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Projections of extreme sea levels (ESLs) are critical for managing coastal risks, but are

made complicated by deep uncertainties. One key uncertainty is the choice of model

structure used to estimate coastal hazards. Differences in model structural choices

contribute to uncertainty in estimated coastal hazard, so it is important to characterize

howmodel structural choice affects estimates of ESL. Here, we present a collection of 36

ESL data sets, from tide gauge stations along the United States East and Gulf Coasts.

The data are processed using both annual block maxima and peaks-over-thresholds

approaches for modeling distributions of extremes. We use these data sets to fit a suite of

potentially non-stationary generalized extreme value distributions and generalized Pareto

distributions by covarying the ESL statistics with multiple climate variables. For all of

the sites and statistical model structures for tide surge considered here, we find that

accounting for changes in the frequency of coastal extreme sea levels provides a better

fit to data than using a stationary extreme value model. Further, when maximizing the

a posteriori probability of the model parameters, given the available tide gauge data,

generalized extreme value distribution structures with non-stationary scale parameter

are preferred over non-stationary location parameter. These results have implications for

how deep uncertainties in coastal flood hazards are characterized, particularly in how

studies incorporate potential non-stationarity in storm surge statistics.

Keywords: coastal hazard, flooding, climate change, extremes, statistical modeling, deep uncertainty, sea level

INTRODUCTION

Projections of the future coastal hazard posed by extreme sea levels are a key component of
designing strategies to manage coastal flood risk, but probabilistic estimates of these hazards suffer
from a number of intrinsic uncertainties. These uncertainties in coastal hazard estimates lead to
uncertainty in the “correct” strategy tomanage coastal risk (Buchanan et al., 2015;Wong andKeller,
2017). In turn, the uncertainty in flood defense strategy leads to potentially poorer performance of
the risk management strategy in terms of economic losses (Oddo et al., 2017), size of inundated
area (Fischbach et al., 2017), or loss of life (Jonkman et al., 2009). Thus, it is important to quantify
how key uncertainties affect the estimated coastal flood height return levels, especially at the local
scale (Durand et al., 2022).

The total extreme sea level height has three main components: mean sea level, astronomical
tide levels and storm surge. The present work will focus on the total summed tide and storm surge
level, termed “storm tide”, because this is the total hazard facing coastal zones. This approach also
avoids the issue of biases that may arise when attempting to disentangle the tidal and non-tidal
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components of extreme sea level (Arns et al., 2020). For brevity’s
sake, we will interchangeably refer to the storm tide component
as the “extreme sea level” (ESL), though what we are really
referring to is the sea level in substantial excess of the mean.
This approach runs the risk of missing the compounding effect
on flood hazard of multiple drivers of risk (Wahl et al., 2015;
Moftakhari et al., 2017a) and will not capture the potentially
sizable costs of frequent minor, or “nuisance”, flood events
(Vandenberg-Rodes et al., 2016; Moftakhari et al., 2017b). With
these caveats in mind, this approach of modeling storm tides as
a univariate hazard is effective for analyzing this particular key
uncertainty, and is important for policy-making, as it represents
the actual water level impacting the coastline during a flood event
(Yu et al., 2019).

There exist multiple approaches for estimating storm tide
return levels. These include the joint probability method (e.g.,
Pugh and Vassie, 1978; Tawn and Vassie, 1989; McMillan et al.,
2011), process-based modeling (e.g., Orton et al., 2016; Garner
et al., 2017), and statistical modeling (e.g., Coles, 2001; Tebaldi
et al., 2012; Chen and Liu, 2016; Buchanan et al., 2017; Ceres
et al., 2017; Lee et al., 2017; Wong and Keller, 2017; Ruckert
et al., 2019). A key strength of process-based modeling is that
explicitly resolving individual storms and physical processes
permits an evaluation of the physical drivers of risk and their
spatiotemporal dependence. However, process-based modeling
comes at a higher computational cost. Joint probability method,
by contrast, models the probabilities associated with flood events
by estimating the conditional probabilities for the dependency
relationships within the statistical model structure. While these
other methods for estimating the hazards posed by coastal
ESLs have their respective strengths, at present we restrict our
attention to statistical modeling. Statistical modeling is another
common and less computationally demanding approach for
estimating the hazards posed by ESL. We elect to use statistical
modeling because the focus of this work is on an accounting of
uncertainty, for which the computational efficiency of statistical
modeling is a strength.

Statistical modeling involves estimating the probability
distribution of ESL heights from some observational data
set that has been processed in such a way that it fulfills
the assumptions of the fitted distribution (e.g., independent
samples). Common choices for distributions include generalized
extreme value distributions (GEV) and generalized Pareto
distributions (GPD). A GEV is the limiting distribution for
a sequence of independent block maxima, so it is a natural
choice for sequences of sea-level extremes. However, GEV
models are limited in that they do not resolve temporal
variability or changes within a given time block. GPD models,
on the other hand, give the distribution of exceedances of a
given threshold height. These peaks-over-thresholds models are
typically coupled to a Poisson process that gives the number
of threshold exceedances per block of time. While of course
no model can be expected to be a perfect representation
of the real-world distribution of storm surge hazard, the
literature is split on which distribution, GEV or GPD, provides
the best mathematical representation of storm surge (Wahl
et al., 2017). Thus, it is prudent to examine the impacts

of model structural choice when making estimates of future
coastal hazards.

Potential non-stationarity in the hazards posed by coastal
storm surges presents another key uncertainty that is receiving
an increasingly large share of attention in current research (Milly
et al., 2008; Serinaldi and Kilsby, 2015; Lin et al., 2016; Rashid
et al., 2019). Depending on geographic location, uncertainties in
future ESLs may be within the range of natural variability and it
can be difficult to say conclusively that storm surge statistics are
changing (Cid et al., 2016; Haasnoot et al., 2020; Tebaldi et al.,
2021). However, failure to account for potential non-stationarity
(if it is in fact present) has both theoretical and practical
consequences. On the theory side, non-stationarity can violate
the assumption that ESL data for a given site are independent
and identically distributed. In terms of practical consequences,
neglecting non-stationarity can result in underestimation of
storm surge return levels (Wong, 2018), leading to under-
protection of coastal areas. In efforts to address this research
need, recent work has examined the timescale on which non-
stationary storm surge behavior can be confidently detected
(Ceres et al., 2017; Lee et al., 2017), model averaging approaches
to quantify the degree of belief that can be placed on non-
stationary model structures (Wong, 2018) and quantification of
indicators of changing ESL behavior (Rashid et al., 2019).

Non-stationarity can be incorporated into statistical models
for storm surge return levels by allowing the parameters of the
given distribution to covary with some climate conditions and/or
indicator(s) (e.g., Haigh et al., 2010; Marcos et al., 2015; Wong
et al., 2018). For example, previous studies have covaried ESL
behavior with global mean surface temperature (Grinsted et al.,
2013; Ceres et al., 2017; Lee et al., 2017), global mean sea level
(Arns et al., 2013; Vousdoukas et al., 2018), the North Atlantic
Oscillation (NAO) index (Haigh et al., 2010; Wong et al., 2018)
and time (i.e., a linear change) (Grinsted et al., 2013). The work
of Wong (2018) compared estimates for return levels using as
a non-stationary covariate the winter mean (DJF) NAO index,
global mean surface temperature, global mean sea level and a
simple linear change with time. Here, we examine which of
the covariates considered by Wong (2018) yields the best-fitting
extreme value distributions for a set of tide gauge stations along
the United States East and Gulf Coasts, and how the amount of
data available affects the choice of best covariate.

The inherent dearth of data on environmental and climate
extremes can lead to poorly constrained estimates of model
parameters, which only worsens as the number of parameters
that must be estimated increases. Consequently, the degree of
confidence in those more complex model structures is reduced
(c.f., Figure 1 from Wong, 2018). This paucity of observational
data to constrain extremes frequently leads to a reliance on
simpler non-stationary models with fewer parameters. For
example, following this principle of parsimony, some previous
work (e.g., Rashid et al., 2019) consider only non-stationarity in
the location parameter for the GEV distribution, which governs
the center of the distribution. Among the model structures
considered by Lee et al. (2017), any non-stationarity in the scale
parameter, which governs the width of the GEV distribution, is
conditioned on the location parameter also being non-stationary.
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The model structures of Wong et al. (2018) suffer from a similar
limitation, but in the context of the GPD class of models.
However, changes to only the scale parameter of either a GEV
distribution or GPD can also bring about changes to the medians
for these distributions, as well as the distributions’ tails. Previous
research has generally neglected model structures in which only
the scale parameter is non-stationary. Furthermore, the question
of which covariate or non-stationary model structure fits the
data the “best” depends on what goodness-of-fit metric one
uses to compare the candidate model structures. Thus, it is
important to examine how the selection of potentially non-
stationary statistical model structure affects the estimated storm
tide return levels and associated flood hazard.

Toward this end, we focus on two questions: First, what is
the best-fitting form of potentially non-stationary extreme value
statistical model for each site? We fit four candidate model
structures for each of the GEV and GPD families of models.
Among these structures, we vary which model parameters
are considered to be potentially non-stationary. We do not
include potential non-stationarity in the shape parameter due
to the high sensitivity of the upper tails of the GP and GEV
distributions to this parameter. We hypothesize that sites with
shorter available data records will find better fits in extreme
value models with fewer parameters. Second, we ask: how does
uncertainty in the model structural choice affect the range of
estimated storm tide return level? We expect that for some sites,

TABLE 1 | Tide gauge station name, latitude, longitude and years of available data.

Site Latitude (◦N) Longitude (◦E) Start date

(Y-M-D)

End date

(Y-M-D)

Years of usable data

Dauphin Island, AL 30.250 −88.075 1981-04-01 2018-12-31 28

New London, CT 41.355 −72.087 1938-06-13 2018-12-31 70

Lewes, DE 38.782 −75.120 1919-02-02 2018-12-31 68

Apalachicola, FL 29.727 −84.982 1976-04-02 2018-12-31 41

Clearwater Beach, FL 27.977 −82.832 1996-01-01 2018-12-31 23

Fernandina Beach, FL 30.672 −81.467 1897-05-09 2018-12-31 53

Key West, FL 24.553 −81.808 1913-01-20 2018-12-31 102

Mayport, FL 30.395 −81.432 1928-04-27 2000-11-30 68

Naples, FL 26.130 −81.807 1965-03-05 2018-12-31 47

Panama City Beach, FL 30.213 −85.880 1993-01-01 2018-12-31 18

Pensacola, FL 30.403 −87.213 1923-05-02 2018-12-31 87

Port Canaveral, FL 28.415 −80.593 1994-10-22 2018-12-31 22

St. Petersburg, FL 27.760 −82.627 1946-12-25 2018-12-31 69

Virginia Key, FL 25.732 −80.162 1994-01-29 2018-12-31 25

Fort Pulaski, GA 32.033 −80.902 1935-07-02 2018-12-31 77

Grand Isle, LA 29.263 −89.957 1980-01-01 2018-12-31 35

Boston, MA 42.355 −71.052 1921-05-04 2018-12-31 95

Nantucket, MA 41.285 −70.097 1965-02-02 2018-12-31 48

Woods Hole, MA 41.523 −70.672 1957-01-02 2018-12-31 52

Eastport, ME 44.903 −66.985 1929-09-13 2018-12-31 72

Portland, ME 43.657 −70.247 1910-03-05 2018-12-31 94

Duck Pier, NC 36.183 −75.740 1978-06-02 2018-12-31 39

Wilmington, NC 34.227 −77.953 1935-12-29 2018-12-31 79

Atlantic City, NJ 39.355 −74.418 1911-08-20 2018-12-31 95

Cape May, NJ 38.968 −74.960 1965-11-22 2018-12-31 44

Montauk, NY 41.048 −71.960 1947-09-08 2018-12-31 53

New York, NY 40.700 −74.015 1920-06-02 2018-12-31 72

Newport, RI 41.505 −71.327 1930-09-11 2018-12-31 77

Charleston, SC 32.782 −79.925 1901-01-02 2018-12-31 94

Corpus Cristi, TX 27.580 −97.217 1983-12-02 2018-12-31 31

Galveston Pleasure Pier, TX 29.287 −94.790 1957-08-22 2011-07-19 50

Galveston Pier 21, TX 29.310 −94.793 1904-01-02 2018-12-31 105

Port Isabel, TX 26.060 −97.215 1944-04-02 2018-12-31 63

Rockport, TX 28.022 −97.047 1937-03-02 2018-12-31 57

Sabine Pass, TX 29.730 −93.870 1985-01-29 2018-12-31 31

Chesapeake Bay Bridge, VA 36.967 −76.113 1975-01-30 2016-12-31 41
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the projected change in return level in non-stationary models
will be similar in magnitude to the range in estimated changes
across the set of candidate models (Haasnoot et al., 2020). We
address these questions and characterize these uncertainties in
a set of model experiments by examining all combinations of
non-stationary/stationary statistical model parameters (keeping
the shape parameters fixed) for both GEV and GPD model
structures, and for each of the four candidate covariates used by
Wong (2018).

METHODS

Data
We use tide gauge data from 36 stations along the United States
East and Gulf Coasts, obtained from the University of Hawaii Sea
Level Center (Caldwell et al., 2015) (accessed March 21, 2020).
The site names, locations and dates of available data are given in
Table 1. Gaps exist in many of the data sets, which lead to the
discarding of some data. Thus, the “Years of usable data” column
does not always match the interval between “Start date” and “End
date” in Table 1.

We process the raw tide gauge data by first subtracting the
annual block means using a moving 1-year window to account
for changes in mean sea level. What remains is attributable to
storm tides (astronomical tides and storm surges) and natural
variability. For modeling using GEV distributions, we aggregate
the detrended data into annual blocks and compute the annual
maximum for each block. We discard any year that is missing
more than 90% of its hourly data. Table 1 gives the final number
of annual block maxima remaining for analysis for each tide
gauge station.

The GPD family of models requires a time series of
exceedances of some appropriately chosen threshold extreme sea
level. We follow the same procedure as has been used extensively
in previous work, so the interested reader is directed to Arns et al.
(2013), Wahl et al. (2017), and Wong et al. (2018) for further
details and a discussion of the associated uncertainties. For these
models, we first detrend the data to account for mean sea-level
change as described above. We then compute the time series of
daily maximum sea levels for each location. We discard any days
that are missing more than 90% of the hourly data (that is, 4 h or
more are missing). For each site, we compute the 99th percentile
of these daily maximum sea levels to use as the threshold for the
GPD peaks-over-thresholds model. We collect a time series of
exceedances of this threshold, which we then decluster in order
to remove multiple extremes from the same ESL event. We use
a declustering timescale of 3 days (Wong et al., 2018). Previous
experiments suggest that results are not strongly sensitive to this
choice of declustering timescale (Wong et al., 2018). The final
declustered time series of threshold exceedances serves as the
data for analysis and fitting a Poisson process/GPD model.

To account for gaps in the data for the GPD analysis, we
use the following procedure. We fit an overall linear trend to
the raw tide gauge data and subtract the fitted line. We fit a
mean annual cycle to the detrended hourly sea levels. We then
re-impose the linear trend and fill any gaps with this mean
annual cycle plus a linear trend. We do not use any data that

was gap-filled for analysis, only for detrending. Averaging is a
smoothing operation, so this procedure will dampen extremes
near these gaps. To partially account for this, the Poisson process
rate parameter accounts for only the portion of the year of data
that is present.

To incorporate non-stationarity by modulating the ESL
statistical model parameters, we use the four time series
covariates from a recent study (Wong, 2018): the winter mean
(DJF) North Atlantic Oscillation (NAO) index, the global mean
surface temperature, the global mean sea level and time. We
compute the NAO index from sea-level pressure data following
Stephenson et al. (2006). We use the historical monthly NAO
index data from Jones et al. (1997) for the hindcast calibration
and we use the CESM2 sea level pressure projection under the
SSP5-85 scenario as part of the CMIP6 ensemble (O’Neill et al.,
2016; Danabasoglu, 2019a,b; last accessed January 26, 2022).
We take the historical global mean surface temperatures from
the National Centers for Environmental Information data portal
(NOAA, 2017) and the future projections from the CESM2 SSP5-
85 CMIP6 scenario (O’Neill et al., 2016; Danabasoglu, 2019a,b;
last accessed January 26, 2022). We use the historical sea level
time series from Church and White (2011) and use the future
projections ofWong and Keller (2017). We note that more recent
sea-level rise projections exist, including those using the same
model as Wong and Keller (2017), but we retain this sea-level
time series for consistency with previous work (Wong, 2018). The
time covariate is a simple identify function, representing a linear
increase over time. Each covariate time series is normalized to the
0–1 range over the hindcast period.

Statistical Models for Storm Surge
Generalized Extreme Value Distribution

We consider two potential extreme value distributions: a
generalized extreme value (GEV) distribution and a generalized
Pareto distribution (GPD). The probability density function
(pdf) for the GEV distribution is given by

f (w(t) | µ(t), σ (t), ξ (t)) =
1

σ (t)
r(t)ξ (t)+1e−r(t) (1)

where w(t) is the detrended annual maximum sea level in year t;
µ(t) is the location parameter (mm), which governs the center of
the distribution; σ (t) is the scale parameter (mm), which governs
the width of the distribution; and ξ (t) is the shape parameter
(unitless), which governs the tail of the distribution. The factor

r(t) is given by r(t) =

(

1+ ξ (t)w(t)−µ(t)
σ (t)

)−1/ξ (t)
for ξ (t) 6= 0

and exp[−(w(t) − µ(t))/σ (t)] if ξ (t) = 0. We assume that the
model parameters can vary with time t and are constant within
a given year. The general non-stationary form of the GEV model
parameters is

µ (t) = µ0 + µ1φ (t)

σ (t) = exp (σ0 + σ1φ (t))

ξ (t) = ξ0 + ξ1φ (t) , (2)

where µ0, µ1, σ0, σ1, ξ0, and ξ1 are all constant parameters
that depend on location and ϕ(t) is a covariate time series. Our
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restriction that the shape parameter, ξ , is stationary amounts to
the assumption that ξ1 = 0, but we retain ξ1 in the equations that
follow for generality. For each of the four candidate covariates
(time, temperature, sea level and NAO index), we consider
four different possible GEV model structures to account for
potential non-stationarity in each of the parameters, µ and σ

(see Table 1). Note that the model structure in which µ1 = σ1
= ξ1 = 0 corresponds to the assumption of stationarity in the
GEV distribution, so there is a total of 13 distinct GEV model
structures possible (four choices of covariate times three choices
of non-stationary parameters, plus one stationary model).

The detrended series of annual block maxima, w, is assumed
to be independent of one another. So, the likelihood function for
the GEV distribution is given by

L(w | µ0, µ1, σ0, σ1, ξ0, ξ1) =
∏N

i=1
f (wi | µ(t), σ (t), ξ (t)), (3)

where wi denotes the annual block maximum for year i, for each
of N years.

Generalized Pareto Distribution

The generalized Pareto distribution (GPD) model employs a
peaks-over-thresholds approach in which the set of exceedances
of a threshold, µ, is assumed to follow a generalized Pareto
distribution. Following previous work, we take the threshold µ

to be the 99th percentile of the time series of detrended daily
block maxima (e.g., Tebaldi et al., 2012; Buchanan et al., 2017;
Wong et al., 2018). The interested reader is directed to Arns et al.
(2013) and Wong et al. (2018) for a more detailed discussion
of the sensitivities surrounding the choice of this threshold and
other structural choices. The pdf for the GPD is given by

f (x(t) | µ, σ (t), ξ (t)) =
1

σ (t)

(

1+ ξ (t)
x (t) − µ

σ (t)

)−

(

1+ 1
ξ(t)

)

, (4)

where x(t) is sea level height at time t, σ (t) is the GPD
scale parameter (mm) and ξ (t) is the GPD shape parameter
(unitless), both of which are assumed to vary with time t, and
are constant within a given year. Exceedances of the threshold
µ are assumed to occur following a Poisson process with rate
parameter λ(t) (units of exceedances per day). Supposing that
there are n(t) exceedances in the time interval [t, t+1t], the
Poisson probability mass function (pmf) is then

g(n(t) | λ(t)) =
(λ(t) 1t)n(t)

n(t)!
exp

(

−λ(t) 1t
)

. (5)

Like the GEVmodel parameters, the general non-stationary form
of the GPD model parameters is

λ (t) = λ0 + λ1φ (t)

σ (t) = exp (σ0 + σ1φ (t))

ξ (t) = ξ0 + ξ1φ (t) , (6)

where λ0, λ1, σ0, σ1, ξ0, and ξ1 are all constant parameters
that depend on the site location. We use the same candidate

TABLE 2 | Candidate model parametric structures.

# GEV GPD

1 µ, σ , ξ all stationary λ, σ , ξ all stationary

2 µ non-stationary λ non-stationary

3 σ non-stationary σ non-stationary

4 µ, σ non-stationary λ, σ non-stationary

covariate times series ϕ(t) as with the GEV distributions (Section
Generalized Extreme Value Distribution), and the four candidate
GPD model structures with ξ stationary (ξ1 = 0) are analogous
to those considered for the GEV distributions, with the exception
that the location parameter (GEV) is exchanged for the Poisson
rate parameter (GPD) (see Table 2). Combining the pdf for the
GPD, after conditioning on the number of threshold exceedances,
n(yi), for each year i=1, 2, . . . , N, the likelihood function for the
data set of threshold exceedances x, given the model parameter
set (λ0, λ1, σ0, σ1, ξ0, ξ1) is

L(x | λ0, λ1, σ0, σ1, ξ0, ξ1) =
∏N

i=1
g(n(yi) | λ0, λ1)

∏n(yi)

j=1
f (xj(yi | µ, σ (t), ξ (t)) (7)

where yi denotes the year indexed by i and xj(yi) is the jth
threshold exceedance in year yi. The second product in this
equation is replaced by one for any year with no exceedances.
Note that the data used to fit the GEV models (w) and the GPD
models (x) are different.

Model Calibration
For each site we calibrate each candidate model using a
differential evolutionary algorithm (Storn and Price, 1997) to
maximize the model goodness-of-fit for the time series of annual
block maxima (GEV) or threshold exceedances (GPD), given
the model parameters and covariate time series. Each annual
block maximum or threshold exceedance, after appropriate
declustering and detrending, is assumed to be independent of
one another.

Goodness-of-Fit

Let NLL denote the negative of the maximal value of the log-
likelihood function for a candidate extreme value model (that is,
GEV or GPD, along with the specific parameters considered to be
potentially non-stationary). Lower values of NLL correspond to
better model fits to the available data. Suppose the model has k
uncertain parameters that must be estimated as in Section Model
Calibration and the data set for analysis has a total of N data
points. Then the Akaike Information Criterion (Akaike, 1974)
(AIC) and the Bayesian Information Criterion (Schwarz, 1978)
(BIC) are given by the following:

AIC = 2k+ 2 NLL

BIC = k ln (N) + 2 NLL. (8)

Lower values of AIC and BIC correspond to better model fits
to the available data. The three goodness-of-fit metrics, NLL,
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AIC and BIC, constitute a progressive increase in the penalty
exacted for using too many model parameters (in that order).
Using the likelihood function alone constitutes no penalty for
the number of parameters, and the BIC penalizes each additional
model parameter by a factor of ln(N). For data sets with more
than exp(2) (about 7.4) data points, the AIC penalizes additional
model parameters less harshly than the BIC. This is true for all
of the data sets presented here. Thus, AIC and BIC embody the
principle of parsimonious use of parameters and data.

Another perspective which penalizes profligate parameter
usage is to apply a Bayesian approach. The model parameters,
θ , are assigned a joint prior distribution, π , and instead of
minimizing the negative log-likelihood, weminimize the negative
log-posterior score, which is given by a gentle rearrangement of
Bayes’ theorem as

NPS = − ln(L(x|θ)) − ln(π(θ)). (9)

We note that the posterior score is proportional to the actual
posterior probability from Bayes’ theorem, so minimizing NPS
is equivalent to maximizing the posterior probability of the
parameters. We fit the prior distributions, π , by using the
following procedure. We obtain and process the raw hourly
tide gauge data for 27 sites from the University of Hawaii Sea
Level Center (Caldwell et al., 2015) (accessed July 24, 2017)
data repository. For each candidate model structure, for each
site, we estimate maximum likelihood parameters. We pool the
maximum likelihood parameters for all 27 sites and fit either
a normal distribution or a gamma distribution to the set of
parameters, depending on whether the parameter’s support is
theoretically infinite (e.g., the GEV/GPD shape parameter) or
half-infinite (e.g., the GEV/GPD scale parameter). Note that
these distributions are only (half-)infinite in theory; in practice,
extreme values for these parameters are uncommon. However,
the strength of using NPS for model selection lies in the prior
distribution’s function to penalize extreme parameter values that
are unlikely a priori.

To examine the impacts of the amount of available data on the
structure of the best-fitting statistical models, we use the median
of the number of years of available data (55 years, c.f., Table 1)
to separate the tide gauge sites into “long” and “short” records.
There are no stations with exactly 55 years of data available, so
each group contains 18 stations. Our use of the terms “long” and
“short” are relative, and only meant to be used within the context
of this study.

Estimates of Storm Tide Return Levels
For each site, we use all of the candidate model structures
with stationary shape parameters (Table 2), conditioned
separately on using a GPD (main text) or a GEV model (see
Supplementary Figure 8), to estimate the 50-year return
level between 2020 and the year 2050. We use NPS as the
goodness-of-fit metric for model selection and highlight the
best-fitting model for each of the tide gauge sites with more
than 55 years of data available (Figure 4). To illustrate the
model structural uncertainty associated with these storm tide
statistical models, we show this best-fit model alongside all

12 of the other model structures considered in this work
(4 covariates × 3 non-stationary parametric forms, plus a
stationary model). The 10- and 100-year return levels are shown
in Supplementary Figures 9–12, and other return levels are
available in the data files accompanying this work (see Data
Availability statement).

RESULTS

Covariate Choices
When the number of model parameters is not penalized
(NLL), all sites prefer some form of non-stationary model
structure for both the GEV (Figure 1A) and GPD families of
models (Figure 1E). For the GEV distribution, when either
NLL (Figures 1A,E) or AIC (Figures 1B,F) is used for model
selection, global mean surface temperature emerges as the most
popular covariate choice for sites with short data records,
while long-data sites generally prefer the sea level covariate
(Figures 1A,B). For the GPD family of models, results are mixed;
a sea level covariate is preferred by long-data sites much more
frequently than by short-data sites across all goodness-of-fit
metrics. Not surprisingly, if the number of model parameters
is penalized by using the BIC for model selection, a stationary
extreme value model fits best for both the GEV and GPD families
(Figures 1C,G).

The essence of a Bayesian modeling approach is to update
our a priori beliefs about a model and its parameters in light
of the available tide gauge data. The NPS combines both these
prior probabilities and the log-likelihood of the data, given the
supposed values for model parameters. Taking the Bayesian
approach leads to the temperature covariate as the overall most
common choice for the GPDmodels (Figure 1H) but no decisive
favorite among the GEV models (Figure 1D). For the remainder
of the analysis presented in the main text, we provide results
using NPS for model selection (see Supplementary Material for
analogous results using the other goodness-of-fit measures).

The lack of a clear overall pattern to the choice of covariate
by data length raises the question of whether a geographical
pattern to these model structural choices might exist. The
Gulf Coast shows some preference for all of the covariates
(except time) at different locations when we use a GEV
distribution (Figure 2A). When we use a GPD, however, more
coherent spatial structure emerges (Figure 2B). Temperature is
the preferred covariate along the Gulf Coast and eastern Florida,
with some representation from NAO index on the western Gulf
(Figure 2B). In the mid-Atlantic, there is a preference for non-
stationary models modulated by temperature or sea level. In the
Northeast (New England, east and north of New York City), the
sea level covariate is the dominant best fit when using the GPD
family of models, but there is no clear trend when using the
GEV family.

Model Choice
When we select the best-fitting model using NPS, no sites
prefer a stationary model (Figure 3). When considering
only GEV models (Figures 3A–D), if only one parameter
is to be non-stationary, then models with non-stationary
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FIGURE 1 | Frequency histograms of covariate choice. These figures aggregate over all 36 tide gauge stations, for each of the goodness-of-fit metrics: negative

log-likelihood (A,E), Akaike information criterion (B,F), Bayesian information criterion (C,G), and negative posterior score (D,H). The top row corresponds to

consideration of the four GEV model structures and the bottom row corresponds to the four GPD models. Sites are separated into long (>55 years, dark gray) and

short (<55 years, light gray) data record lengths.

FIGURE 2 | Geographical distribution of the preferred covariate time series. Best-fit models are selected using negative log-posterior score to evaluate

goodness-of-fit, assuming a GEV model (A) or a GPD one (B).

scale parameter (σ) are clearly preferred over those with
non-stationary location parameter (µ). No sites show
preference for the GEV model with µ non-stationary
(Figures 3A–D). Several sites with long data records prefer
the GEV model wherein both σ and µ are non-stationary.
This highlights the strict requirements placed on available
data in order to fit more complex non-stationary extreme
value models. For a GPD model, the preferred model
structure is always the model with non-stationarity in both
the Poisson rate parameter (µ) and the scale parameter (σ)
(Figures 3E–H).

Estimated Return Levels
We use all four potentially non-stationary GPDmodel structures
with stationary shape parameter (ξ) and all four candidate
covariates to fit a total of 13 distinct models for each tide
gauge data site (4 covariates × 3 non-stationary models
+ 1 stationary model). We use these models to project
the 50-year storm tide return level for each of the sites
with at least 55 years of available data (Figure 4). In
the Supplementary Material, we include analogous figures
when the GEV family of models is used, and for other
return periods.
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FIGURE 3 | Frequency graphs of model choice. These figures aggregate over all 36 tide gauge stations, considering each covariate individually (time, A,E;

temperature, B,F; sea level, C,G; and NAO index, D,H). Top row corresponds to consideration of the four GEV model structures and bottom corresponds to the four

GPD models. Sites are separated into long (>55 years, dark gray) and short (<55 years, light gray) data record lengths. Negative log-posterior score is used to

evaluate model goodness-of-fit.

The ranges of these results for each tide gauge station
demonstrate the diversity in estimates of flood hazards
attributable to model structural uncertainty, and how this “cone
of uncertainty” grows over time. As expected, for some sites,
the signal can be roughly equal in magnitude to the noise.
For example, in Pensacola, Florida, the 50-year storm tide
return level using the best-fitting model (a non-stationary GPD
with both λ and σ varying with temperature) increases from
about 1980mm in 2020 to about 3,100mm by the year 2050
(Figure 4O). However, the range in 2050 between the minimum
and maximum model projections is 1,500mm. We are not
arguing that the range is the appropriate measure of uncertainty,
especially with skewed distributions as tend to arise in dealing
with extremes. However, the range in model projections does
shed light on the magnitude of the uncertainties present, and
our intention is to provide a framework for better understanding
these inherent decision-relevant uncertainties.

This wide range in projected return levels results in several
sites displaying a range of projected changes in storm tide return
levels that spans from potential decreases in return level to
increases (e.g., Portland, Newport, New London, New York,
Mayport, and Port Isabel; Figures 4B,C,H,I,M,Q). The Newport,
Mayport, and Port Isabel sites use NAO index as the best-fitting
model covariate and show little discernible overall trend in either
direction (Figures 4C,M,Q). This is attributed to the NAO index
being the noisiest covariate, and raises the possible question
of to what degree these covariate models are really just fitting
the noise in the data, as opposed to the covarying NAO-storm
tide signal.

DISCUSSION

We have presented a set of experiments to characterize
uncertainty in projected ESL return levels for sites along the
U.S. East and Gulf Coasts. In particular, we have focused our
attention on three main questions: (i) in our sample of 36 tide
gauge stations, which of the candidate covariates and which of
the candidate (non-)stationary model parametric structures fits
best for each site? (ii) what geographic patterns emerge based on
those best-fitting models? and (iii) how does the projected 50-
year return level compare to the uncertain range in future return
levels, when looking across all of the plausible candidate model
structures? We also examined whether the amount of available
data has an impact on the choice of best-fitting model structure,
with a specific focus on the number of parameters used (see
Table 2).

For the GPD extreme value models, along the U.S. Gulf
Coast andmid-Atlantic regions, global mean surface temperature
emerges as the dominant best-fitting covariate (Figure 2). In the
Northeast, global mean sea level is the dominant covariate for
ESL. For the GEV models, in the Northeast, global mean sea
level and temperature are the dominant covariates. Along the
Gulf Coast, the GEV models show a preference for temperature
and sea level as covariates, as well as the winter mean NAO
index. However, we attribute the GEVmodels’ relatively stronger
preference for NAO index as a covariate to the reduced set of data
as compared to the GPD models (see Section Estimated Return
Levels). These geographic differences are likely attributable to the
main drivers of ESL in different regions. For example, in the Gulf
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FIGURE 4 | Projected 50-year return levels for the long-data sites (A–R). Uses a GPD model and a centered 21-year moving window average. The best-fitting model

is selected by minimizing the negative log-posterior score and is shown in black. The four candidate models using as the covariate time series are shown with the

same-colored lines: time (orange), temperature (purple), sea level (red), and NAO index (green). There is no visual distinction in each panel among the candidate model

structures within the set using each covariate.
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Coast region, the premise underlying previous work examining
ESL in this region assumed a connection between tropical storm
activity and changes in surface temperature (namely, in the
tropical development region where storms may form) (Grinsted
et al., 2013). The fact that temperature is favored as the best-
fitting covariate for many of the sites considered here, and for
both the GEV and GPD models, supports that premise. We
emphasize that these models and methods employ temperature
(or sea level, NAO index or time) as a covariate as opposed to a
causal mechanism for changes in ESL.

We find that, in contrast to some previous studies (Lee et al.,
2017; Wong et al., 2018; Rashid et al., 2019), a GEV model
with only the scale parameter (σ) non-stationary fits the annual
block maximum data sets better than a model with only the
location parameter (µ) non-stationary (c.f., Figure 3). This result
does not undermine these previous works, however. Both model
structures lead to a change in the median of the distribution of
ESL, but the σ-non-stationary structure also changes the width
of the distribution. An increase in the width as we project
return levels further into the future may well accurately reflect
our imperfect understanding of precisely how climate change
will affect environmental extremes (Seneviratne et al., 2012;
Kossin et al., 2017). For GPD models, we find that the form
with non-stationary rate and scale parameters (λ and σ) is the
dominant best-fitting model structure. When we limit the model
choices to only those with a single non-stationary parameter,
GPDmodels with non-stationarity in only the rate parameter are
the more popular choice (see Supplementary Figures 17–20).
With GPD models, sites with more data tend to prefer non-
stationarity in the rate parameter (λ), while sites with shorter
data records prefer non-stationarity in the shape parameter
(σ). We find the same preference among shorter-record sites
for non-stationary σ is apparent when negative log-likelihood,
AIC, or BIC are used for model selection, for both GEV and
GPD models.

Note that we cannot, in general, directly compare goodness-
of-fit measures across the GEV and GPD classes of models
because the data sets (after processing) employed for the
two types of models are different. However, the stationary
form of each class of model (GPD or GEV) may be viewed
as a baseline against which to compare the non-stationary
model structures. For example, the mean differences in NPS
among all sites for a global mean sea level, global mean
surface temperature, or NAO index covariate, using a GPD
model with the rate and scale parameters (λ and σ) non-
stationary relative to a stationary GPD model, are 11.7, 11.8,
and 10.1, respectively. By contrast, the use of a GEV model
with only scale (σ) non-stationary, relative to a stationary GEV
model, yields differences in NPS of 5.1, 5, and 5, respectively.
Given that the use of GPD models can constrain two non-
stationary parameters and provides a better fit relative to a
stationary model, we conclude that a non-stationary GPD model
is preferable to any of the available GEV-type models, or a
stationary GPD.

A critical caveat is that these results for the optimal model
choice (by whatever measure one wishes to use) do not depict the

strength of the structural choice. For example, at the Chesapeake
Bay Bridge Tunnel (Virginia) station, the range in AIC for the
GEV models is 546.7–550.6. Differences in AIC and BIC this
small do not indicate a strong preference among the model
structural choices. Thus, in this particular case, there is effectively
no significant preference between the best-fitting and the worst-
fitting models. However, we include a stationary model in
the set of candidate models, so our framework represents the
hypothetical decision landscape that faces a modeler tasked
with projecting storm tide hazard for these sites: a choice must
be made among these (or other) possible model structures.
Alternatively, this is an area where model averaging approaches
have been shown to be a fruitful avenue to combine projections
across model structures (Moftakhari et al., 2017c; Wong, 2018;
Wong et al., 2018), or one might consider selecting a model
that minimizes the potential regret if that choice turns out to
be inappropriate (Lempert and Collins, 2007; Kasprzyk et al.,
2013).

In light of these additional subjective modeling decisions and
the uncertainty related to model structural choice illustrated by
the results presented here, it is clear that there are many other
cross-sections and extensions of these results. Further work will
be of interest to researchers from the perspective of evaluating
the practical implications of subjective choices that must be made
regarding model structures employed. It is our aim that this work
may provide a useful framework for these lines of inquiry into
statistical modeling for extreme coastal sea levels, including a
common set of processed tide gauge records for two common
extreme value modeling approaches.
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