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Predictability of sea surface
temperature anomalies at the
eastern pole of the Indian Ocean
Dipole—using a convolutional
neural network model
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Xuebin Zhang4, Jason R. Hartog4, Mahmood Akhtar5, Li Shi6,

Brint Gardner5, Jing-Jia Luo3 and Alistair J. Hobday4

1CSIRO Oceans and Atmosphere, Perth, WA, Australia, 2Centre for Southern Hemisphere Oceans

Research, Hobart, TAS, Australia, 3Nanjing University of Information Science and Technology,

Nanjing, China, 4CSIRO Oceans and Atmosphere, Hobart, TAS, Australia, 5CSIRO IM&T, Eveleigh,

NSW, Australia, 6Bureau of Meteorology, Melbourne, VIC, Australia

In this study, we train a convolutional neural network (CNN) model using a

selection of Coupled Model Intercomparison Project (CMIP) phase 5 and 6

models to investigate the predictability of the sea surface temperature (SST)

variability o� the Sumatra-Java coast in the tropical southeast Indian Ocean,

the eastern pole of the Indian Ocean Dipole (IOD). Results show that the CNN

model can beat the persistence of the interannual SST variability, such that the

eastern IOD (EIOD) SST variability can be forecast up to 6 months in advance.

Visualizing the CNN model using a gradient weighted class activation map

shows that the strong positive IOD events (cold EIOD SST anomalies) can stem

from di�erent processes: internal Indian Ocean dynamics were associated

with the 1994 positive IOD, teleconnection from the equatorial Pacific was

important in 1997, and cooling o� the Australian coast in the southeast Indian

Ocean contributed to the 2019 positive IOD. The CNN model overcomes the

winter prediction barrier of the IOD, to a large extent due to the frequent

transition from a warm state of the Indian Ocean to a negative IOD condition

(warm EIOD SST anomalies) over the boreal winter to the following spring

period. The forecasting skills of the CNN model are on par with predictions

from a coupled seasonal forecasting model (ACCESS-S2), even outperforming

this dynamic model in seasons leading to the IOD peaks. The ability of the

CNNmodel to identify key dynamic drivers of the EIOD SST variability suggests

that the CMIP models can capture the internal Indian Ocean variability and its

teleconnection with the Pacific climate variability.
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sea surface temperature (SST), eastern Indian Ocean, prediction model, machine
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Introduction

The IndianOceanDipole (IOD) is the dominant interannual

climate mode in the Indian Ocean, featured with sea surface

temperature (SST) cooling (warming) in the equatorial eastern

Indian Ocean and warming (cooling) in the western Indian

Ocean during its positive (negative) phase (Saji et al., 1999).

The IOD, which peaks in boreal summer-autumn, has drastic

impacts on rainfall variability near Maritime Continent and in

east Africa, corresponding to Australia’s drought and bush fire

conditions during its positive phase and relatively wet conditions

during its negative phase (Cai et al., 2009a; Ummenhofer et al.,

2009). Whereas, the coupled dynamics and predictability of

the interannual climate mode in the Pacific, e.g., El Nino-

Southern Oscillation (ENSO), have been reasonably understood

(L’Heureux et al., 2020), the numerical model forecasting of the

IOD is only skillful at a short lead time (e.g., Shi et al., 2012; Doi

et al., 2020). A better prediction of the IOD will not only help

manage the extreme climate surrounding the Indian Ocean but

also inform ecosystem and fisheries management (e.g., Menard

et al., 2007).

Positive IOD events co-occurring with canonical or central

Pacific El Niño can be predicted to a certain extent using coupled

ocean-atmosphere models, due to the teleconnection between

the two ocean basins (Luo et al., 2007; Zhao and Hendon,

2009; Yang et al., 2015; Doi et al., 2017, 2020). IOD events

can also develop due to the internal dynamics of the Indian

Ocean, independent of Pacific ENSO (Cai et al., 2009b; Doi

et al., 2017). Boreal winter (December-February) persistence and

predictability barriers of the IOD have been identified from the

coupled models (Luo et al., 2007), likely due to initial condition

errors (Feng et al., 2014), limiting skillful predictions of the IOD

events to only 1–2 seasons lead time.

Observational data have been used to demonstrate that SST

variability of the eastern IOD pole (EIOD) leads the western

pole by 1–2 months (Feng and Meyers, 2003). It has also been

noted that forecast skills for the IOD appear to be limited mainly

by the inability to predict the development of SST anomalies

in its eastern pole (Zhao and Hendon, 2009; Figure 1), where

SST is closely coupled with subsurface variability. Thus, both

subsurface and surface temperature evolutions off Sumatra-Java

are key to the IOD detection and prediction. In recent years,

extreme marine heatwaves in the Maritime Continent and off

northern Australia have been attributed to negative IOD events

(Benthuysen et al., 2018; Holbrook et al., 2019). It is therefore

important to understand the predictability of the EIOD SST,

to better forecast the IOD variability which can inform early

warning systems that are in development to enhance socio-

economic development among the Indian Ocean rim countries.

Similar forecasts for the Pacific ENSO events have been widely

adopted with considerable benefits (e.g., https://www.cpc.ncep.

noaa.gov).

A convolutional neural network (CNN) machine learning

tool, trained with coupled ocean-atmosphere model outputs,

has been applied in a predictability analysis of an ENSO index,

achieving long-term prediction skills and overcoming the spring

prediction barrier of the Pacific (Ham et al., 2019). Neural

network machine learning techniques trained on observations

and reanalysis products have also been applied in the prediction

of positive IOD events (Ratnam et al., 2020). The Ratnam et al.

model beat persistence forecasting for the starting months from

February, though the winter forecast barrier was not evaluated

and the predictability of the negative IOD was not a focus.

In this study, we adapt Ham et al. (2019) CNN model for

a predictability study of the EIOD SST anomalies. The CNN

model is trained using a selection of coupled climate models

from Coupled Model Intercomparison Project Phases 5 and 6

(CMIP 5 and 6; Taylor et al., 2012; Eyring et al., 2016). We

examine the model skills and assess predictions of both the

strong positive and negative IOD events over recent decades.

We also apply a gradient weighted class activation map (GRAD-

CAM; Selvaraju et al., 2017) method to visualize the key features

in the initial condition fields that generate the IOD predictions.

The analysis can also assess the performance of the climate

models in capturing the coupled ocean-atmosphere dynamics

for the IOD events, as these models have been widely used to

provide future projections of the IOD over the current century

(e.g., Wang et al., 2017).

Methods

The machine learning model is adapted from a CNN

model developed by Ham et al. (2019). CNN models comprise

convolutional, pooling, and fully-connected types of layers and

are primarily used in the field of pattern recognition within

images (O’Shea and Nash, 2015). Their ability to encode image-

specific features into the architecture at a reduced number of

required model parameters [as compared to traditional Artificial

Neural Networks (ANNs)] makes themmore suitable for image-

focused tasks. We use a training data domain in the tropical

Indo-Pacific, 18◦N-48◦S, 30◦E-300◦E, and use a selection of

CMIP class models (Taylor et al., 2012; Eyring et al., 2016). The

climate model selection is based on an assessment of the ability

of the CMIP5 coupled general circulation models in capturing

the warming patterns associated with the Ningaloo Niño in the

southeast Indian Ocean (Feng et al., 2013; Kataoka et al., 2014),

as well as their ability to simulate the oceanic planetary wave

propagation from the Pacific into the southeast Indian Ocean

(Kido et al., 2016). The Ningaloo Niño and wave propagation

criteria are to ensure that the CMIP models capture oceanic

and atmospheric teleconnection between the tropical Pacific and

the southeast Indian Ocean, which would ensure the Pacific

influences on the Sumatra-Java upwelling system are captured

in the models. Historical runs from 9 models were chosen

from CMIP5 (CCSM4, CanESM2, CESM1-BGC, FGOALS-

s2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, MRI-CGCM3,

NorESM1-M); CMIP6 model selection matches the CMIP5
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FIGURE 1

The structure of the CNN model. Input data domain is shown on the left as SST (upper) and heat content (lower) anomalies in the Indo-Pacific

for an example month of June 1997. The focal region for the EIOD is shown by the magenta box (10◦S-equator, 90–110◦E). The first

convolution layer of the CNN model is 8 × 4 with 30 filters, followed by a 2 × 2 maximum pooling layer; the second convolution layer is 3 × 3

with 30 filters, followed by a 2 × 2 maximum pooling layer; and the third convolution layer is also 3 × 3 with 30 filters, followed by a dense layer

with 30 filters, before output to the monthly EIOD index.

ensemble by selecting models from the same model centers,

except that only 2 GFDL models from CMIP6 vs. 3 GFDL

models from CMIP5 are used, so ACCESS-CM2 is used in

the CMIP6 ensemble, while no ACCESS model was used in

CMIP5 (for details of the CMIP models, see Taylor et al., 2012

and Eyring et al., 2016). The CNN model inputs include SST

and upper 300m ocean heat content (average temperature)

anomalies from the CMIP models during 1861–2001, mapped

onto a 2◦ × 2◦ grid (2,502 samples in total −139 sampling

years from each model). CMIP data are detrended at each grid

point before the CNN model training (the same detrending

procedure is applied for the test data). The EIOD index, or the

CNN model label, is defined as the average SST anomalies in

the 10◦S-equator, 90–110◦E box, following Saji et al. (1999).

The missing land cells are not included in the EIOD index

calculation, whereas land cells are filled with zeros for the CNN

model inputs.

As in Ham et al. (2019), we stack 3-monthly data for the

CNN model input. We use monthly EIOD SST anomalies as

the model labels, to train the CNN model at 1–13 lead months.

Note that different CNN models are trained for different target

months and lead months. 10 ensemble members are trained for

each target month and lead month. There are three convolution

layers in the CNN model, each with 30 filters, followed by

max-pooling layers for the first two convolutions and a dense

layer after the last one (Figure 1). Hyperbolic Tangent (Tanh)

activation functions are used. Note we use a 3 by 3 filter for

the last two convolutional layers. We use Python version 3.9.4

and Tensorflow on the CSIRO High-Performance Computing

facility, supercomputer Bracewell for the CNNmodel training.

We use data from the National Centers for Environmental

Prediction (NCEP) Global Ocean Data Analysis System during

1980–2020 (GODAS; Behringer and Yan, 2004) to evaluate

the CNN model. GODAS product is based on a quasi-global

configuration of the Geophysical Fluid Dynamics Laboratory

Modular Ocean Model version 3, assimilating various ocean

profile data. Similar to the CMIP model outputs, monthly

GODAS upper ocean heat content and SST anomalies are fed

into the CNN model to produce forecasts for the monthly

EIOD index during 1982–2020 (averaged over the 10 ensemble

members). We choose the 3 strongest positive IOD events (1994,

1997, 2019) and the 3 strongest negative IOD events (1998, 2010,

and 2016) for further analysis.

The convolutional layers determine the output of neurons

with the help of an activation function [that can be of linear

or non-linear types e.g., binary step function, linear, sigmoid,

tanh, ReLU, etc. (Sharma et al., 2017)]. The activation functions

determine whether the input neurons should be activated

and the summed weighted values with a bias should be

transformed to produce an output. The sum of scalar products

between weights is repeatedly adjusted through a process called

backpropagation (Rumelhart et al., 1995). In other words, an

activation function decides whether the neuron’s input to the

network is important in the process of prediction using the

relevant mathematical operations. When the input data hits

a convolution layer, it gets convolved with filters (formed

by sets of weights or learnable kernels) to produce a 2D

activation map. These activation maps can be visualized to

see what characteristics are being picked up by the network

to work toward final prediction results. An understanding of

how deep learning models decide is very important for the

deployment of robust, transparent, and trustworthy systems

in real-world situations (Rio-Torto et al., 2020). Toward this

end, most methods adopt a gradient-based approach and

produce explanations called heatmaps by propagating pixel-wise

relevance backward to the input of the network to highlight
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the most relevant pixels used for the final prediction results

(Simonyan et al., 2013; Selvaraju et al., 2017; Sundararajan et al.,

2017).

We use the gradient weighted class activation map (GRAD-

CAM) method (Selvaraju et al., 2017), widely used in image

classification problems without changing the CNN models, to

analyze the activation in the last convolutional layer of the CNN

model. We adapt the method in the application of a single label,

y, with respect to its positive and negative extremities. We first

calculate the gradient of the CNN model output against its final

convolutional layer and then generate the activation maps by

multiplying the averaged gradient and the last convolutional

layer. That is, the weight for a particular filter or feature map k

of the last convolutional layer of the CNNmodel is calculated as

αk =
1

Z

∑

x,y,t

∂y

∂Ak
x,y,t

where Z is the total number of spatial and temporal grid points,
∂y

∂Ak is the gradient of y with respect to a feature map Ak of

the last convolutional layer, and then take the global pooling

averaging over zonal, meridional, and time dimensions. The

activation map is obtained by a linear combination of the

weighted activation maps

LGrad−CAM =

∑

k

αkA
k

In Selvaraju et al. (2017), they use a ReLU (Rectified Linear

Unit) filter to retain positive values in the activation map, which

they regard as having a positive influence on the classification.

For our application, the predictand is the positive or negative

extremities of the EIOD SST anomaly. Because of the non-

linearity introduced by the convolution and filters, we need to

retain both positive and negative values, assuming the regions

with high absolute values in the activation maps contribute to

the actual predictions. We normalize the activation map and

only show absolute values >0.3. Regions with high absolute

activation values are highlighted. Note that only the firstmember

of the ensemble is used to generate the activation maps, which is

essentially the same as using all 10 members.

Monthly persistence prediction of the SST anomalies is

calculated using a covariance method following Torrence and

Webster (1998). Furthermore, we use a set of hindcasts for

monthly eastern IOD indices from a coupled model system,

Australian Community Climate and Earth-System Simulator

(ACCESS-S2), which is not included in the training data set of

the CNNmodel, as an independent benchmark to compare with

the skills from the CNN model. ACCESS-S2 is the Australian

Bureau of Meteorology’s multi-week to seasonal prediction

system (Wedd et al., 2022), which became operational in

October 2021. It is a major upgrade of ACCESS-S1 (Hudson

et al., 2017) with a new ocean data assimilation system, which

is based on a weakly-coupled ensemble optimal interpolation

method (EnOI). ACCESS-S2 is based on the UK Met Office

GloSea5-GC2 seasonal prediction system (MacLachlan et al.,

2015). The atmosphere model of the ACCESS-S2 is resolved on

a ∼ 60 km horizontal resolution with 85 vertical levels, fully

resolving the stratosphere. The ocean model of ACCESS-S2 is

resolved at ∼25 km horizontal resolution with 75 vertical levels.

The atmosphere, land, ocean, and sea ice component models are

coupled hourly by the Ocean Atmosphere Sea Ice Soil coupler

version 3.0 (OASIS3, Valcke, 2013).

A 27-member time-lagged ensemble hindcast of ACCESS-

S2 up to 8-month lead time for the period 1981–2018 is used

to compare with the CNN model. The 27-member ensemble

comprises three ensemble members on nine successive days (the

1st of themonth and the eight prior days of the previousmonth).

Therefore, the maximum lag time for the first forecast month

(i.e., 1-month lead time) is 8 days. Monthly EIOD SST anomalies

of the ACCESS-S2 are computed relative to the climatological

mean (27-member ensemble mean for ACCESS-S2) from 1981

to 2018.

Results

In this section, we first present the CNNmodel skills and the

predictions for the strongest IOD events; and then we analyze

the activation maps of the CNNmodel predictions.

CNN model

The winter prediction barrier of the IOD is consistent

with the persistence barrier in the eastern IOD SST anomalies,

especially for persistence predictions starting from the October-

January months (Figure 2A). On the other hand, the correlation

scores for persistence predictions starting from March-July can

reach about 0.6 at a 4-month lead. Essentially, the persistence

prediction cannot overcome the boreal winter barrier, which is

also the case for most coupled climate models (Luo et al., 2007;

Zhao and Hendon, 2009; Doi et al., 2020).

The CNN model trained by the CMIP models tends to

beat persistence in most starting months and lead months

and can improve the winter prediction barrier for predictions

starting from the boreal autumn-winter months of November-

January (Figure 2B). For the startingmonth ofMay, the 5-month

lead prediction skill reaches 0.6. There is still a barrier to the

prediction of SST anomalies around January, shown as a tongue

of the low correlation of<0.6, extending from lead-3 for starting

month of October to lead-12 for starting month of January. This

barrier might be due to the low variance of the January SST

variability in the eastern IOD region. There are greatly improved

prediction skills for the March-May SST anomalies, shown as

a high correlation (>0.6) tongue, from lead 3–5 months for a
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FIGURE 2

(A) Persistence of eastern IOD SST anomalies and (B) correlation prediction skills of the CNN model starting from each calendar month.

Negative skills are not plotted and skills of 0.6 are denoted by bold contour lines. Persistence skills are calculated using GODAS data during the

1982–2020 period. In (B), the 1-month lead refers to the CNN model run using January to March input to predict April EIOD SST anomalies.

prediction starting in December to 8–10 month-lead for starting

month of May, e.g. a prediction skill of almost 1-year lead.

The 2-month lead predictions for the eastern IOD SST

anomalies achieve a linear correlation of 0.75 with the EIOD

SST index from the GODAS reanalysis, capturing all the strong

positive and negative IOD events during 1982–2020 (Figure 3A).

The CNN model not only underpredicts the strong positive

IOD events, e.g., 1994, 1997, and 2019, it also predicts reduced

magnitude at the peaks of the weaker 2006–2008 IOD events.

In comparison, the ACCESS-S2 predictions seem to capture

most of the IOD peaks well, though only at short lead times

(Supplementary Figure S4). The CNN model bias may be due

to the coarse spatial resolution of the CMIP models used in the

model training. Peaks of positive EIOD SST anomalies (negative

IOD) appear to be better captured than the negative peaks

(positive IOD).

The prediction skill of individual IOD events varies with

different lead seasons (Figures 3B–G). Generally, the magnitude

of the predicted values declines with increasing lead time, as

in some dynamic model predictions (e.g., Zhao and Hendon,

2009). Despite the reducing magnitude, the peak 1994 positive

IOD event can be predicted two seasons in advance. The CNN

model forecast early peaks for the 1997 and 2019 IOD events for

up to three-season leads, whereas the shorter lead-time forecasts

capture the peak months better.

For the three strong negative IOD events, EIOD SST

anomalies show positive peaks early in the year in February-

April, before the main peaks in August-October. The main

peaks of the SST anomalies are generally well-captured by the

CNN model forecast at a one-season lead, with the long-lead

forecasting generally having some delays in the peak phase. The

SST peaks in February-April during the negative IOD events are

to a certain extent captured by the CNN model up to three-

season, which is consistent with the correlation forecast skills

(Figure 2B). The February-April SST peak may be associated

with the eastward propagating downwelling equatorial Kelvin

waves, reflected from Rossby waves typically after a positive

IOD event, transmitting warming signals to the Sumatra-Java

coast (e.g., Feng and Meyers, 2003). Note that the eastward

Yoshida-Wyrtki Jets in boreal fall tend to become weaker

during a positive IOD event and have little change during

an El Niño event (Chowdary and Gnanaseelan, 2007), so the

eastward propagating signals are most likely due to planetary

wave reflection at the western boundary of the Indian Ocean.

Thus, the long lead prediction of EIOD SST variability in the late

boreal winter-spring (February-April) season (Figure 2B), which

overcomes the winter forecast barrier, is mostly derived from the

prediction skills for the negative IOD events.

CNN model visualization

The standard deviations of the activation maps indicate

regions that contribute the most to the CNNmodel forecast. For

the forecast of September EIOD SST variability at one-season

lead (May-June-July), the CNN model appears to be sensitive

to the SST and/or upper ocean heat content anomalies in the

equatorial eastern and central Pacific, tropical western Pacific,

and tropical and southern subtropical IndianOcean (Figure 4A).

Note that the activation maps do not distinguish contributions

from SST and heat content anomalies. For the CNN model to

predict October EIOD SST anomalies using June-July-August
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FIGURE 3

(A) Comparing the GODAS SST anomalies in the EIOD region with the 2-month lead predictions from the CNN model during 1982–2020. (B–G)

The comparison between GODAS SST anomalies and the 2, 5, and 8-month lead (or 1, 2, and 3-season lead) CNN model predictions during

three strong positive IOD events (negative SST anomalies) and three strong negative IOD events [cyan and light red color shadings in (A)]. The

predictions are scaled by the standard deviations between GODAS SST anomalies and the zero-month lead CNN model prediction (a factor of

1.24).

inputs, the general patterns of the activation map standard

deviations are quite similar (Figure 4B). The high sensitivity

regions along the equatorial Pacific appear to shift southward,

and eastward off the American coast. In the Indian Ocean, there

is also high sensitivity off the west coast of Australia.

Individual events

The activation maps for the forecasts of individual

strong positive (negative EIOD SST anomalies) and

negative (positive EIOD SST anomalies) IOD events,
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FIGURE 4

Standard deviations of the CNN model activation maps during 1982–2020: (A) using May-June-July inputs to forecast September EIOD SST

anomalies, and (B) using June-July to August inputs to forecast October EIOD SST anomalies. The standard deviations are normalized with a

maximum value of 1.

similarly reveal locations that contribute to the

individual predictions.

1994 positive IOD event

The activation map for the one-season lead forecast of

the EIOD index in September 1994 shows contributions from

regions in the far eastern equatorial Pacific, the east and

southeast equatorial Indian Ocean, and the south Pacific

centered around New Zealand (Figure 5). We overlay the SST

and heat content anomalies in June 1994 and their differences

between July and May 1994 to highlight the evolving features

that may have contributed to the September 1994 EIOD

index forecast.

There could be a teleconnection from the far eastern Pacific

into the Indian Ocean—although the SST was still colder than

normal at that location (Figure 5A), there was a transition into

a warm state (Figure 5B). However, it is more likely that the

CNN model takes the cue from the eastern Indian Ocean to

frame its forecast. The region was already colder than normal

in June 1994 (Figure 5A), and there was a cooling tendency

over the months (Figure 5B). There was a subsurface dipole

structure in the heat content anomalies between the eastern

and the central south equatorial Indian Ocean, denoting the

equatorial upwelling Kelvin wave reaching the eastern boundary

and wind-driven downwelling Rossby waves radiating from the

eastern boundary (Figure 5C). There is also an indication that

westward propagation of subsurface cold anomalies from the

difference in heat content anomalies between July and May 1994

(Figure 5D). Rossby waves are closely linked to the southwest

equatorial Indian Ocean warming during the IOD events (Li

et al., 2002). The cold SST anomalies around New Zealand faded

a bit with time and it is unlikely that they were a major source of

predictability for the event.

The 1994 event has been regarded as an extreme IOD

developed through the coupled ocean-atmospheric interaction

in the Indian Ocean, anchored in the southeast Indian Ocean

(Behera et al., 1999). The ability of the CNN model to

take the cue of cooling early in the season for a full-

strength IOD prediction suggests that the CMIP models can

capture the coupled processes in the southeast tropical Indian

Ocean (e.g., Liu et al., 2014) and the CNN model training

process can translate the coupled dynamic inference into a

statistical prediction.

1997 positive IOD event

For the 1997 positive IOD event, we examine the forecast

of the October EIOD peak (Figure 3C). It has been generally

recognized that the 1997 IOD was strongly influenced by
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FIGURE 5

Activation map of using May-June-July SST and heat content anomalies to forecast the September 1994 EIOD peak (only showing absolute

values >0.3). The activation map is overlaid with (A) SST anomalies in June 1994, (B) SST anomaly di�erences between July and May 1994, (C)

heat content anomalies in June 1994, and (D) heat content anomaly di�erences between July and May 1994. Negative anomalies are denoted

with blue contours and positive anomalies with magenta. Anomalies are plotted every 0.5◦C, and the integer values are in bold contour. Zero

contour lines are not plotted.

the development of the extreme El Niño in the Pacific (Xie

et al., 2002; Ashok et al., 2003). The EIOD index did not

show any negative anomalies until July 1997 and quickly

peaked in October-November (Figures 3C, 6), when the Pacific

El Nino was in full development. During June-August, there

were positive SST and heat content anomalies of >2◦C in

the equatorial eastern Pacific, with a significant increasing

tendency (Figure 6). Significant warming and increase in ocean
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FIGURE 6

Activation map of using June-July-August SST and heat content anomalies to forecast the October 1997 EIOD peak (only showing absolute

values >0.3). The activation map is overlaid with (A) SST anomalies in July 1997, (B) SST anomaly di�erences between August and June 1997, (C)

heat content anomalies in July 1997, and (D) heat content anomaly di�erences between June and August 1997. Negative anomalies are

denoted with blue contours and positive anomalies with magenta. Anomalies are plotted every 0.5◦C, and the integer values are in bold contour.

Zero contour lines are not plotted.

heat content were also present in the western Indian Ocean,

signifying the teleconnection from the Pacific El Niño.

The activation map highlights that both the equatorial

eastern Pacific and the western Indian Ocean regions may have

contributed to the EIOD SST development in the following

months in 1997, consistent with the El Niño trigger. The

activation map also shows that the forecast has contributions

from the western Pacific and the eastern IOD region. The
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cooling of the western Pacific warm pool might influence

regional atmospheric circulation and facilitate coastal upwelling

off Sumatra-Java (Annamalai et al., 2003). The lower upper

ocean heat content in the western Pacific would also send

shallow thermocline anomalies across the maritime continent

and weaken the transport of the Indonesian throughflow

(Wijffels and Meyers, 2004; Liu et al., 2015), which in turn

would shoal the thermocline in the southeast tropical Indian

Ocean and precondition the development of a positive IOD (e.g.,

Ummenhofer et al., 2017).

In the activation map, the significant patch in the southeast

Indian Ocean may suggest a connection between the IOD and

the Ningaloo Niño (e.g., Zhang et al., 2018) or the subtropical

dipole (e.g., Behera and Yamagata, 2001), which needs some

further attention.

2019 positive IOD event

The 2019 IOD is the most extreme positive IOD event over

the past two decades, which is regarded as unique because the

air-sea heat loss acted as key forcing for the EIOD cooling,

instead of being a damping factor as in the previous events

(Wang et al., 2020). The EIOD anomalies started to develop in

June 2019 and reached peak value in October (Figure 3D). It is

suggested that the anomalously high Australian High-pressure

system and low sea level pressure anomalies in the South

China Sea and the Philippines Sea drove cross-equatorial wind

anomalies to initiate the air-sea feedback off the Sumatra-Java

coast (Lu and Ren, 2020).

Although the CNN model doesn’t use any atmospheric

variables, the variations of the sea level pressure systems may

have footprints in ocean temperatures. The one-season lead

forecast for the October 2019 EIOD appears to be sensitive to

the ocean temperature anomalies off the west coast of Australia,

the Indonesian-Australian Basin, and the far western equatorial

Pacific (Figure 7). In this longitude band, the cool SST anomalies

in the southmay be associated with the sea level pressure systems

that set up the IOD mode as suggested by Lu and Ren (2020).

Note that there was a multi-year cold spell off the west coast of

Australia during 2016–2019 (Feng et al., 2021a), teleconnected

from the west-central equatorial Pacific warming (Feng et al.,

2021b). There was a weak central Pacific El Niño warming

condition near the dateline being highlighted by the activation

map, but its teleconnection to the equatorial western Indian

Ocean appeared to be weak (Figures 7A,B). Despite the SST

and heat content anomalies off the Sumatra-Java coast, they

were only marginally detected by the activation map, which may

be due to the different driving mechanisms of the 2019 IOD

compared to the earlier events.

The long-lead prediction for the 2019 IOD event is also

likely taking a cue from the interhemispheric temperature

contrast (Supplementary Figure S1). It is not clear if this is

related to the 2018–19 central Pacific El Niño mentioned in

Doi et al. (2020), which had a weak teleconnection to the

western Indian Ocean, however, it has been recently noted

that the Ningaloo Niño region in the southeast Indian Ocean

may have been acting as a bridge between the Pacific and

Indian Ocean climate variability (Zhang and Han, 2018). The

transmission of negative heat content anomalies from the

western Pacific into the Indonesian-Australian Basin may also

contribute (Supplementary Figures S1c,d).

Negative IOD events

All the three strong negative IOD events developed

following strong canonical (1998 and 2016) or central Pacific

(2010) El Nino events. SST anomalies in the eastern IOD region

were already warm during the February-April period (Figure 3),

which probably preconditioned the boreal autumn warming

in the region. The reflection of downwelling Rossby waves

into eastward propagating equatorial Kelvin waves may play a

role to warm the equatorial eastern Indian Ocean (e.g., Feng

and Meyers, 2003). The events may also be preconditioned by

general warming across the Indian Ocean basin after an El Niño

event (Yang et al., 2007), which is mostly due to the interplay

between planetary wave propagations and local air-sea coupling

in the Indian Ocean (Du et al., 2009).

Note that the ability of the CNN model to overcome the

winter barrier is to some extent due to the long-lead prediction

of the February-April SST anomalies in the eastern IOD

pole (Figures 3E–G). The one-season lead predictions generally

capture the phase and amplitude of the September peak well

for these three events; however, the longer lead predictions

tend to shift the peak amplitude to later months. Generally, the

prediction skill at the three-season lead is low for the negative

IOD peaks.

From the activation map of the 1998 negative IOD

(Figure 8), the prediction of its September peak at one-season

lead is influenced by the heat content and SST anomalies in

both the equatorial Indian Ocean and equatorial eastern Pacific.

In the tropical Indian Ocean, there was basin-wide warming

in SST in June 1998, corresponding to the Indian Ocean Basin

mode. In June 1998, there was a downwelling Rossby wave-like

heat content anomaly pattern in the southwest tropical Indian

Ocean which had reflected from the western boundary into

equatorial Kelvin waves to reach the eastern boundary in July

(Figures 8C,D).

During the 2010 negative IOD, the prediction of

the EIOD warming was most likely associated with the

development of the 2010–11 strong La Nina event in

the Pacific and its teleconnection into the Indian Ocean

(Supplementary Figure S2). For the 2016 negative IOD, there

was only a weak La Niña event developing in the Pacific, so the

internal Indian Ocean processes such as the Rossby wave-Kelvin

wave dynamics may play a larger role in contributing to the

forecast (Supplementary Figure S3).

Frontiers inClimate 10 frontiersin.org

https://doi.org/10.3389/fclim.2022.925068
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Feng et al. 10.3389/fclim.2022.925068

FIGURE 7

Activation map of using June-July-August SST and heat content anomalies to forecast the October 2019 EIOD peak (only showing absolute

values >0.3). The activation map is overlaid with (A) SST anomalies in July 2019, (B) SST anomaly di�erences between August and June 1997, (C)

heat content anomalies in July 2019, and (D) heat content anomaly di�erences between June and August 2019. Negative anomalies are

denoted with blue contours and positive anomalies with magenta. Anomalies are plotted every 0.5◦C, and the integer values are in bold contour.

Zero contour lines are not plotted.

Comparison with the prediction skills of
ACCESS-S2

Compared with the ACCESS-S2 model results, the

CNN model skills appear to be on par with the dynamic

forecasting model (Figure 9; Supplementary Figure S4).

There is a good similarity between the prediction skills

of the CNN model and ACCESS-S2 at different starting

months, such as the reminiscence of the winter prediction

barrier. ACCESS-S2 has better skills than the CNN model
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FIGURE 8

Activation map of using May-June-July SST and heat content anomalies to forecast the September 1998 EIOD peak (only showing absolute

values >0.3). The activation map is overlaid with (A) SST anomalies in June 1998, (B) SST anomaly di�erences between July and May 1998, (C)

heat content anomalies in June 1998, and (D) heat content anomaly di�erences between July and May 1998. Negative anomalies are denoted

with blue contours and positive anomalies with magenta. Anomalies are plotted every 0.5◦C, and the integer values are in bold contour. Zero

contour lines are not plotted.

for predictions starting from July-September; however,

the CNN model has better lead forecast skills than the

ACCESS-S2 model for predictions starting from the

March-June period, which is the critical season for the

IOD development (Figure 9B). This is promising for a

model trained only with CMIP simulations, suggesting that
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FIGURE 9

Intercomparison between the persistence and prediction skills for eastern IOD SST anomalies of the CNN model and ACCESS-S2: (A)

persistence from GODAS, (B) correlation prediction skills of the CNN model, and (C) correlation prediction skills of ACCESS-S2. Negative skills

are not plotted and skills of 0.6 are denoted by bold contour lines. The persistence and CNN model skill are interpolated to be consistent with

the ACCESS-S2 lead time. See the correlation numbers in Supplementary Tables S1–3.

the CMIP models may have captured the key coupling

mechanism to drive the IOD development. ACCESS-S2 also

has slightly better skills for the starting month of January

(Figure 9C).

Discussion

In this study, we have applied a convolutional neural

network (CNN) model to assess the predictability of the SST
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variability in the eastern pole of the IOD, off the Sumatra-Java

coast in the tropical southeast Indian Ocean. The CNN model

is trained using a selection of CMIP5 and CMIP6 model SST

and upper ocean heat content anomalies in 3-monthly chunks.

Results show that the CNN model can predict the EIOD SST

variability at lead times of 1–2 seasons. The CNN model is also

able to beat the persistence prediction and overcome the winter

forecast barrier of the IOD. There is the potential for longer lead

prediction of the EIOD for some events, such as the positive IOD

of 2019 and the strong negative IOD events.

Visualization of the activation maps of the CNN model

suggests that the model can respond to the different spatial

contributions of remote and local forcing physics to generate

skillful forecasts of both the positive and negative IOD events.

The activation maps show that the one-season lead prediction

of the 1994 positive IOD event mainly derives from internal

Indian Ocean variability; the one-season lead prediction for the

1997 positive IOD is strongly influenced by the evolving El

Niño in the Pacific; the prediction of the 2019 positive IOD

has influences from cooling SST off the Australian coast. For

the negative IOD events, the activation maps suggest that both

the Indian Ocean Basin warming and downwelling Rossby and

Kelvin waves are important contributions to the predictions.

Evolving Pacific La Niña features also appear to be important

for the negative IOD events. The wind anomalies in 1994

show a close coupling with upper ocean heat content anomalies

(Supplementary Figure S5). The coupling in the other events is

less obvious, though the reduction of upper ocean heat content

during the 1997 event is associated with coastal upwelling driven

by alongshore wind anomalies (Supplementary Figure S5).

In our approach, each CNN model is trained using

thousands of realizations of the CMIP model outputs, similar

to Ham et al. (2019). The ability of the CNN model to predict

the EIOD SST variability suggests that the CMIPmodels capture

the coupled dynamics in the Indo-Pacific to generate the IOD,

both the internal Indian Ocean dynamics and the teleconnection

between the Indian Ocean and the Pacific. The independency

between the CMIP models and the GODAS reanalysis data also

proves the robustness of the machine learning model. Still, the

CNN model trained with the CMIP model outputs will inherit

the model bias in CMIP models. CMIP models tend to simulate

an easterly wind bias in the equatorial Indian Ocean with an

overly shallow thermocline and large SST amplitude in the EIO

region (Cai and Cowan, 2013), which may have caused the

underrated positive EIOD SST anomalies. The observational

records (including model reanalysis) are still rather short to

train the CNN model architecture. Including the observational

data thus cannot modify the model training in a significant

way, consistent with Ham et al. (2019), as well as our test (not

shown). In future studies, wemay consider using isotherm depth

anomalies, which may better represent upper ocean dynamics in

the tropical oceans than the upper ocean heat content anomalies,

in the CNNmodel training.

There are machine learning model architectures that

only require short data records to train to achieve model

stability and useful prediction skills. Taylor and Feng (2022)

developed a fully convolutional network (U-Net), trained using

a 70-year reanalysis product, to achieve reasonable multi-

season prediction skills for the 2-dimensional monthly SST

anomalies in the tropical-subtropical Pacific. A much simpler

artificial neural network model based on correlations in the

observational data can also achieve reasonable prediction

skills for the IOD (Ratnam et al., 2020). Still, these models

may not have desirable skills for rare climate events in the

observational records or unseen events under a changing

climate. Incorporating physical laws into the machine learning

models may overcome the data deficiency (e.g., Raissi et al.,

2019).

This paper has shown the potential of using CMIP model

outputs to train a machine learning model to achieve skillful

prediction of regional SST variability, as with the early success

of applying the tool to the Pacific ENSO, a global climate mode.

Whereas, the improved prediction of the cold events (positive

IOD) in the eastern IndianOceanmay help drought and bushfire

prediction in Australia and the Maritime Continent, the long

lead prediction of the warm events (negative IOD) may help

marine resource managers to mitigate the potential risks of the

increased likelihood of marine heatwaves in the eastern Indian

Ocean. The success may lead to prediction studies of regional

SST variability and drivers in other parts of the world ocean and

possibly implement this into a true forecast model.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

MF conceived the idea, led the analysis, and drafted

the manuscript. MA implemented the model visualization

coding. All contributed to the analysis and commented on

the manuscript. All authors contributed to the article and

approved the submitted version.

Funding

This study was supported by a CSIRO-Chinese Academy of

Sciences collaboration project and a CSIRO IM&T collaboration

project. MF was also supported by the Centre for Southern

Hemisphere Oceans Research (CSHOR), which was a joint

initiative between the Qingdao National Laboratory for Marine

Frontiers inClimate 14 frontiersin.org

https://doi.org/10.3389/fclim.2022.925068
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Feng et al. 10.3389/fclim.2022.925068

Science and Technology (QNLM), CSIRO, University of New

South Wales and University of Tasmania.

Acknowledgments

We thank Paul Branson from CSIRO to provide an internal

review and four reviewers for helpful comments. CMIP data

used in this study are from archives on Australian National

Computational Infrastructure (https://nci.org.au). GODAS

Reanalysis data are downloaded from Climate Prediction

Center (https://www.cpc.ncep.noaa.gov/products/GODAS/).

Conflict of interest

Authors MF, FB, XZ, JH, and AH were employed by

CSIRO Oceans and Atmosphere. Authors MA and BG were

employed by CSIRO IM&T. Author LS was employed by Bureau

of Meteorology.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fclim.2022.925068/full#supplementary-material

References

Annamalai, H., Murtugudde, R., Potemra, J., Xie, S. P., Liu, P., and Wang,
B. (2003). Coupled dynamics over the Indian Ocean: spring initiation of
the zonal mode. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2305–2330.
doi: 10.1016/S0967-0645(03)00058-4

Ashok, K., Guan, Z., and Yamagata, T. (2003). A look at the relationship between
the ENSO and the Indian Ocean dipole. J. Meteorol. Soc. Jpn. Ser. II 81, 41–56.
doi: 10.2151/jmsj.81.41

Behera, S. K., Krishnan, R., and Yamagata, T. (1999). Unusual ocean-atmosphere
conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett. 26,
3001–3004. doi: 10.1029/1999GL010434

Behera, S. K., and Yamagata, T. (2001). Subtropical SST dipole
events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327–330,
doi: 10.1029/2000GL011451

Behringer, D. W., and Yan, X. (2004). “Evaluation of the global ocean data
assimilation system at NCEP: the Pacific Ocean. Eighth symposium on integrated
observing and assimilation systems for atmosphere, oceans, and land surface,” in
AMS 84th Annual Meeting (Seattle, WA: Washington State Convention and Trade
Center), 11–15.

Benthuysen, J. A., Oliver, E. C., Feng, M., and Marshall, A. G. (2018). Extreme
marine warming across tropical Australia during austral summer 2015-2016. J.
Geophys. Res. Oceans. 123, 1301–1326. doi: 10.1002/2017JC013326

Cai, W., and Cowan, T. (2013). Why is the amplitude of the Indian Ocean
Dipole overly large in CMIP3 and CMIP5 climate models?. Geophys. Res. Lett. 40,
1200–1205. doi: 10.1002/grl.50208

Cai, W., Cowan, T., and Raupach, M. (2009a). Positive Indian Ocean dipole
events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, L19710.
doi: 10.1029/2009GL039902

Cai, W., Sullivan, A., and Cowan, T. (2009b). How rare are the 2006-2008
positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective.
Geophys. Res. Lett. 36, L08702. doi: 10.1029/2009GL037982

Chowdary, J. S., and Gnanaseelan, C. (2007). Basin-wide warming of the Indian
Ocean during El Niño and Indian Ocean dipole years. Int. J. Climatol. 27,
1421–1438. doi: 10.1002/joc.1482

Doi, T., Behera, S. K., and Yamagata, T. (2020). Predictability of the super
IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett. 47,
e2019GL086713. doi: 10.1029/2019GL086713

Doi, T., Storto, A., Behera, S. K., Navarra, A., and Yamagata, T. (2017).
Improved prediction of the Indian Ocean Dipole Mode by use of subsurface ocean
observations. J. Clim. 30, 7953–7970. doi: 10.1175/JCLI-D-16-0915.1

Du, Y., Xie, S. P., Huang, G., and Hu, K. (2009). Role of air–sea interaction in
the long persistence of El Niño–induced north Indian Ocean warming. J. Clim. 22,
2023–2038. doi: 10.1175/2008JCLI2590.1

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J.,
et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6
(CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958.
doi: 10.5194/gmd-9-1937-2016

Feng, M., Caputi, N., Chandrapavan, A., Chen, M., Hart, A., and Kangas, M.
(2021a). Multi-year marine cold-spells off the west coast of Australia and effects on
fisheries. J. Marine Syst. 214, 103473. doi: 10.1016/j.jmarsys.2020.103473

Feng, M., McPhaden, M. J., Xie, S. P., and Hafner, J. (2013). La Niña
forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1–9.
doi: 10.1038/srep01277

Feng, M., and Meyers, G. (2003). Interannual variability in the tropical Indian
Ocean: a two-year time-scale of Indian Ocean Dipole. Deep Sea Res. Part II Top.
Stud. Oceanogr. 50, 2263–2284. doi: 10.1016/S0967-0645(03)00056-0

Feng, M., Zhang, Y., Hendon, H. H., McPhaden, M. J., and Marshall, A. G.
(2021b). Niño 4 West (Niño-4W) sea surface temperature variability. J. Geophys.
Res. Oceans 126, e2021JC017591. doi: 10.1029/2021JC017591

Feng, R., Duan, W., and Mu, M. (2014). The “winter predictability barrier” for
IOD events and its error growth dynamics: results from a fully coupled GCM. J.
Geophys. Res. Oceans 119, 2121–2128. doi: 10.1002/2014JC010473

Ham, Y. G., Kim, J. H., and Luo, J. J. (2019). Deep learning for multi-year ENSO
forecasts. Nature 573, 568–572. doi: 10.1038/s41586-019-1559-7

Holbrook, N. J., Scannell, H. A., Gupta, A. S., Benthuysen, J. A., Feng, M., Oliver,
E. C., et al. (2019). A global assessment of marine heatwaves and their drivers. Nat.
Commun. 10, 1–13. doi: 10.1038/s41467-019-10206-z

Hudson, D., Alves, O., Hendon, H. H., Lim, E., Liu, G., Luo J.-J., et al. (2017).
ACCESS-S1: the new Bureau of Meteorology multi-week to seasonal prediction
system. J. Southern Hemisphere Earth Syst. Sci. 67, 3 132–159. doi: 10.1071/ES
17009

Kataoka, T., Tozuka, T., Behera, S., and Yamagata, T. (2014). On the Ningaloo
Niño/Niña. Clim. Dyn. 43, 1463–1482. doi: 10.1007/s00382-013-1961-z

Frontiers inClimate 15 frontiersin.org

https://doi.org/10.3389/fclim.2022.925068
https://nci.org.au
https://www.cpc.ncep.noaa.gov/products/GODAS/
https://www.frontiersin.org/articles/10.3389/fclim.2022.925068/full#supplementary-material
https://doi.org/10.1016/S0967-0645(03)00058-4
https://doi.org/10.2151/jmsj.81.41
https://doi.org/10.1029/1999GL010434
https://doi.org/10.1029/2000GL011451
https://doi.org/10.1002/2017JC013326
https://doi.org/10.1002/grl.50208
https://doi.org/10.1029/2009GL039902
https://doi.org/10.1029/2009GL037982
https://doi.org/10.1002/joc.1482
https://doi.org/10.1029/2019GL086713
https://doi.org/10.1175/JCLI-D-16-0915.1
https://doi.org/10.1175/2008JCLI2590.1
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1016/j.jmarsys.2020.103473
https://doi.org/10.1038/srep01277
https://doi.org/10.1016/S0967-0645(03)00056-0
https://doi.org/10.1029/2021JC017591
https://doi.org/10.1002/2014JC010473
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1038/s41467-019-10206-z
https://doi.org/10.1071/ES17009
https://doi.org/10.1007/s00382-013-1961-z
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Feng et al. 10.3389/fclim.2022.925068

Kido, S., Kataoka, T., and Tozuka, T. (2016). Ningaloo Niño simulated
in the CMIP5 models. Clim. Dyn. 47, 1469–1484. doi: 10.1007/s00382-015-
2913-6

L’Heureux, M. L., Levine, A. F., Newman, M., Ganter, C., Luo, J. J., Tippett, M.
K., et al. (2020). “ENSO prediction,” in El Niño Southern Oscillation in a Changing
Climate, John Wiley & Sons, 227–246. doi: 10.1002/9781119548164.ch10

Li, T., Zhang, Y., Lu, E., and Wang, D. (2002). Relative role of dynamic and
thermodynamic processes in the development of the Indian Ocean dipole: an
OGCM diagnosis. Geophys. Res. Lett. 29, 25–21. doi: 10.1029/2002GL015789

Liu, L., Xie, S. P., Zheng, X. T., Li, T., Du, Y., Huang, G., et al. (2014). Indian
Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode.
Clim. Dyn. 43, 1715–1730. doi: 10.1007/s00382-013-2000-9

Liu, Q. Y., Feng, M., Wang, D., and Wijffels, S. (2015). Interannual
variability of the Indonesian Throughflow transport: a revisit based on 30 year
expendable bathythermograph data. J. Geophys. Res. Oceans 120, 8270–8282.
doi: 10.1002/2015JC011351

Lu, B., and Ren, H. L. (2020). What caused the extreme Indian Ocean Dipole
event in 2019?.Geophys. Res. Lett. 47, e2020GL087768. doi: 10.1029/2020GL087768

Luo, J. J., Masson, S., Behera, S., and Yamagata, T. (2007). Experimental forecasts
of the Indian Ocean dipole using a coupled OAGCM. J. Clim. 20, 2178–2190.
doi: 10.1175/JCLI4132.1

MacLachlan, C., Arribas, A., and Peterson, K. A., et al. (2015). Global seasonal
forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q.
J. R. Meteorol. Soc. 141, 1072–1084. doi: 10.1002/qj.2396

Menard, F., Marsac, F., Bellier, E., and Cazelles, B. (2007). Climatic oscillations
and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis.
Fish. Oceanogr. 16, 95–104. doi: 10.1111/j.1365-2419.2006.00415.x

O’Shea, K., and Nash, R. (2015). An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural
networks: a deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.
doi: 10.1016/j.jcp.2018.10.045

Ratnam, J. V., Dijkstra, H. A., and Behera, S. K. (2020). A machine learning
based prediction system for the Indian Ocean Dipole. Sci. Rep. 10, 1–11.
doi: 10.1038/s41598-019-57162-8

Rio-Torto, I., Fernandes, K., and Teixeira, L. F. (2020). Understanding the
decisions of CNNs: an in-model approach. Pattern Recognit. Lett. 133, 373–380.
doi: 10.1016/j.patrec.2020.04.004

Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y. (1995).
“Backpropagation: the basic theory,” in Backpropagation: Theory, Architectures and
Applications, Psychology press, 1–34.

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.
(1999). A dipole mode in the tropical Indian Ocean. Nature. 401, 360–363.
doi: 10.1038/43854

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2017). “Grad-cam: visual explanations from deep networks via gradient-based
localization,” in Proceedings of the IEEE International Conference on Computer
Vision, The Computer Vision Foundation, 618–626. doi: 10.1109/ICCV.2017.74

Sharma, S., Sharma, S., and Athaiya, A. (2017). Activation functions in neural
networks. Towards Data Sci. 6, 310–316. doi: 10.33564/IJEAST.2020.v04i12.054

Shi, L., Hendon, H. H., Alves, O., Luo, J.-J., Balmaseda, M., and Anderson,
D. (2012). How predictable is the Indian Ocean dipole? Mon. Weather Rev.
140:3867–3884. doi: 10.1175/MWR-D-12-00001.1

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution for deep
networks,” in International Conference on Machine Learning, PMLR 70, 3319-3328.

Taylor, J., and Feng, M. (2022). A deep learning model for forecasting
global monthly mean sea surface temperature anomalies. arXiv
preprint arXiv:2202.09967.

Taylor, K.E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of
CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485–498.
doi: 10.1175/BAMS-D-11-00094.1

Torrence, C., and Webster, P. J. (1998). The annual cycle of persistence
in the El Nino/Southern Oscillation. Q. J. Meteorol. Soc. 24, 1985–2004.
doi: 10.1256/smsqj.55009

Ummenhofer, C. C., Biastoch, A., and Böning, C. W. (2017). Multidecadal
Indian Ocean variability linked to the Pacific and implications for preconditioning
Indian Ocean dipole events. J. Clim. 30, 1739–1751. doi: 10.1175/JCLI-D-16-
0200.1

Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A.,
Pook, M. J., Risbey, J. S., et al. (2009). What causes southeast Australia’s
worst droughts? Geophys. Res. Lett. 36, L04706. doi: 10.1029/2008GL
036801

Valcke, S. (2013). The OASIS3 coupler: a European climate modelling
community software.Geosci. Model Dev. 6, 373–388. doi: 10.5194/gmd-6-373-2013

Wang, G., Cai, W., and Santoso, A. (2017). Assessing the impact of model biases
on the projected increase in frequency of extreme positive Indian Ocean dipole
events. J. Clim. 30, 2757–2767. doi: 10.1175/JCLI-D-16-0509.1

Wang, G., Cai, W., Yang, K., Santoso, A., and Yamagata, T. (2020). A unique
feature of the 2019 extreme positive Indian Ocean Dipole event. Geophys. Res. Lett.
47, e2020GL088615. doi: 10.1029/2020GL088615

Wedd, R., et al. (2022). ACCESS-S2: the upgraded Bureau of Meteorology multi-
week to seasonal prediction system. (To be submitted to the J. Southern Hemis.
Earth Syst. Science).

Wijffels, S., and Meyers, G. (2004). An intersection of oceanic waveguides:
variability in the Indonesian Throughflow region. J. Phys. Oceanogr. 34,
1232–1253.doi: 10.1175/1520-0485(2004)034andlt;1232:AIOOWVandgt;2.0.CO;2

Xie, S.-P., Annamalai, H., Schott, F. A., and McCreary, J. P. (2002). Structure
and mechanism of south Indian Ocean climate variability. J. Climate.15, 864–878.
doi: 10.1175/1520-0442(2002)015andlt;0864:SAMOSIandgt;2.0.CO;2

Yang, J., Liu, Q., Xie, S. P., Liu, Z., andWu, L. (2007). Impact of the Indian Ocean
SST basin mode on the Asian summer monsoon. Geophys. Res. Lett. 34, L02708.
doi: 10.1029/2006GL028571

Yang, Y., Xie, S. P., Wu, L., Kosaka, Y., Lau, N. C., and Vecchi, G. A. (2015).
Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and
internal variability. J. Clim. 28, 8021–8036. doi: 10.1175/JCLI-D-15-0078.1

Zhang, L., and Han, W. (2018). Impact of Ningaloo Niño on tropical
Pacific and an interbasin coupling mechanism. Geophys. Res. Lett. 45, 11–300.
doi: 10.1029/2018GL078579

Zhang, L., Han, W., Li, Y., and Shinoda, T. (2018). Mechanisms for
generation and development of the Ningaloo Niño. J. Clim. 31, 9239–9259.
doi: 10.1175/JCLI-D-18-0175.1

Zhao, M., and Hendon, H. H. (2009). Representation and prediction of the
Indian Ocean dipole in the POAMA seasonal forecast model. Q. J. R. Meteorol.
Soc. 135, 337–352. doi: 10.1002/qj.370

Frontiers inClimate 16 frontiersin.org

https://doi.org/10.3389/fclim.2022.925068
https://doi.org/10.1007/s00382-015-2913-6
https://doi.org/10.1002/9781119548164.ch10
https://doi.org/10.1029/2002GL015789
https://doi.org/10.1007/s00382-013-2000-9
https://doi.org/10.1002/2015JC011351
https://doi.org/10.1029/2020GL087768
https://doi.org/10.1175/JCLI4132.1
https://doi.org/10.1002/qj.2396
https://doi.org/10.1111/j.1365-2419.2006.00415.x
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s41598-019-57162-8
https://doi.org/10.1016/j.patrec.2020.04.004
https://doi.org/10.1038/43854
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.1175/MWR-D-12-00001.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1256/smsqj.55009
https://doi.org/10.1175/JCLI-D-16-0200.1
https://doi.org/10.1029/2008GL036801
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.1175/JCLI-D-16-0509.1
https://doi.org/10.1029/2020GL088615
https://doi.org/10.1175/1520-0485(2004)034andlt
https://doi.org/10.1175/1520-0442(2002)015andlt
https://doi.org/10.1029/2006GL028571
https://doi.org/10.1175/JCLI-D-15-0078.1
https://doi.org/10.1029/2018GL078579
https://doi.org/10.1175/JCLI-D-18-0175.1
https://doi.org/10.1002/qj.370
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

	Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model
	Introduction
	Methods
	Results
	CNN model
	CNN model visualization
	Individual events
	1994 positive IOD event
	1997 positive IOD event
	2019 positive IOD event
	Negative IOD events

	Comparison with the prediction skills of ACCESS-S2

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


