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Can signal-to-noise ratio
indicate prediction skill? Based
on skill assessment of 1-month
lead prediction of monthly
temperature anomaly over
Japan

Takeshi Doi *, Masami Nonaka and Swadhin Behera

Application Laboratory (APL), Research Institute for Value-Added-Information Generation (VAiG),

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan

We present a skill assessment of 1-month lead deterministic predictions of

monthly surface air temperature anomalies over most part of Japan based on

a large-ensemble climate model, SINTEX-F. We found that September is the

most predictable and the only month in which the prediction skill beats the

persistence. Interestingly, however, prediction of December becomes skillful

(correlation skill: 0.67) when we select only years in which the signal-to-

noise ratio of the predictions is relatively high. This means that the signal-

to-noise ratio can partly indicate the prediction skill. The inter-member

co-variability suggests that a combination of the tropical Pacific and western

Indian Ocean surface temperature is the key for the prediction. Although

seasonal climate prediction in the mid-latitude regions, such as Japan, is

still challenging in general, providing the signal-to-noise ratio and the inter-

member co-variability in addition to the real-time prediction might be useful

for stakeholders to know how confident the individual prediction is, as well as

its potential sources of predictability. Such information can be helpful to take

necessary mitigation measures to reduce socio-economic losses associated

with extreme climate.

KEYWORDS

signal-to-noise ratio, deterministic prediction skill, 1-month lead prediction, monthly

temperature, seasonal prediction

Introduction

Monthly surface air temperature exhibits substantial year-to-year variability leading

to large socioeconomic impacts. In particular, cold surges in winter and heat waves in

summer affect the socio-economy of a region via issues in agriculture, health, water

resources, electrical energy demand, etc., (e.g., Hill and Mjelde, 2002; Meza et al., 2008;

Akihiko et al., 2014; Cawthorne et al., 2021). Therefore, skillful predictions of surface air

temperature a fewmonths ahead would be helpful for stakeholders to prepare in advance

for such abnormal monthly climate events (e.g., Charles et al., 2012).
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The seasonal predictability of rainfall and temperature in

some regions is often linked to climate phenomena. For example,

El Niño/Southern Oscillation (ENSO) modulates the East Asian

climate and thus could work as the main potential source

of its seasonal predictability (e.g., Wang et al., 2000). Besides

ENSO, the Indian Ocean Dipole (IOD) (Saji et al., 1999)

could influence the East Asian climate as suggested by several

studies (Behera and Yamagata, 2003; Guan and Yamagata, 2003;

Saji and Yamagata, 2003; Yamagata et al., 2004). Furthermore,

teleconnection patterns in the western North Pacific provide

crucial links of high seasonal predictability from the tropics to

East Asia in summer (Kosaka et al., 2013; Xie et al., 2016).

Molteni et al. (2015) discussed such a teleconnection from the

central Pacific to East Asia, the maritime continents, and the

western Indian Ocean. Recently, Doi et al. (2020c) also showed

the western tropical Indian Ocean as one of the major potential

sources of predictability for the East Asian winter climate.

The prediction skill scores (Kumar, 2007, 2009) form

an important component of real-time seasonal predictions

while developing decision making tools. As conducted in this

study, the skills can be generally estimated by the reforecast

experiments for the past cases generally available for 20–40

years. In addition, a priori skill of an individual prediction could

be estimated by the ensemble spread as in case of numerical

weather prediction systems (e.g., Buizza and Palmer, 1998;

Whitaker and Louche, 1998). However, in seasonal climate

prediction systems, relationships between the ensemble spread

and the actual prediction skill are still limited (Kumar et al.,

2000; Tang et al., 2008a, 2014). However, there are some tools

available to access the skills of seasonal climate predictions.

For example, the signal-to-noise ratio (SNR) has been widely

regarded as a good measure for quantifying potential seasonal

predictability (Rowell, 1998; Scaife and Smith, 2018). Tang et al.

(2008b) showed that the SNR as well as the ensemble signal

square are useful measures of the prediction skills of the ENSO

and the Arctic Oscillation (AO).

In this study, we explored the potential of SNR in

determining the prediction skill for the 1-month lead monthly

temperature over Japan. We examined the prediction skill

based on the reforecast experiments using the large-

ensemble dynamical seasonal prediction system known as

Scale Interaction Experiment–Frontier Research Center for

Global Change (FRCGC) model “SINTEX-F” (Doi et al., 2019).

We note that the large ensemble of the SINTEX-F system will

help extract predictable signals and increase the chances of

capturing potential teleconnection patterns from the tropics to

the mid-latitude climate because the SNR is generally low in the

mid-latitudes. We briefly described the prediction system and

presented how we assessed the prediction skill in section 2. In

section 3, we examined seasonality of the prediction skill. Then,

we explored possible processes with large-scale circulations that

work as potential sources of the predictability based on co-

variability of the inter-member anomalies defined as deviations

from the ensemble mean. Finally, we presented discussions and

conclusions in sections 4 and 5, respectively.

Methods

The 108-member ensemble seasonal
prediction system

The dynamical seasonal prediction system is based on

an fully coupled global ocean–atmosphere circulation model

(CGCM) called SINTEX-F ver. 2 developed under the EU–

Japan collaborative framework (Masson et al., 2012; Sasaki

et al., 2013), which has a dynamical sea-ice model, together

with a higher-resolution relative to its previous version (Luo

et al., 2003, 2005; Masson et al., 2005). This system adopts a

relatively simple initialization scheme based only on the nudging

of the SST data (Doi et al., 2016) and a three-dimensional

variational ocean data assimilation (3DVAR) method by taking

three-dimensional observed ocean temperature and salinity

data into account (Doi et al., 2017). In consideration of the

uncertainties of both initial conditions and model physics, the

original system had 12 members for the predictions initiated on

the first day of each month. The 12-member system has recently

been upgraded to a bigger ensemble system of 108 members

using the Lagged Average Forecasting (LAF) method (Doi et al.,

2019, 2020b). Based on this new system, we conducted the

reforecast experiments from the nine initialized dates (1st−9th)

in every month of 1983–2020. The prediction anomalies were

determined by removing the model climatology at each lead-

time and ensemblemember using the reforecast outputs over the

period 1983–2015.

Skill assessment

To evaluate the prediction results, we used the NCEP/NCAR

reanalysis data (Kalnay et al., 1996) and the NOAA Interpolated

Outgoing Longwave Radiation (OLR), for atmospheric

variables. The monthly climatologies of these datasets were

calculated by averaging the monthly data from 1983 to 2015,

and then the anomalies were derived through deviations from

those climatologies. The linear trends were removed for all of

the analyses.

In this study, the correlation coefficient and root-mean-

square error (RMSE) between the anomaly of prediction and the

verification value based on the observation/reanalysis datasets

were adopted as the deterministic prediction skill scores. The

p-value was calculated based on a paired t-test. We also assessed

the potential predictability by dividing the predicted variability

into signal (S) and unpredictable noise (N) components. S is the

common feature among the ensemble members, and could be

the predictable component of variability mainly due to tropical
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SST forcing, which was estimated as the ensemble mean of

the 108 members. N was estimated as the ensemble spread

that provided a measure of uncertainties among the predictions

arising from the random effects of chaotic atmosphere-ocean

variability. By calculating the SNR, we measured robustness

of the prediction of the signal as well as the potential

predictability. When the ensemble mean is small relative to the

ensemble spread, the prediction is potentially difficult due to the

large uncertainty.

Analysis of inter-member co-variability

Anomalies among the ensemble members (defined as

deviations from the ensemble mean) and their co-variability

in the ensemble space may provide useful insights into

possible precursors and teleconnection patterns related to

a climate event (Ma et al., 2017; Ogata et al., 2019; Doi

et al., 2020a,b,c). Here, we calculated an inter-ensemble

correlation among the 108-member ensemble predictions in

target months. The Pearson correlation measures how two

continuous timeseries co-vary over time and indicate the linear

relationship as a number between – 1 and 1. In contrast, inter-

ensemble correlation measures how two predictions co-vary

over ensemble members by adding the ensemble phase space to

the conventional time dimension. Here, we calculated it as

R
(

x, y
)

=

1
nt∗ne

∑ne
e=1

∑nt
t=1 (X(t, e)− X̄)(Y(x, y, t, e)− Y(x, y))

√

1
nt∗ne

∑ne
e=1

∑nt
t=1 (X(t, e)− X̄)

2
√

1
nt∗ne

∑ne
e=1

∑nt
t=1 (Y(x, y, t, e)− Y(x, y))

2

Here nt is the number of target years, ne is the ensemble size

(108), X(t, e) is predictions of the target index [area-averaged

anomalous temperature, e.g., monthly surface air temperature

regionally averaged over most part of Japan (129◦-141◦E,

30◦N−37◦N) for Figures 3, 5; Niño3.4 index (SST anomaly

averaged in 170◦W−120◦W, 5◦S−5◦N) for Figure 4] and a

function of time (t) and ensemble member (e), X̄ is the

average of X (t, e) over target years and all ensemble members,

Y(x, y, t, e) is predictions of the target variables (anomalous

temperature, OLR, geopotential height (GH) at 200 hPa, and

velocity potential at 200 hPa) and a function of two-dimensional

horizontal (x, y), time (t) and ensemble member (e), Y(x, y) is

the average of Y(x, y, t, e) over target years and all ensemble

members, respectively.

Results

Which month is predictable?

Figure 1 shows seasonality of skills of 1-month lead

prediction (e.g., prediction of December issued on 1st−9th

of November) of monthly surface air temperature regionally

averaged over most part of Japan (129◦-141◦E, 30◦N−37◦N).

Based on the correlation skill, temperature in September is the

most predictable (the skill:∼0.7), then, that in May and October

are the second (the skill: ∼0.5) and the third most predictable

(the skill: ∼0.4), respectively (Figure 1A). September is the only

month in which the model prediction skill beats the persistence.

The correlation skills for the other months are not statistically

significant beyond the 95% confidence levels on the paired t-test.

The reanalysis data shows the seasonality of the standard

deviations of the averaged air temperature; large in wintertime

and small in summertime (Figure 1B). It is not captured well

by the ensemble mean prediction. Because atmospheric intrinsic

variability included in the observation is largely removed in

the ensemble mean, this suggests that the model is not skillful

at predicting the amplitude. Interestingly, the ensemble spread

shows a strong seasonality, large in wintertime and small in

summertime, similar to what is seen in the standard deviation

of the reanalysis data. The large standard deviation in the

reanalysis data and the large ensemble spread in the predictions

for wintertime can be partly due to strong atmospheric internal

variability such as blocking events (e.g., Takaya and Nakamura,

2005). Note that a relatively large ensemble spread is also seen

in June (Figure 1B), when the Baiu season onsets (e.g., Tomita

et al., 2011). For other summer months, the ensemble spread

is relatively small, in particular for August (∼0.5◦C), which is

almost half of that in wintertime. In August, the Bonin High

is formed around Japan, which is relatively stationary, as a

separate system from the Tibetan and North Pacific anticyclones

(Neyama, 1968; Enomoto et al., 2003). The Bonin High is also

stable in some years, keeping aside the interannual variations,

associated with limited propagations of stationary Rossby waves

along the Asian jet (Enomoto, 2004). Those features may explain

the small ensemble spread in August. Figure 1B also shows

the relationship between the RMSE and the ensemble spread.

The differences among the ensemble members are larger than

the difference between the ensemble mean prediction and the

observed value in September. In other words, the uncertainty

of the prediction is overestimated (Fortin et al., 2014). In

wintertime prediction, the opposite occurs, where the model

underestimates the sources of error. The problem is common

to most dynamical seasonal prediction systems based on GCMs

(Scaife and Smith, 2018). Those errors in the prediction of the

amplitude can be corrected by a postprocessing step that would

amplify the predictable signal based on the correlation skills

(Eade et al., 2014).

The SNRs are low in all calendar months (0.3–0.4) except

for those in August and September (<0.4) (Figure 1C), when
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FIGURE 1

(A) Correlation skills for 1-month lead prediction (e.g., prediction of December issued on 1st−9th of November) of monthly temperature

regionally averaged over most part of Japan (129◦E−141◦E, 30◦N−37◦N) for each calendar month. Correlation skills for all years of 1983–2020

(black), for years when the SNR is larger than its 1983–2020 mean (red), and for the other years (blue) are shown. Persistent skills (e.g., lag

auto-correlation of December with previous November) are shown by a gray line. (B) RMSE (black line), ensemble spread (grey line), standard

deviations of the reanalysis (dashed line) and the ensemble mean prediction (long and short dashed line) for each calendar month (◦C). (C)

1983–2020 mean of SNR for each calendar month.

the correlation skill and the RMSE are also relatively high. This

suggests that the SNR can partly indicate the seasonality of the

prediction skill.

Interestingly, we found the correlation skill of December

becomes high and beats the persistence when we selected years

in which the SNR is larger than the 1983–2020 mean of the SNR

(Figure 1A). Therefore, we will focus on December as well as the

most predictable September hereafter. Note that the SINTEX-F

prediction system is not skillful in the 2-month lead prediction

for all months.

September prediction

At a first glance, the model seems to be skillful in predicting

most of the significant events from the timeseries for September

(Figure 2A). The correlation skill is 0.72. Figure 2A shows

that the SNR has substantial interannual variability (0.1–1.4),

although the ensemble spread is almost constant. In high

SNR years when SNR is higher than its 1983–2020 mean,

the correlation skill is higher (∼0.9) compared to the values

considered with all the years (∼0.7) (Figure 2B). Even for the

low-SNR years, when SNR is lower than its 1983–2020 mean,

the correlation skill is still about 0.4, which is comparable to that

of the persistent skill.

We selected warm years when the anomaly in the reanalysis

data was above +0.5◦C (1998, 1999, 2007, 2010, and 2019) and

cold years when the anomaly in the reanalysis data was below –

0.5◦C (1987, 1992, 1993, 1996, 1997, 2009, 2014, and 2015), then

analyzed the inter-ensemble correlations. For the warm years,

ensemble members that predicted a La Niña Modoki-like state

(Ashok et al., 2007) mostly tend to predict an intensely warmer-

than-normal condition over Japan (Figure 3A). They also tend

to predict an enhanced convection (Figure 3C) and a positive

SST anomaly (Figure 3A) over the Philippine Sea around 20◦N

and a positive GH200 anomaly over Japan (Figure 3E). Note

that for Figure 3C, negative correlation (blue color) means

that ensemble members that predicted an intense warmer-

than-normal condition over Japan mostly tend to predict

enhanced convection. The ensemble co-variability may suggest

the teleconnection from the Philippine Sea into Japan via

the enhanced local Hadley circulation associated with the La

Niña-Modoki-like state. The suppressed (enhanced) convective

activity over the western/central equatorial Pacific (tropical

Indian Ocean) (Figure 3C), and the positive (negative) velocity

potential anomaly at 200 hPa over the western Pacific and the

tropical Indian Ocean (the eastern Pacific) (Figure 3G) suggest

an enhancement of the Walker circulation in the Indo-Pacific

basin, which alsomay contribute to the positive temperature and

GH200 anomaly over Japan. The inter-ensemble correlations

suggest that the La Niña Modoki could work as a potential

source of the 1-month predictability of temperature over Japan.

This may be partly consistent with the La Niña Modoki

developing in autumn (Zhang et al., 2011). Note that the

negative GH anomalies at 200 hpa associated with the cold SST

anomaly are also seen in the central and western tropical Pacific

(Figures 3A,E), which are similar to a typical La Niña Modoki

state. However, they are not simply linked with the velocity

potential at 200 hPa (Figure 3G), which looks similar to the

canonical La Niña-like state. The ensemble co-variability may

suggest a pattern resembling amixture of a LaNiñaModoki-type

and a canonical-type (Karnauskas, 2013).

Frontiers inClimate 04 frontiersin.org

https://doi.org/10.3389/fclim.2022.887782
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Doi et al. 10.3389/fclim.2022.887782

FIGURE 2

(A) Interannual time series of September temperature regionally averaged over most part of Japan (129◦E−141◦E, 30◦N−37◦N) for 1983–2020

by the reanalysis (black line), the ensemble mean predictions issued on 1st−9th of August (red line). Interannual variations of the ensemble

spread (blue curve), the SNR (grey bars), and the 1983–2020 averaged SNR (chain line) are also shown. (B) Scatter plot of September

(Continued)
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FIGURE 2 (Continued)

temperature regionally averaged over most part of Japan (129◦E−141◦E, 30◦N−37◦N) for 1983–2020 by the reanalysis (x-direction) and the

ensemble mean predictions issued on 1st−9th of August (y-direction). The plots in years when the SNR are larger than the 1983–2020 mean

(high SNR yr) are shown by red square, the plot in the other years (low SNR yr) are shown by black cross. Linear regression lines are also shown

for high SNR yr (red). The numbers of sample years in high/low SNR yr, the correlation skills in high/low SNR yr, and p-value for the di�erence in

the correlation skills between high and low SNR years are shown on lower-left corner. (C,D) Same as (A,B), but for December (predictions issued

on 1st−9th of November). (E,F) Same as (A,B), but for May (predictions issued on 1st−9th of April).

Interestingly, we could not find the ensemble co-variability

between prediction of the tropical Pacific condition and

prediction of atmospheric variables over Japan for the cold

years (Figures 3B,D,F,H). The cold years include the super El

Niño years: 1997 and 2015, then we also focused on those 2

years (Figure 4). As similar to Figures 3B,D,F,H, we could not

find the ensemble co-variability between prediction of the super

El Niño and prediction of atmospheric variables over Japan,

although it suggested a weakening of the Walker circulation in

the tropical Pacific (Figures 4G,H). Since the El Niño-Modoki

and its impacts on East Asian summer are different from those

of ENSO (Weng et al., 2007), further studies are necessary for

deeper understanding of the uncertainty in their predictions.

December prediction

In stark contrast to September, the model seems to be not

skillful in predicting most of significant events in December at

a first glance (Figure 2C). However, when we selected 15 years

in which the SNR is higher than the 1983–2020 mean of the

SNR (1984, 1987, 1988, 1989, 1990, 1994, 1997, 2000, 2004, 2006,

2008, 2009, 2010, 2017, 2019), the correlation skill becomes 0.67,

while that in the other 23 years it is – 0.15 (Figure 2D). The

difference is statistically significant beyond the 99% confidence

levels based on the t-test.

For the warm years, ENSO-Modoki contributions are

also found as was seen in September, but with the opposite

sign; warmer-than-normal conditions over Japan are linked

with the El Niño-Modoki like condition in the tropical

Pacific (Figure 5A). Ensemble members that predicted an El

Niño Modoki-like state mostly tend to predict a suppressed

convection (Figure 5C), a negative SST anomaly (Figure 5A)

and a negative velocity potential anomaly (Figure 5G) over the

Philippine Sea and the Maritime Continent, and a positive

GH200 anomaly over Japan (Figure 5E). It may suggest the

weakened local Hadley circulation in the western Pacific

associated with the El NiñoModoki. The ensemble co-variability

are also consistent with a possible teleconnection pattern from

suppressed convection over the western Pacific associated with

El Niño/El Niño Modoki into warm winters in Japan via an

emanation of the Rossby wave train in the upper troposphere as

discussed by previous works (Sakai and Kawamura, 2009; Ueda

et al., 2015; Kuramochi et al., 2021).

In addition, ensemble members that predicted warmer

conditions in the western tropical Indian Ocean tend to predict

warm temperature around Japan (Figure 5A). They also tend to

predict an enhanced convection in the western tropical Indian

Ocean (Figure 5C), a negative GH anomaly over southern

China and a positive GH anomaly in the upper troposphere

over Japan (Figure 5E). The ensemble co-variability suggests

a possible teleconnection from the western tropical Indian

Ocean via stationary Rossby waves along the subtropical jet.

Although this is partly seen by the wave activity fluxes at 200

hPa (Takaya and Nakamura, 2001; Morioka et al., 2014) for

the warm years (Figure 5E), we could not find the significant

ensemble correlations between prediction of the temperature

around Japan and prediction of the wave activity flux along the

subtropical jet. Doi et al. (2020b) demonstrated the propagation

pathways of stationary Rossby waves from the western tropical

Indian Ocean to Japan for the record-breaking warmwinter case

over Japan in 2019/2020 by the SINTEX-F, when the positive

SST anomaly in the western tropical Indian Ocean was observed

after the super Indian Ocean Dipole (IOD) (Doi et al., 2020a). As

a result, the southern penetration of cold air masses into Japan

from high latitudes was weakened, causing warmer winter.

Interestingly, we could not find the ensemble co-variability

between prediction of the tropical Pacific and Indian Ocean

condition and prediction of atmospheric variables over Japan for

the cold years (Figures 5B,D,F,H). Further studies are necessary

for deeper understanding of such asymmetries.

Discussion

In this study, we found some cases that the SNR can partly

indicate the prediction skill. Since the year-to-year variations of

the noise are small, the SNR variations are large mainly due to

the variations of the signal and the ensemble mean. It is partly

consistent with Tang et al. (2008b), who showed that the SNR

are useful measures of the prediction skills, but not as good as

the ensemble mean square for predictions of ENSO and AO.We

have confirmed the similar features for 1-month lead prediction

of monthly temperature anomaly over Japan based on the large-

ensemble prediction system. However, we tried not to generalize

the relationship between SNR and prediction skills based on

the results of this study. Rather, we picked the months when

we found the skills are better than persistence to discuss here.

Further extensive modeling and careful analyses are certainly
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FIGURE 3

(A) A horizontal map of inter-ensemble correlations between 2m-air temperature anomaly averaged in 129◦E−141◦E, 30◦N−37◦N (shown by

the green box) and a horizontal map of 2m-air temperature anomaly in 108-member ensemble predictions for September of the 5 warm years

(1998, 1999, 2007, 2010, and 2019) issued on 1st−9th of August [sample size: 540, 12 (ensemble members) × 9 (initialized dates, 1st−9th) × 5

(warm years)]. Considering that the degree of freedom is based on the sample size, a correlation beyond 0.3 is statistically significant at the 95%

(Continued)

Frontiers inClimate 07 frontiersin.org

https://doi.org/10.3389/fclim.2022.887782
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Doi et al. 10.3389/fclim.2022.887782

FIGURE 3 (Continued)

confidence level (using the two-tailed Student’s t-test) and are shaded. (C,E,G) Same as (A), but for (C) OLR, (E) GH (shaded) and the wave

activity flux (Takaya and Nakamura, 2001) (vector) at 200 hPa, and (G) velocity potential (shaded) and divergent/convergent flows (vector) at 200

hPa. For (C), negative correlation (blue color) means that ensemble members that predicted an intense warmer-than-normal condition over

Japan mostly tend to predict enhanced convection. (B,D,F,H) Same as (A,C,E,G), but for 8 cold years (1987, 1992, 1993, 1996, 1997, 2009, 2014,

and 2015) (sample size: 108 member×8 year = 864).

necessary to recognize other factors affecting the predictability

and reach a general conclusion.

We found September is the most predictable in the SINTEX-

F prediction system but could not reach a definite conclusion

why it is so and why other months are not so well-predicted

in the SINTEX-F prediction system. ENSO/ENSO-Modoki

phenomena should be the key factors explaining the seasonality

in the prediction skill although the mechanism appears not

to be so simple (e.g., asymmetry of their influences). They

generally have the seasonal-phase locking nature; for example,

they develop from the early summer through autumn, mature

in winter, and decay in spring. For winter, although the ENSO

amplitude is relatively large, the atmospheric internal variability

is also large over the East Asia including Japan. For spring and

summer, the amplitude is relatively small for both ENSO and

ENSO Modoki. As a result, teleconnections of ENSO/ENSO-

Modoki to the East Asia cannot work as main potential sources

of the seasonal predictability in these seasons. This might be one

of possible reasons.

The correlation skill of prediction of May, is relatively high

(∼0.5), although it is less than that of the persistence. Though

the correlation skill became higher (0.62) (Figure 2F) when we

selected years with the SNR higher than its 1983–2020 mean,

it still could not beat the persistence (Figure 1A). It could be

due to the presence of other signals in the time series. For

example, as seen in the time series (Figure 2E), decadal signals

are apparent in May. While it would be interesting to remove

the decadal signal, that can affect the prediction skill, when

a high-passed filter is applied, a certain part of the original

information may be somehow perturbed because it is difficult to

clearly separate the interannual variations from the decadal and

longer timescale variations mainly owing to the limited sample

size. Considering the possible interactions between interannual

and decadal variability, we may need to develop skillful seamless

prediction abilities from seasonal-to-decadal (S2D) timescale in

the future.

A lot of previous studies demonstrated that East Asian

climate is influenced by the AO (e.g., He et al., 2017) and

the Madden-Julian Oscillation (MJO) (Jeong et al., 2005),

and those could be additional potential sources of seasonal

predictability of East Asian climate. However, predictions of

those phenomena on a seasonal time scale by dynamical

models, including SINTEX-F, are still challenging (Kumar and

Chen, 2018; Lim et al., 2018) relative to predictions of the

tropical climate variations such as ENSO and the IOD. Further

studies and developments of dynamical prediction systems are

necessary. In addition, a machine learning technique and a

hybrid statistic-dynamical approach become powerful tools for

seasonal prediction. Such a research stream is also helpful

for understanding predictability as well as improvement of

prediction skill (e.g., Ratnam et al., 2019, 2021a,b).

Having said that the errors in the prediction of the amplitude

can be corrected in the postprocessing step, the errors should be

reduced for more successful prediction by the model. Further

studies are necessary, for example, to improve the model itself as

well as the generation method of ensemble members.

Conclusions

We presented a skill assessment of 1-month lead predictions

of monthly surface air temperature anomalies averaged in

the region that covers most part of Japan based on the

reforecast experiments with the large-ensemble SINTEX-F

seasonal prediction system. While remarkable progresses are

made for the prediction of tropical climate variations on

longer lead time (6–12 months), the predictions of subtropical

and mid-latitude climate even on 1-month lead is still a

challenge. Comparing all the monthly predictions, we found that

prediction of September temperature is the most predictable

largely due to its association with the La Niña-Modoki-like

state in the tropical Pacific. In other months, the SINTEX-F

model could not provide useful prediction of temperature over

Japan 1-month ahead. Through the skill assessment, however,

we found that prediction of December temperature interestingly

becomes skillful when we select years in which the SNR of the

predictions is relatively high. It suggests that the SNR partly can

indicate skill of deterministic prediction a priori as well as its

potential predictability. It encouraged us to develop a practical

method for estimating how confident the real-time prediction is

in an individual year. For example, when the SNR is relatively

high for deterministic prediction of a coming event, we could

say that the prediction is relatively reliable. This information is

intrinsically different from probability prediction.

The ensemble co-variability analysis might also be useful

for stakeholders to know the potential sources of individual

seasonal predictability; for example, we showed that prediction

of December temperature over most of Japan could be due to

a combination of the tropical Pacific and the western Indian

Ocean surface temperature, at least as the SINTEX-F model.
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FIGURE 4

(A,C,E,G) Same as (Figures 3A,C,E,G), but for co-variability with prediction of Niño3.4 index (SST anomaly averaged in 170◦W−120◦W, 5◦S−5◦N)

in 1997 (sample size: 108 member). (B,D,F,H) Same as (A,C,E,G), but for 2015.
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FIGURE 5

Same as Figure 3, but for December (prediction issued on issued on 1st−9th of November) for 10 warm years (1987, 1990, 1994, 1997, 2000,

2004, 2006, 2008, 2010, 2019) and 5 cold years (1984, 1988, 1989, 2009, 2017).
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Although prediction of wintertime temperature over Japan

is still challenging, additional information of the SNR and the

ensemble co-variability together with the real-time seasonal

prediction can lead to a better understanding of an individual

prediction. This will help stakeholders interpret the limits of

the prediction as well as the potential for relevant applications,

and take necessary mitigation measures to reduce the associated

socio-economic losses.

Since the number of high SNR years is limited, the skill

assessment in this study may be influenced by sampling errors.

Besides, our results are based only on a single system. In a

next step, the skills will be tested further by including results of

multi-model prediction systems.
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