to use CDT
for organizing and processing data from Automatic Weather
Stations (AWS), which come from different AWS systems, are in
different formats, and may sit on different servers. We have come
to understand that this is a serious problem many NMS, and we
have started developing a separate tool to address this issue. The
new tool, AWS Data Tool (ADT), has been implemented in two
countries and there are already requests from many other NMS.

Training is a critical component in implementing CDT. The
standard training (implemented as part of ENACTS) lasts about
2 weeks and includes theoretical training on basic concepts used
in CDT; hands on training using NMS’s own data; and on-the-job
training for selected NMS staff.

Though developed with the needs of NMS mind, CDT can
also be used by anyone interested in quality-control, analyses
and visualization of climate data. For instance, we have recently
trained students and staff from Arbamich University in Ethiopia.
Availability of climate data outside the NMS, such as the
SASSACAL (Muche et al., 2018) and TAHMO (van de Giensen
et al., 2014), would also increase the use of CDT.

Going forward, CDT would need to be updated (both the
software and training) where it has been implemented. NMS
using CDT may also need technical support including trouble
shouting. CDT would also need to expand to other countries
in Africa. This would be a daunting task for the IRI alone.
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FIGURE 15 | Example of map output for onsets dates over Ethiopia. Onset seems to start in May for the southwestern part of the country (blue color), and in August

for the northeastern part of the country (red color).

Implementation of CDT would be sustainable only if relevant
capacity is built within the continent, preferably at regional
level. The ultimate goal is to transfer CDT implementation
to regional climate centers and limit IRI’s role to technical
support to the regional centers and keep on improving the tool.
This would ensure sustainability as well as cost-effectiveness.
The IRI has been building CDT–related expertise at two
Regional Climate Centers (RCCs) in Africa. This capacity
building and strategic partnership has been undertaken with the
Intergovernmental Authority on Development (IGAD) Climate
Prediction and Application Center (ICPAC) in East Africa, and
the Agrometeorology, Hydrology, Meteorology (AGRHYMET)
Regional Center in West Africa. These two RCCs have already
started exploiting this capacity to strengthen and expand CDT
in their respective regions. The AGRHYMET Regional Center
has supported expansion of CDT to nine countries in the
region with little or no support from the IRI, an encouraging
demonstration of sustainable capacity building. ICPAC has also
been supporting expansion of CDT to three new countries and
has strengthened existing CDT installation (through tool update
and more training) in many of the ENACTS countries in the
East African region. This shows that capacity building at regional
level is critical for sustainability as well as expanding the use of
CDT. The RCCs provide much needed technical support and
training to the NMS, which would have been both difficult and
inefficient for the IRI alone to do. In many cases, there is a
need to repeat the trainings either because of updated CDT

version or owing to NMS staff turnover. The RCCs have been
very helpful in this respect, re-training NMS where ENACTS has
already been implemented and expanding it to non-ENACTS
countries. In most cases, the RCCs have done the majority of
these activities without the IRI’s involvement and using their own
funds and resources.
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(2020). Comparison of homogenization methods for daily temperature series
against an observation-based benchmark dataset. Theor. Appl. Climatol. 140,
285–301. doi: 10.1007/s00704-019-03018-0

Thorne, V., Coakeley, P., Grimes, D., and Dugdale, G. (2001). Comparison of
TAMSAT and CPC rainfall estimates with raingauges, for southern Africa. Int.
J. Remote Sens. 22, 1951–1974. doi: 10.1080/01431160118816

UNESCO (2009). The United Nations World Water Development Report 3: Water

in a Changing World. UNESCO; Paris: Earthscan.
van de Giensen, N., Hut, R., and Selker, J. (2014). The trans-African

hydro-meteorological observatory (TAHMO). WIREs Water 1, 341–348.
doi: 10.1002/wat2.1034

Vincent, K., Daly, M., Scannell, C., and Leathes, B. (2018). What can climate
services learn from theory and practice of co-production? Climate Serv. 12,
48–58. doi: 10.1016/j.cliser.2018.11.001

WMO (2014). Agriculture and Food Security Exemplar to the User

Interface Platform of the Global Framework for Climate Services.
Geneva, 35.

Frontiers in Climate | www.frontiersin.org 15 February 2022 | Volume 3 | Article 787519

https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
https://doi.org/10.1016/j.jhydrol.2008.11.025
https://doi.org/10.1186/2194-6434-1-19
http://www.climate-services.org/about-us/what-are-climate-services/
http://www.climate-services.org/about-us/what-are-climate-services/
https://doi.org/10.3390/rs61110888
https://doi.org/10.1186/2194-6434-1-15
https://doi.org/10.1002/joc.3855
https://doi.org/10.1080/17565529.2017.1405784
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1175/JCLI-D-12-00704.1
https://doi.org/10.1016/S0022-1694(99)00092-X
https://doi.org/10.3389/feart.2016.00029
https://doi.org/10.1186/2194-6434-1-13
https://doi.org/10.1016/j.cageo.2007.05.001
https://doi.org/10.1175/BAMS-D-13-00164.1
https://www.ipcc.ch/report/ar5/syr/
https://www.ipcc.ch/report/ar5/syr/
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/JTECH-D-15-0027.1
https://doi.org/10.3724/SP.J.1248.2012.00059
https://doi.org/10.1080/02626667.2015.1008482
https://doi.org/10.1080/15481603.2016.1228161
https://doi.org/10.1175/WCAS-D-11-00034.1
https://doi.org/10.5194/hess-22-5801-2018
https://doi.org/10.1175/JAMC-D-11-0238.1
https://doi.org/10.1145/45054.45055
https://doi.org/10.1175/2010WAF2222325.1
https://doi.org/10.1155/2015/174196
https://doi.org/10.1108/IJCCSM-04-2016-0039
https://doi.org/10.1007/s00704-019-03018-0
https://doi.org/10.1080/01431160118816
https://doi.org/10.1002/wat2.1034
https://doi.org/10.1016/j.cliser.2018.11.001
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Dinku et al. The Climate Data Tool (CDT)

Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., et al. (2017). Reprocessed,
bias-corrected CMORPH global high-resolution precipitation estimates from
1998. J. Hydrometeorol. 18, 1617–1641. doi: 10.1175/JHM-D-16-0168.1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dinku, Faniriantsoa, Islam, Nsengiyumva and Grossi.

This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction

in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Climate | www.frontiersin.org 16 February 2022 | Volume 3 | Article 787519

https://doi.org/10.1175/JHM-D-16-0168.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

	The Climate Data Tool: Enhancing Climate Services Across Africa
	Introduction
	Methodology
	Data Preparation
	Downloading and Processing Proxy and Ancillary Data

	Quality Control
	Coordinate Check
	False Zero Check
	Checking for Outliers
	Homogeneity Check

	Gridding
	Spatial Interpolation
	Merging Station Observations and Proxy Data

	Validation
	Analysis and Visualization
	Analysis
	Visualization


	Results
	Assessing Data Availability
	Quality Control
	Merging Data
	Validation
	Analysis

	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


