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Monitoring changes in climate extremes is vitally important in order to provide

context for both our current and possible future climates. Datasets based on

climate extremes indices from in situ observations and climate reanalyses are

often used for this purpose. We assess the spatial and temporal consistency

between these two classes of dataset on a global basis to understand where

they agree or are complementary. As expected, the temperature time series

expressed as anomalies, or self-normalizing indices, agree well. While there

is sometimes a large spread in absolute values between products, both

long-term trends and inter-annual variability are also in agreement. Spatially

the temperature indices show high correlations, but comparisons between

the cumulative distributions at each grid box show di�erences in regions at

high altitude or where interpolation has been performed across climatic zones.

The agreement is lower between the time series from observation-based

and reanalysis datasets for precipitation indices. Trends in these indices show

larger spatial heterogeneity, and inter-annual variation in the global averages

is often larger than the magnitude of the long-term trend. These indices show

larger spatial heterogeneity in the trends, which results in comparatively small

long-term trends in the global averages, which are also small compared to

the inter-annual variation. Spatially these indices show on average smaller

correlations than for the temperature indices, but large regions show strong

positive correlations for some precipitation indices. A subset of the reanalyses

has higher correlations with the latest in situ-based dataset, HadEX3, and also

have smaller di�erences in the per-grid box cumulative distributions, indicating

close agreement to the observation-based dataset. Also, we outline how the

comparisons herein suggest that the gridding method used when creating

HadEX3 may need to be updated for future versions of this dataset, in order

to retain detail arising from topographic features, for example.
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1. Introduction

For a number of reasons (e.g., computational constraints,

restrictions on data exchange), information on extremes

is often represented in index form such as the number of

days above or below a fixed threshold. These “extremes

indices” have been collated for a long time, but over the last

couple of decades in particular, the 27 indices defined by the

former World Meteorological Organization (WMO)/World

Climate Research Programme (WCRP)/Joint WMO-IOC

(UNESCO’s [United Nations Educational, Scientific, and

Cultural Organization] Intergovernmental Oceanographic

Commission [IOC]) Technical Commission for Oceanography

and Marine Meteorology (JCOMM) Expert Team on Climate

Change Detection and Indices (ETCCDI) have enhanced

our understanding of past temperature and precipitation

extremes over the land surface as well as our ability to

project future changes in extremes (Zhang et al., 2011).

Alongside the definitions of these indices, computer software

for their calculation together with workshops to gather

data from around the world have enabled the creation

of globally consistent datasets and the investigation of

changes in these extremes over time. The HadEX family of

datasets (Alexander et al., 2006; Donat et al., 2013b; Dunn

et al., 2020a) use both publicly available archives of daily

observations and data collected from the aforementioned

regional workshops and other contacts providing regional

data. Despite these efforts, ongoing issues around the open

sharing of meteorological data (Thorne et al., 2017) result

in gaps in spatial coverage, which increase toward early

periods even in the most recent dataset version. The impact

of this lack of information can be assessed using a complete

global data product (especially in the early part of a record;

Brohan et al., 2006; Dunn et al., 2020a), which indicates that

reasonable estimates of the global average anomalies can be

obtained even from coverage restricted to North America and

Eurasia, particularly for the temperature indices (Dunn et al.,

2020a).

First developed during the 1990s (Kalnay et al., 1996),

meteorological reanalysis products are created by assimilating

observational data into physically derived numerical models,

often very similar to operational numerical weather-forecasting

systems. The result of this approach is fields of climate

variables which are complete in both space and time over

the period of the reanalysis and also physically consistent

across different variable fields. Their completeness and physical

consistency is a major advantage over datasets derived purely

from observational data which have no or limited infilling.

Reanalyses are operationally maintained and so are also very

useful for (near)-real time climate monitoring. Delays in the

availability of in situ observations result in a slower update cycle

for datasets derived therefrom, though these delays can also

affect real-time updates on reanalysis products.

Although based on observational (in situ and satellite) data,

reanalyses are not completely free from artifacts. Over the

most recent few decades a range of issues have been reported

(Dee et al., 2011), inhomogeneities are naturally introduced

by changes in the data assimilated, with the beginning of the

satellite era in the late 1970s being a clear example (Kistler et al.,

2001).

With the recent release of the HadEX3 dataset, we expand

on earlier work by Donat et al. (2014) to compare this product

against a selection of current-generation reanalyses over a recent

period. The Donat et al. (2014) comparison of HadEX2 against

the previous generation of reanalyses showed good agreement

for the temperature indices, and reasonable agreement for the

precipitation indices. To assess the agreement over the entire

twentieth century, HadEX2 was separately compared to another

two reanalyses which have similarly long periods of coverage

(Donat et al., 2016). Unsurprisingly, during the early part of last

century there were some large differences between the products,

a result of the much lower number of observations available to

constrain bothHadEX2 and the reanalyses. In this assessment we

focus on the most recent period (since 1980) where the greatest

number of the current set of reanalysis products have data.

Although the results of this study could be used to conclude

whether one (type of) product is better than another, this is

not our intention. Rather, these investigations should be used

to help users in deciding which product to choose depending

on their application of the ETCCDI indices. For example

regional monitoring, detection and attribution, or impacts

studies are all likely to need datasets with different properties

and characteristics.

We describe the observational and reanalyses products

in Section 2. The results for temperature and precipitation

extremes are contrasted in Sections 3 and 4. We discuss these

two assessments in Section 5.

2. Data and methods

2.1. Indices

The ETCCDI indices (Table 1) were designed to enable

robust intercomparison of temperature and precipitation

extremes across the globe (Zhang et al., 2011), especially in

the context of Detection and Attribution analyses, as well as

to improve data exchange. While many of these extremes are

moderate, in the sense that they occur every year, these indices

have been in widespread use over the last two decades for the

study of past and future changes in global climate extremes. In

a subset of these indices, exceedence thresholds are calculated

from percentile values which have been determined over a

reference period. For example, TX90p counts the number of

days where the maximum temperature exceeded a seasonally

varying 90th percentile, which was determined over a specified
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TABLE 1 Details of the ETCCDI indices used in this analysis.

Index Name Description Units

TXx Hottest day Monthly and annual highest value of daily max temperature ◦C

TNx Warmest night Monthly and annual highest value of daily min temperature ◦C

TXn Coldest day Monthly and annual lowest value of daily max temperature ◦C

TNn Coldest night Monthly and annual lowest value of daily min temperature ◦C

TN10p Cool nights Percentage of time when daily min temperature <10th percentile %

TX10p Cool days Percentage of time when daily max temperature <10th percentile %

TN90p Warm nights Percentage of time when daily min temperature >90th percentile %

TX90p Warm days Percentage of time when daily max temperature >90th percentile %

DTR Diurnal temperature range Annual mean difference between daily max and min temperature ◦C

GSL Growing season length Annual (1st Jan to 31st Dec in Northern Hemisphere, 1st July to 30th June in

Southern Hemisphere) count between first span of at least 6 days with TG >5◦C

and first span after July 1 (January 1 in SH) of 6 days with TG < 5◦C (where TG

is daily mean temperature)

days

ID Ice days Annual count when daily maximum temperature <0◦C days

FD Frost days Annual count when daily minimum temperature <0◦C days

SU Summer days Annual count when daily max temperature >25◦C days

TR Tropical nights Annual count when daily min temperature >20◦C days

WSDI Warm spell duration index Annual count when at least 6 consecutive days of max temperature >90th

percentile

days

CSDI Cold spell duration index Annual count when at least 6 consecutive days of min temperature <10th

percentile

days

*ETR Extreme temperature range TXx - TNn ◦C

Rx1day Max 1 day precipitation amount Monthly and annual maximum 1 day precipitation mm

Rx5day Max 5 day precipitation amount Monthly and annual maximum consecutive 5 day precipitation mm

SDII Simple daily intensity index The ratio of annual total precipitation to the number of wet days (≥ 1 mm) mm/day

R10mm Number of heavy precipitation days Annual count when precipitation≥ 10 mm days

R20mm Number of very heavy precipitation days Annual count when precipitation≥ 20 mm days

CDD Consecutive dry days Highest number of consecutive days when precipitation < 1 mm days

CWD Consecutive wet days Highest number of consecutive days when precipitation ≥ 1 mm days

R95p Very wet days Annual total precipitation from days >95th percentile mm

R99p Extremely wet days Annual total precipitation from days >99th percentile mm

PRCPTOT Annual total wet day precipitation Annual total precipitation from days ≥ 1 mm mm

*R95pTOT Contribution from very wet days 100 * R95p/PRCPTOT %

*R99pTOT Contribution from extremely wet days 100 * R99p/PRCPTOT %

The indices labeled in italics are available on a monthly as well as annual basis. The three indices marked with an asterisk are additional indices which were included in HadEX2 and

HadEX.

reference period, which in HadEX3 is referenced to both 1961–

1990 and 1981–2010.

The ETCCDI initially defined 27 indices, though all the

HadEX datasets included three additional ones (ETR, R95pTOT,

R99pTOT), but left out Rnnmm (which uses user defined

thresholds of daily precipitation amounts, and so is not as

easily combined across data sources). In this work we select

some representative indices for clarity, with the figures for all

29 indices available in the Supplementary material. Although

some of the indices are available on a monthly basis, this

analysis focusses on indices derived on an annual timescale.

For a full description of the indices and their definitions,

see Table 1. The temperature indices cluster together into

several families: the frequency (number of days) when the

percentile thresholds are exceeded (TX90p, TN90p, TX10p,

TN10p); the most extreme values in a temporal (annual) block

(TXx, TXn, TNx, TNn); the count of days exceeding specific,

fixed thresholds (SU, TR, FD, ID); the durations of threshold

exceedances (WSDI, CSDI, GSL); and the ranges (DTR, ETR).

The precipitation indices also cluster but into smaller families:

block extremes of intense accumulations (Rx1day, Rx5day); the

count of days exceeding specific, set accumulation thresholds
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(R10mm, R20mm); duration (CWD, CDD); the accumulation

on days where a high percentile threshold is exceeded (R95p,

R99p); and the fraction of total annual precipitation falling in

extreme events set by the high percentile thresholds (R95pTOT,

R99pTOT). We note that although PRCPTOT and SDII (total

precipitation and the specific daily intensity index) are part

of the family of ETCCDI indices, they are not a measure of

extremes in the same way as the other indices.

2.2. Observations

The primary observational dataset in this assessment is the

HadEX3 product (Dunn et al., 2020a). This is an update to

the HadEX family of datasets, with increased spatio-temporal

coverage and spatial resolution over previous versions. We use

the most recent update (version 3.0.4), which is on a 1.875 ×

1.25◦ grid and covers 1901–2018 inclusive. For comparison,

we also include GHCNDEX (Donat et al., 2013a) in our

comparisons; this is regularly updated albeit with a lower spatial

coverage in the most recent years (Dunn et al., 2020a,b, 2022;

Perkins-Kirkpatrick et al., 2021).

Both these datasets are based on observations of daily

maximum and minimum temperatures as well as daily

precipitation accumulation at individual meteorological

stations. Index values are calculated at station locations and

then interpolated onto a regular grid using the Angular Distance

Weighting (ADW) method (Shepard, 1968) which utilizes a

decorrelation length scale (DLS) to determine which stations

contribute to a grid box. For full details of the construction

of these datasets, please see the aforementioned papers. The

main differences are that the spatial resolution is higher in

HadEX3 (1.25 × 1.875◦) than in GHCNDEX (2.5 × 2.5◦),

and GHCNDEX is regularly updated from a single data source

whereas HadEX3 uses many contributing data sources and has

a static temporal coverage.

As most of the reanalysis products start in the late 1970s

(at the time of writing), we use the version of HadEX3 which

takes 1981–2010 as a reference period (Dunn et al., 2020a)

when comparing indices that require a reference period in

their construction.

2.3. Reanalyses

There are a wide range of dynamical reanalysis products

available and most of them are updated regularly. We have

chosen to analyse six products which are commonly used

in climate monitoring, using the most recent variant of the

dataset in each case. All are updated in near-real-time and so

are available beyond the end of the HadEX3 record (2018).

The one exception to this is the twentieth Century Reanalysis

(20CR version 3, Slivinski et al., 2019) which ends in 2015

and so has been less used for monitoring in recent years.

However, by solely assimilating in situ pressure data this

product has a different set of biases and inhomogeneities

than the other reanalysis datasets and hence is an important

inclusion here.

For those reanalyses where the daily maximum (Tmax)

and minimum (Tmin) temperatures are available (see Table 2)

no further processing was necessary. For CFSR, the Tmax

and Tmin values were available as 6-hourly fields which were

appropriately combined to obtain daily values. Where only

instantaneous 2-m temperature fields were available, then we

take the maximum and minimum for each 24 h period to

obtain Tmax and Tmin fields. Precipitation accumulations are

aggregated to daily values, and if necessary converted from

rates to accumulation. Extremes indices are then calculated from

these gridded daily fields.

When calculating the Tmax and Tmin fields, or

accumulating the sub-daily precipitation values we use a

24 h period defined from 0000-2359UTC and make no

adjustment for the longitude of the grid box. For the reanalyses

where this is performed (as opposed to those where daily fields

are provided) this approach is different to the observational

datasets, where the daily values for the local time zone will have

been provided. It is possible that for some parts of the world that

this could result in double counting of, e.g., afternoon Tmax or

morning Tmin values. However, as we assess the annual indices

in this study, these effects are likely to be small in comparison

to other differences between the reanalyses and observational

datasets. Any timezone adjustment combined with the varied

fixed temporal resolution of some of the reanalyses (see Table 2),

would result in longitudinal discontinuities. Furthermore,

adjusting the reanalyses purely by longitude would still be

different to HadEX3/GHCNDEX as the timezone adjustments

in these are nation or region specific (and not necessarily

consistent across longitudes), and are in any case then smoothed

during the gridding process.

This method is in contrast to that employed in the

observational datasets and represents a difference in the order

of operation (index-then-grid vs. grid-then-index). This order

of operation effect has been investigated for observational data

by, e.g., Donat et al. (2014), Avila et al. (2015), and Contractor

et al. (2015) andwas shown to substantially influence the gridded

values when using the ADW method. Donat et al. (2014) used

both GHCNDEX (index-then-grid), and indices calculated from

the HadGHCND (grid-then-index) gridded temperature dataset

(Caesar et al., 2006) to investigate this order of operation as

both these datasets are based on largely the same input stations.

They showed that indices are less extreme when calculated from

HadGHCND compared to GHCNDEX as local extreme values

of temperature and precipitation are smoothed when averaging

to daily data to grids.

We note that recently ERA5 has been extended back in time

to 1950 (Bell et al., 2021). However, as at the time of writing
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TABLE 2 Details of the reanalyses used in this study.

Name Resolution Fields References Source

Spatial Temporal

20CRv3 1× 1◦ 3-h (P only) Tmin, Tmax, P Slivinski et al., 2019 NOAA PSL

CFSR 0.5× 0.5◦ 6-h (P only) Tmin, Tmax, P Saha et al., 2010, 2014 NCAR RDA

ERA5 0.28× 0.28◦ 1-h T, P Hersbach et al., 2019 Copernicus CDS

JRA55 1.25× 1.25◦ 1-h T, P Kobayashi et al., 2015 JMA

NCEP2 2.5× 2.5◦ 6-h (P only) Tmin, Tmax, P rate Kanamitsu et al., 2002 NOAA PSL

MERRA2 0.625× 0.5◦ 1-h T, P Gelaro et al., 2017 NASA GES DISC

The fields available are either instantaneous temperature (T), daily Tmin and Tmax, and also precipitation accumulations (P) or rate (P rate).

this is still preliminary, we do not include this pre-1979 data in

our analysis.

2.4. Data preparation

Although the ETCCDI indices were calculated for the

reanalyses at their native resolution, for the comparison to

HadEX3, they are interpolated to the HadEX3 grid (1.875 ×

1.25◦) using a linear interpolation scheme using the Python3

(Van Rossum and Drake, 2009) Iris (Met Office, 2022) library,

with no extrapolation. The spatial coverage of HadEX3 varies

over the period of study, so to ensure a consistent comparison

we match the spatial coverage of the reanalysis products to that

of HadEX3, although we do also show some results using the

complete land coverage. For our spatial analyses, we additionally

impose the restriction that: (i) a grid box has to contain valid

data for at least 66% of the time (≥ 25 years in 1980–2018),

and (ii) that the final year is 2010 or later, which are the same

criteria used in Dunn et al. (2020a) (albeit over a longer period).

We compare the reanalyses over their common periods with

HadEX3 (1980–2018 except 20CR, which is shown for 1980–

2015).

2.5. Comparison methods

2.5.1. Global time series analyses

We start with a simple comparison of the annual, globally-

averaged time series for the indices (using cosine weighting

of the grid box latitude to account for the varying grid box

sizes over the globe, e.g., Jones and Moberg, 2003). Together

with HadEX3 we show time series from the six reanalyses.

As HadEX3 does not have complete global land coverage, the

solid lines in the time series plots show the reanalyses which

have had their spatio-temporal coverage matched to that of

HadEX3. We also show as dashed lines, the global averages of

the reanalyses using the complete land coverage. We expect

these time series of the absolute values to have a spread across

the different products, because of the underlying differences

in the temperature and precipitation fields. And for the two

observationally based products these have different spatio-

temporal coverage. Therefore, we also show time series derived

from anomalies from the 1981 to 2010 average. To reduce the

effect of varying spatio-temporal coverage on these time series,

global averages are only calculated from grid boxes which have

90% temporal completeness (>35 years in 1980–2018), the same

criterion as in Dunn et al. (2020a). We note that this is different

to the 66% criterion used for the maps, but is consistent with the

approach in Dunn et al. (2020a) and Donat et al. (2013b).

To evaluate the agreement of the spatial fields, we also

calculate the pattern correlation for each year, using the HadEX3

dataset as the reference. Following Donat et al. (2014), the

Spearman rank correlation coefficient is determined using the

anomalies relative to the 1981–2010 mean at each grid box

rather than absolute values, and uses the coverage-matched

reanalysis grids. This is to ensure that the statistic measures local

rather than global agreement, by removing the obvious global-

scale distributions of temperature and precipitation indices. The

Spearman rank correlation is the equivalent to the Pearson

correlation coefficient of the ranks of the yearly values, and we

explicitly exclude the empty grid boxes from this assessment.

Finally, we show a Taylor diagram (Taylor, 2001) which

graphically represents how well two time series match (one

acting as a reference). These are polar plots showing a sector,

with the x and y axes are the standard deviation of the time

series, and the reference dataset (HadEX3) plotted on the x-axis.

The polar axis represents the correlation between the datasets,

from zero at 0◦ to one at 90◦, as calculated over the entire period.

The Taylor diagram also shows the root-mean-square difference

(dRMS) as semi-circles centered on the reference dataset (we

note that root-mean-square error is more commonly used, but

as our reference dataset, HadEX3, also contains errors, only the

difference can be measured). Hence the closer points appear

to the reference dataset, the better the agreement between the

two. We use the global average anomaly time series to construct

these diagrams.
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2.5.2. Geospatial analyses

We use two measures to assess the spatial comparison of the

reanalyses against HadEX3. To indicate how well the reanalyses

capture these extremes indices we plot a simple correlation map

of the temporal correlation at each grid box. We again use the

Spearman rank correlation coefficient. For indices with a large

change over the period (e.g., many of the temperature indices),

this will be the main determinant of the correlation coefficient.

However, for regions or indices which have little long-term

change over the period, the year-to-year variation will be the

main aspect summarized by these plots.

The second measure is the integrated quadratic distance

(IQD, Figure 5), which was introduced by Thorarinsdottir et al.

(2013) and used for assessing the differences between extremes

indices datasets, reanalyses, and historical climate model runs

by Thorarinsdottir et al. (2020). This quantity measures the

differences between the cumulative distribution functions for

each grid box between each reanalysis and HadEX3. The

construction ensures that changes in both shape and location

of the distribution are captured, with a greater value of the

IQD indicating worse agreement between the two products.

As this quantity compares the cumulative distributions, the

values obtained will depend not only on the agreement of the

distributions, but also the range and units of the index being

assessed. Hence, high IQD values may be a few degrees or

tens of millimeters, and therefore we do not recommend that

numerical comparisons are done between all indices without

thought. However, comparisons can be made between the IQD

distributions for the different reanalysis products for single

indices, or within families of similar indices (e.g., TXx, TXn,

TNx, and TNn as one family or Rx1day and Rx5day as another).

3. Temperature extremes

3.1. Global time series analyses

Starting with the time series for the annual

maxima and minima, examples shown in Figure 1,

and in the Supplementary Figure 13 [TXx],

Supplementary Figure 16 [TXn], Supplementary Figure 19

[TNx], Supplementary Figure 22 [TNn], demonstrate that

each of the datasets have different absolute values for the

global averages and are offset from each other. However, in the

time series derived from the anomalies relative to 1981–2010

(Figures 1B,D), both the year-to-year and long period changes

agree very well in most cases up to around 2010. Focusing on

the reanalyses masked to the observational coverage in the

absolute time series (solid lines in Figures 1A,C), for TXn,

HadEX3 is the warmest. Whereas, for TNx, HadEX3 is located

more toward the middle of the range. The complete global land

averages for the reanalyses are relatively similar to the masked

versions for TXn (except MERRA-2), but are 2 − 3◦C lower for

TNx. Each index in HadEX3 has a different spatial coverage.

Depending on which regions are missing and whether these are

climatologically warmer or colder than the global average, these

gaps in the spatial coverage can introduce systematic differences

when comparing to the complete land-coverage available from

the reanalyses. For example, Antarctica is nearly almost always

missing from HadEX3, and often large parts of central Africa

are too, and how these balance against each other will result in

systematic differences for, e.g., TXx, TNn.

In Figure 1, the behavior of both NCEP2 and CFSR is clearly

different in the last few years of the time series, particularly

in the anomalies (Figures 1B,D). For the last 2 years of the

NCEP2 record the values are around 3◦ C cooler in TXn than

the preceding few years and also in the other reanalyses, and

warmer by a similar amount in the TNx time series. On further

investigation, we noted a discontinuity of a similar magnitude

in the NCEP2 fields of maximum and minimum temperatures

(tmax.2m and tmin.2m) from 2017 onwards, which we show

in Figure A1 (Appendix) which appears to be the cause of this

strong jump in the index values.

In the anomaly time series (Figure 1D), values for TNx from

CFSR are cooler by around 0.75◦ C after 2011, as they also

are in TXx (Figure A2). There is close agreement between all

reanalyses in the anomaly time series before this date. The date of

the start of this feature corresponds to the time point where the

upgrade to version 2 of the operational Climate Forecast System

occurred (Saha et al., 2010, 2014). There was a change in the

spatial resolution of CFSR on the change to version 2, but the

data available via the NCAR RDA were all on a 0.5 × 0.5◦ grid

which we have used for all the pre-processing. However, no such

divergence from the other datasets is seen in the anomaly time

series for TXn and TNn (Supplementary Figure 22, though 2009

and 2010 stand out as warmer than other reanalyses in TNn),

suggesting that the annual minimum values are not as affected

as the annual maximum values and that it is not an issue with

our processing of CFSR.

In the indices quantifying the exceedence of percentile

thresholds calculated for a specific 30-year reference

period (e.g., TX90p, Supplementary Figure 1 [TX90p],

Supplementary Figure 4 [TX10p], Supplementary Figure 7

[TN90p], Supplementary Figure 10 [TN10p]), as well as WSDI

and CSDI (Supplementary Figures 25, 28), the time series of

global averages show good agreement. This also holds for the

absolute values due to the use of dataset-specific thresholds

which side-steps relative biases between data sets. The use of

these relative thresholds reduces the variation of the global

average values between datasets. The agreement is better

during the reference period (1981–2010), but the spread

between datasets increases a little in the last years of the

comparison period.

The counts of fixed-threshold exceedences (e.g., SU,

Supplementary Figure 31 [SU], Supplementary Figure 34 [TR],

Supplementary Figure 37 [FD], Supplementary Figure 40 [ID])
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FIGURE 1

Time series of absolute values (A,C) and anomalies (relative to 1981–2010), (B,D) of TXn (minimum Tmax) and TNx (maximum Tmin). The dashed

lines are for reanalyses using complete global land coverage, the solid ones are matched to the spatio-temporal coverage of HadEX3.

also show different actual values for the global averages, but on

the whole good agreement for both long-term trends and inter-

annual variability between the datasets when using anomalies.

FD and ID in GHCNDEX show departures from the remaining

datasets toward the end of their records, with lower than

expected counts for these indices. This is most likely the result

of the declining spatial coverage in the last years of GHCNDEX

in regions which experience temperatures below freezing. ETR

(Supplementary Figure 46, not a core ETCCDI index, but often

included in this family) shows good agreement on both long and

short timescales, which is unsurprising as it is derived from the

values of TXx and TNn. And GSL (Supplementary Figure 49)

exhibits a large range in absolute values, but reasonable

agreement in both the long-term trends and inter-annual

variability. However, for DTR (Supplementary Figure 43) the

agreement is poor, with datasets presenting DTR of anywhere

between 8◦C (JRA55) and 12◦C (GHCNDEX). The drop in

values of DTR for NCEP2 arising from the inhomogeneity noted

above is also very clear. There is no clear long term change

for this index, and little agreement on the short-term variations

between the datasets.

A few things stand out across the indices. Firstly, comparing

the datasets against HadEX3 as a reference, GHCNDEX can

show larger differences in the average absolute values than the

majority of the reanalyses, especially toward the end of its

period of record. This is very likely due to the different spatial

coverage of GHCNDEX compared to HadEX3, as it has not been

coverage matched.

Secondly, we show time series from the absolute global

average, and also those calculated from anomalies. The use of

anomalies removes the spread in absolute values, and so makes

the agreement (or lack thereof) between the datasets on both

the long term and year-to-year behavior clearer. The spread

in values for the average absolute indices derived from the

reanalyses shows how different datasets are warmer or cooler

compared to others.

The average absolute values calculated using the complete

land coverage obviously include parts of the world where

HadEX3 does not have data for those indices. In all cases

this adds values from Antarctica to the global average, but

for some indices Greenland and large parts of Africa are

also included, as only indices with a large DLS will cover
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FIGURE 2

Spatial rank correlation of the coverage-matched reanalyses datasets against HadEX3 for (A) TXn and (B) TNx annual indices.

these regions with sparse station networks. Depending on

which regions are included, and which index is being assessed,

this changes the global average values, but seems to have

very little effect on the year to year behavior. For example,

in TXx (Supplementary Figure 13), the addition of Antarctic

values unsurprisingly reduces the global values, whereas for FD

(Supplementary Figure 37), contributions from Antarctica and

Africa result in no dramatic change.

GSL (Supplementary Figure 49) is a special case. As the

growing season length for the southern hemisphere spans two

calendar years, the value for the final year of the data series will

be incomplete for this region. Hence the global average will be

strongly affected in this final year, as can be seen in 20CR.

The spatial rank correlation (Figure 2) shows the yearly

pattern correlation between each reanalysis and HadEX3, and

for the two indices shown there is good agreement between

the results for all the reanalysis datasets except for the last

year studied (TNx), both on the absolute level as well as the

year-to-year variations. However, the overall correlations for the

daily minimum temperature index are lower than for the index

derived from the daily maximum.

The spatial rank correlations for the indices using

percentile-based thresholds are similar to those for

the block maxima (e.g., TNx), and again the pattern

agreement of the maximum temperature indices is

higher (0.6–0.8) than for the minimum temperature

indices (0.4–0.7) (Supplementary Figure 1 [TX90p],

Supplementary Figure 4 [TX10p], Supplementary Figure 7

[TN90p], Supplementary Figure 10 [TN10p]). The counts of

fixed threshold indices all have pattern correlation values

around 0.5–07, except TR which is lower at (0.2–0.6)

(Supplementary Figure 31 [SU], Supplementary Figure 34

[TR], Supplementary Figure 37 [FD], Supplementary Figure 40

[ID]). In fact, across most of the temperature indices, those

derived from daily minimum temperatures have lower spatial

correlations than their counterparts calculated from the daily

maximum temperatures. This may be an effect, not of the

temperature measurement itself, but of the details of the

search radius used in the HadEX3 gridding algorithm. In the

Angular Distance Weighting routine, this search radius (the

decorrelation length scale, DLS) is used to determine which

stations contribute to the value for the grid box (see also

Figure 1 in Dunn et al., 2020a). The DLS is determined from

the e-folding distance of decay of the correlation coefficients

between the index time series as the separation between station

pairs increase. This DLS is on average larger for the minimum

temperature derived indices than those from maximum

temperatures, as on average the correlations between station

pairs is higher for minimum temperature derived indices. A

larger DLS means a greater search radius, and hence data from

a greater number of stations contributing toward the weighted

mean when calculating the grid cell value. For a fixed spatial

distribution of stations, these additional stations are all at larger

distances from the grid box for the minimum temperature

indices compared to the maximum temperature ones. This has

two effects.

Firstly, even using distance weighting, an increased search

radius includes more stations from a greater distance, which

will on average be less representative of those closer to the

grid box, and so dilute the contribution of nearby stations.

This may result in the grid box value being less representative

when using a larger DLS than when compared to when using a

smaller one. Secondly, a larger DLS means more interpolation

can occur into regions with few or no stations. Although the

correlation structure from the DLS (which is calculated in

latitudinal bands) suggests this action is reasonable, it is possible
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that for large DLS values (which can be >1,000 km) changes in

land use, climate zones and other differences reduce the accuracy

of the interpolated values relative to values from a reanalysis.

Both these effects would reduce the spatial correlations of the

minimum temperature indices when compared to those derived

from maximum temperatures.

The ADW is comparatively simple but was shown to

be an appropriate method for irregularly spaced data (New

et al., 2000). However, it does not take other co-variates, for

example (station) altitude, into account when interpolating grid

box values which have large separations from stations. Other

gridding routines have been applied to these indices on smaller

scales for these indices (Avila et al., 2015) or in other variables

(Contractor et al., 2015) but not on a global basis as yet.

The spatial correlations with the reanalyses for the block

extremes (e.g., TXx) are lower than those for the previous

generation of datasets assessed in Donat et al. (2014). As noted

above, the ADW method applied in HadEX3 does not account

for any co-variates, and also can blend stations from large

distances. This results in smooth fields which do not capture the

variations over orography, especially for these absolute indices.

This could lead to larger differences with the reanalyses, which

do account for geophysical features, and hence the observed

lower correlations (see Section 3.2). There is also less variation

between the spatial correlations of the different reanalysis

datasets compared to the previous generation, suggesting that

for these temperature indices, the reanalyses are more similar

to each other than they are to the observational dataset. A

reduction in grid box size (as was done for HadEX3) means

that the impacts from orographic features could be more clearly

resolved. However, the effective resolution is set by the search

radius (the DLS in the ADW method) rather than the grid

box size. Therefore, by reducing the grid box size, this has not

changed the effective resolution of HadEX3, but has increased

the resolution of the matched reanalyses meaning differences

over orographic features stand out more in HadEX3 than they

did in the comparison to HadEX2 (Donat et al., 2014).

Furthermore, the slight decrease in the spatial correlation

values over time may be the result of the decreases in spatial

coverage of HadEX3 toward the end of its record period (see

plots in Dunn et al., 2020a), roughly from 2010 onwards. In the

case of TXn and TNx, large parts of Africa have no coverage

after 2010, and there is also a reduction in the coverage of the

Canadian Arctic in 2018. There may also be a contribution

from increases in the numbers of observations ingested by the

reanalyses over time. This may have led to an increase in the

general detail available in these products over the entire record,

and hence a worsening agreement with HadEX3 over time.

The helpful summary provided by the Taylor Diagrams

(Taylor, 2001; see also Section 2.5.1) in Figure 3 show

that many of the reanalysis datasets are very similar in

comparison to HadEX3, with a cluster around r = 0.9

with similar or slightly lower standard deviations for TXn.

The root-mean-square difference (RMSD) of these datasets

is around 0.2 for these two indices. CFSR and NCEP2

appear as outliers due to the inhomogeneities outlined

earlier. GHCNDEX has poorer agreement for both indices,

and again this is the result of the severe drop in spatial

coverage for the most recent years when compared to

HadEX3. What is also clear is that most of the reanalyses

cluster close together suggesting that their representation of

these indices is more similar across different reanalyses than

to HadEX3.

The percentile-based indices show relatively good

matches across all datasets (Supplementary Figure 1, [TX90p]

Supplementary Figure 4 [TX10p], Supplementary Figure 7

[TN90p], Supplementary Figure 10 [TN10p]), with both the

reanalyses and observational datasets showing relatively similar

correlation values, but with a greater spread in the standard

deviations. Again NCEP stands out (and for TX10p and TN90p

in fact falls outside of the plot area). There is less clustering

of the reanalyses, suggesting that for these indices they are as

similar to each other as they are to HadEX3. The fixed threshold

indices are more scattered, with correlation being similar

between the reanalyses, but with a spread of standard deviations

(Supplementary Figure 31 [SU], Supplementary Figure 34 [TR],

Supplementary Figure 37 [FD], Supplementary Figure 40 [ID]).

We also show the reanalyses datasets when using the complete

land coverage, and as expected from the time series, these tend

to have greater RMSD relative to HadEX3 than their coverage

matched counterparts, but only in very few cases do these fall

outside of the cluster of points from the matched datasets.

3.2. Geospatial analyses

For each index, we show the map of linear trends

from HadEX3 as context for the spatial analyses. In the

Supplementary material, we also include a map showing the

length of the HadEX3 record in each grid box (over the analysis

period 1980–2018 used in this study), as this can give context

to the other maps as some features can align with regions with

shorter records than their neighbors. Linear trends are calculated

using the median of pairwise slopes estimator (Thiel, 1950;

Sen, 1968; Lanzante, 1996). As the trend period is different

(and hence also the completeness criterion), these trend maps

differ from those shown in Dunn et al. (2020a) and on the

dataset website.

By plotting the Spearman correlation for the anomalies at

each grid box we can see more easily where the reanalyses

and HadEX3 differ. Overall, for the reanalyses and indices

shown in Figure 4, many regions show correlations higher than

r = 0.6, but some have low or even negative correlations.

Again, as noted in the temporal analysis, the correlations are

better for the maximum temperature index than the minimum

temperature index.
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FIGURE 3

Taylor diagram for (A) TXn and (B) TNx. The x and y axes on this polar plot show the standard deviation of the time series for each dataset, with

the polar axis showing the correlation with the reference dataset, HadEX3. The semi-circles centered on HadEX3 show values of the

root-mean-square di�erence. The fainter symbols are for reanalyses using complete global land coverage, the darker ones are matched to the

spatio-temporal coverage of HadEX3. These use the anomaly time series shown in Figures 1B,D.

There are a number of reasons why certain regions can have

lower correlations (northern South America, India for TXn,

Supplementary Figure 17, South Americamore widely, northern

Africa [especially the west] for TNx, Supplementary Figure 20).

For example, the decorrelation length scales used in the ADW

scheme for these indices are comparatively high (see Section

3.1, around 1,000 km for TNx in the 30 to 60 N band), which

means that relatively distant stations can contribute to a grid box

value. Not all stations have records which cover the complete

HadEX3 period, resulting in the decline in spatial coverage seen

in HadEX3 toward the end of its period (see Dunn et al., 2020a).

In some cases, this change in the station network can result

in more distant stations with longer records contributing more

strongly to the grid box average. In South America, a collection

of stations at altitude in the Andes finishes in 2015, after which

this region has a greater contribution from lower-lying, hence

warmer stations. And in western Africa, most stations end in

2010, after which only stations on the Canary Islands have data,

which suppresses temperatures over Morocco and the coastal

parts of Mauritania because of their maritime contribution.

Hence changes in the station network used in HadEX3 can result

in inhomogeneities in the grid box time series, and also hence

low or negative correlations.

Away from the coast of West Africa, the correlations for

TNx are still low/negative (e.g., Mali, southern Algeria). There

are few stations located in this region (the Sahara and Sahel),

but there are many further south, in more tropical locations,

and a few on the Mediterranean coast. Interpolation in HadEX3

by the ADW routine from these wetter regions is unlikely

to accurately reproduce the behavior of the desert interior,

resulting in lower values for this index. TXn has a much smaller

decorrelation length scale (around 700 km) in this region,

therefore less interpolation across climate zones can occur, and

hence correlations with the reanalyses are better in these regions.

HadEX3 is dependent on the underlying station network,

however reanalyses can assimilate other information. Data with

complete global coverage, especially from satellites, along with

physical models in principle allow them to better represent the

temperature behavior in these sparsely observed regions. The

reanalyses have warmer values for TNx over the Sahara desert

than HadEX3, and also clearly capture the colder temperatures

over high elevation areas.

For the percentile-based indices (Supplementary Figure 2

[TX90p], Supplementary Figure 5 [TX10p],

Supplementary Figure 8 [TN90p], Supplementary Figure 11

[TN10p]) the correlations are generally higher, up to around

r = 0.8, except with NCEP2 and more generally over South

America. The use of a threshold determined from the percentiles

of the distributionmeans these indices are more easily compared

across regions than those based on actual values (which vary

due to, e.g., altitude). This results in longer correlation lengths,

and also smoother fields in HadEX3 than other indices. There

is almost no effect when using the anomalies to calculate the

time series as the use of percentiles has already standardized
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FIGURE 4

(A,B) Linear trends in TXn and TNx in HadEX3 (◦C/decade). Correlation maps for (C,E) TXn, and (D,F) TNx (anomalies relative to 1981–2010) with

a selection of reanalyses (ERA5, MERRA-2, JRA-55, and CFSR).

these curves over the 1981–2010 reference period. Despite also

being derived using percentile-determined thresholds, WSDI

and CDSI (Supplementary Figures 26, 29) have lower overall

correlations (r = 0.6–0.7), with tropical areas (which have less

variable temperatures) standing out in CSDI.

The fixed threshold indices (Supplementary Figure 32 [SU],

Supplementary Figure 35 [TR], Supplementary Figure 38 [FD],

Supplementary Figure 41 [ID]) can show missing areas in the

correlation maps, despite both HadEX3 and the reanalyses

having data over these regions. These are locations where these

indices equal zero for almost the entire record (e.g., tropical

areas in ID where the maximum temperatures never fall below

0◦ C) for either dataset. In these regions, the correlation

calculation is meaningless, and hence are missing in the figures.

Overall, these indices do have slightly lower correlations than the

block extremes (e.g., TXx), of around r = 0.6.

Using the integrated quadratic distance (IQD,

Thorarinsdottir et al., 2013, 2020) as shown in Figure 5

highlights regions where there is a mismatch between the

distributions of the reanalysis and HadEX3. Given the differing

units and values of the underlying distributions assessed by

the IQD, numerical comparisons between different indices
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FIGURE 5

Integrated quadratic distance (IQD) map between HadEX3 and (A) ERA5 and (C) JRA55 for TXn and (B) MERRA-2 and (D) CFSR for TNx. Small (so

as not to distract from the underlying values) blue crosses mark the locations of grid boxes presented in Figure A2, which are also indicated by a

green arrow [(A) northern Indian subcontinent, (B) western South America, (C) France, (D) north-eastern USA].

should be done with care. However, the spatial patterns of

relatively high or low IQD show where there is good or poor

agreement between the cumulative probability distributions of

the reanalyses and HadEX3. The areas which immediately stand

out are mountainous regions, e.g., the Himalayas and Andes.

Even the European Alps and parts of the North American

Rockies show greater IQD values than their immediate

surroundings. In these mountainous regions, the blending of

the ADW scheme used in HadEX3 is unlikely to fully capture

the values of these block extremes indices (e.g., TXx), as it is

more likely that stations are based alongside settlements in

the lower valley floors. Whereas, the reanalyses can potentially

capture the temperature variation with altitude more accurately.

The other regions with clear differences are Greenland and

northern latitudes (TXn). As the only stations in Greenland

are coastal, HadEX3 cannot represent the high-altitude interior

well, leading to the larger IQD values.

In Figure A2, we show the cumulative distribution plots

from which the IQD is calculated for one grid box from each of

the four panels in Figure 5, two from regions of low IQD and two

from high IQD. In regions of low IQD (JRA55: France, CFSR:

north-eastern USA), the cumulative difference curves are very

close, whereas for the regions of high IQD (ERA5: Himalaya,

MERRA2: Andes), the curves are well separated, with HadEX3

at higher temperatures than the reanalyses. In these regions

HadEX3 has not captured the lower temperatures found at these

high-altitude regions.

For the percentile-based indices (Supplementary Figure 3

[TX90p], Supplementary Figure 6 [TX10p],

Supplementary Figure 9 [TN90p], Supplementary Figure 12

[TN10p]) the IQD values show less variation across the globe,

except for NCEP2 in TX10p (Supplementary Figure 6). Parts of

Africa and South America do stand out for some reanalysis and

index combinations, and usually toward the edges of the regions

with coverage. This suggests that interpolation by the ADW

scheme is leading to the difference between the reanalyses and

HadEX3 in these regions.

Again, the smaller variations in IQD values are because

the use of data-specific thresholds calculated over the reference

period removes some of the relative biases. Whereas, for

the fixed threshold indices (Supplementary Figure 33 [SU],

Supplementary Figure 36 [TR], Supplementary Figure 39 [FD],

Supplementary Figure 42 [ID]) some very large differences are

demonstrated which are mainly in regions where the thresholds

for these indices are almost always or almost never exceeded

(in high-latitude, high-altitude, or tropical regions) and arise
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because of the offset in the actual temperatures in different

reanalyses (see SU, TR, FD).

4. Precipitation extremes

4.1. Global time series analysis

As is clear from the anomaly plots in Figure 6 and in the

Supplementary material, the agreement between the different

datasets for precipitation indices is on average less good than

for the temperature indices. Unlike changes in the temperature

extremes, which are responding to the rise in temperatures

globally and so show strong trends, changes in precipitation

are spatially much more heterogeneous (see below). Therefore,

on the global average the magnitude of any long term change

is smaller and hence the short timescale variability more

prominent. These larger differences in the representation of

precipitation indices are also in line with the uncertainty across

different observational datasets (and reanalyses) discussed

in Alexander et al. (2020).

As seen in the temperature indices, the time series derived

from absolute values have different values between datasets, but

there is no precipitation index where there is good agreement

in the absolute values. Larger differences remain than for

temperature, even when calculating the average global time

series using the anomalies. However, there are some short-term

similarities in the year-to-year changes in the anomaly time

series for parts of the record. For example in R10mm, the year-

to-year variation between 2010 and 2018 in HadEX3 is similar

to ERA5, 20CR and JRA55 though the absolute values are offset.

Earlier in the record, however, there are fewer similarities in the

inter-annual variation of the global average time series.

Clearly in Figure 6, both CFSR (Rx1day and R10mm)

and NCEP2 (R10mm) show large differences in the temporal

behavior compared to the other products. For CFSR in Rx1day,

it is almost as if the temporal behavior is more exaggerated,

with larger anomalies arising from inter-annual variations than,

e.g., HadEX3. Though, as for the temperature indices, there

is a stronger departure by CFSR2 after 2010, suggesting some

inhomogeneity at this point for the wettest days rainfall values.

In R10mm, both CFSR and NCEP2 show similar strong positive

anomalies over the last years of the period of study, and although

CFSR also maybe has greater interannual variation in this

index, it is not clear that NCEP2 has the same interannual

variation. Similar behavior is seen in PRCPTOT, but with no

clear distinction at 2010, which suggests that precipitation in

these two reanalyses is generally greater than other products,

and especially in recent years. For CFSR some other indices

are not as affected (e.g., CDD, CWD, SDII), but R95p(TOT)

and R99p(TOT) also show these large comparative differences

after 2010.

Two indices which have relatively good agreement

over longer timescales are R95pTOT and R99pTOT

(Supplementary Figures 82, 85). In contrast CWD

(Supplementary Figure 64) demonstrates much lower levels of

short term variability in HadEX3 then in many of the reanalyses.

For this index the map of HadEX3 trends shows few areas with

clear trends, and a roughly equal distribution of positive and

negative trends over the globe.

As noted in Donat et al. (2014) for Rx5day, the observational

datasets have higher average absolute values in Rx1day than

most of the reanalyses. They conclude that this is likely the result

of the different order of operation between the observational and

reanalysis datasets. As outlined in Section 2.3, the observational

datasets interpolate extremes calculated at each station.Whereas

in the reanalyses the extremes have been derived from daily grid

box average values and hence influenced by smoothing effects

resulting from the gridding of information from the reanalyses.

In a recent comparison of annual precipitation indices

and extremes, (Alexander et al., 2020) found that CFSR and

MERRA-2 were the wettest datasets across a range of reanalyses,

satellite and in situ precipitation datasets over the full land

surface. They also noted that the reanalyses had a wider spread

across the datasets than the other dataset types they studied.

We also find CFSR more often than not among the wettest

datasets across the indices, but MERRA-2 is more variable in its

comparative position.

In terms of long-term changes, using the full time coverage

of HadEX3 (1901–2018), Dunn et al. (2020a) found increases in

many of the extreme precipitation indices. Using a shorter time

period, Alexander et al. (2020) also found significant trends over

1988–2013 for many indices across the reanalyses they studied

using the complete land coverage over 50◦N to 50◦S. However,

in this analysis where reanalyses coverage is restricted to that

of HadEX3 we find results in time series that are much noisier

than in Alexander et al. (2020). Hence increases in extreme

precipitation are not as clear from this assessment alone.

Unsurprisingly the spatial correlation values for all

reanalyses compared with HadEX3 are on average lower

for the precipitation indices than for the temperature indices

(Figure 7), as precipitation fields are generally less homogeneous

than temperature fields. In the examples in Figure 7, R10mm

has generally higher correlations than Rx1day as the latter index

is more likely to measure extremes dominated by localized

heavy convective events, rather than accumulations dominated

by large-scale, dynamic patterns of rainfall. Across all the indices

the spatial correlations range between around 0.2 and 0.4, with

only a few reaching up to 0.6 (e.g., PRCPTOT, R10mm).

The Taylor diagrams in Figure 8 confirm the generally lower

correlations for the precipitation indices, and a much greater

range in standard deviation. Even the other observational

datasets have a much greater spread across this diagram than

they do for the temperature indices. Despite the higher spatial

correlation of the reanalyses for R10mm than Rx1day, the Taylor
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FIGURE 6

Time series from absolute values (A,C) and anomalies (B,D) for Rx1day and R10mm. The dashed lines are for reanalyses using complete global

land coverage, the solid ones are matched to the spatio-temporal coverage of HadEX3.

FIGURE 7

Spatial rank correlation of the coverage-matched reanalyses datasets against HadEX3 for (A) Rx1day and (B) R10mm annual indices.

Frontiers inClimate 14 frontiersin.org

https://doi.org/10.3389/fclim.2022.989505
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Dunn et al. 10.3389/fclim.2022.989505

FIGURE 8

Taylor diagram for (A) Rx1day and (B) R10mm. The fainter symbols are for reanalyses using complete global land coverage, the darker ones are

matched to the spatio-temporal coverage of HadEX3.

diagrams show better agreement for the global average time

series for Rx1day than R10mm, consistent with Figure 6D.

4.2. Geospatial analysis

Immediately apparent in Figures 9, 10 is the much smaller

fraction of land area covered by these indices than the

temperature indices. Although this varies, the precipitation

indices tend to have smaller coverage, despite an often larger

number of contributing stations. The reason behind this is the

shorter correlation length scale for these indices, which is used

in the ADW algorithm when selecting stations to contribute

toward a grid box value. For some indices with particularly

small decorrelation length scales (e.g., R99pTOT), there is little

interpolation, with data in HadEX3 only available where the grid

boxes themselves contain sufficient stations.

Overall, the correlations between HadEX3 and the

reanalyses are higher for indicators of more moderate extremes,

such as R10mm than for annual maxima (Rx1day), also with a

greater spatial coverage. In both these indices, similar regions

stand out as having higher than the average correlation for

the index, but with the addition of eastern South America in

R10mm. But Mountainous regions, e.g., the Andes, central Asia

and parts of the Rocky Mountains do appear to have lower

correlations. The spatial distribution of the trends for Rx1day in

HadEX3 is more heterogeneous than in R10mm, which shows

relatively large regions of contiguous increasing or decreasing

tendencies compared to the noisier Rx1day. The DLS is larger

for R10mm than for Rx1day, which results in smoother fields

for R10mm along with greater spatial coverage in HadEX3.

However, the reanalyses also show similar differences in the

spatial distribution of trends, with Rx1day being on average

more heterogeneous than R10mm. Hence the correlation

maps reflect the relative heterogeneity of the fields of these

two indices.

As expected from the prior discussion, the correlations

are on the whole lower for the precipitation indices and also

more spatially heterogeneous than those exhibited for the

temperature indices (compare Figure 9 with Figure 4). But in

the overwhelming majority of grid boxes for Rx1day, and other

precipitation indices, the correlations between HadEX3 and

the reanalyses are positive. Higher correlations are found for

Australia, North America, Europe, and eastern Asia, which also

correspond to regions with large numbers of stations that were

included in HadEX3.

Locations with lower correlations often correspond to

regions with few stations in HadEX3, suggesting that these are

not as well represented. Also, if only few stations contribute

to the grid box value, then this weighted average is more

susceptible to changes in the station network, potentially leading

to interpolated values from more distant stations dominating

the signal (see Section 3.2). The station distribution in HadEX3

reflects the more general availability of station data (Thorne

et al., 2017), which also impacts the representation of these

regions in the reanalyses. The effect of the density of the
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FIGURE 9

(A,B) Linear trends in Rx1day (mm/decade) and R10mm (days/decade) in HadEX3. Correlation maps for (C,E) Rx1day, and (D,F) R10mm

(anomalies relative to 1981–2010) with a selection of reanalyses (ERA5, MERRA-2, JRA-55, and CFSR).

underlying observation network was noted in Donat et al.

(2014), Donat et al. (2016), and Alexander et al. (2020), where

the agreement, even between different reanalysis datasets, is

lower in regions where observations are sparser.

A number of the indices have very similar definitions and

can be grouped into pairs of different threshold values (e.g.,

R10mm and R20mm). In many cases the indices measuring

less extreme events (lower percentiles or thresholds) show

higher correlations between the reanalyses and HadEX3 than

the indices of the more extreme events, e.g., R95p, R95pTOT,

and R10mm all have higher correlations than R99p, R99pTOT,

and R20mm, respectively (Supplementary Figures 56, 59, 77, 80,

83, 86). This suggests that the agreement between HadEX3 and

the reanalyses is on average better for the moderate extreme

precipitation characteristics than the more extreme indices. For

the extreme rainfall amounts, Rx5day shows on average higher

correlations than Rx1day, suggesting longer term events agree

better than those from single days (Supplementary Figures 71,

74). Finally, CDD has higher correlations than CWD, again

suggesting that the reanalyses and HadEX3 agree better

for dry spells than wet ones (Supplementary Figures 62,

65).
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FIGURE 10

The 1981–2010 climatology maps for (A) Rx1day, and (B) R10mm, using the same selection criteria for the maps of trends and IQDs. The IQD

maps for Rx1day with (C) ERA5, and (E) JRA-55, and R10mm with (D) MERRA-2, and (F) CFSR. Small (so as not to distract from the underlying

values) blue crosses mark the locations of grid boxes presented in Figure A2, which are also indicated by a green arrow [(C) North America, (D)

south-eastern Australia, (E) western India, (F) south-eastern Asia].

For these indices, we show a map of the climatology along

with the integrated quadratic distance (IQD) in Figure 10 as this

can help understand the distribution of differences. There can be

large range of index values across the globe, unlike for some of

the temperature indices. Any mismatches between the HadEX3

and reanalysis distributions in regions with high index values

are likely to result in larger IQD values than those in regions

with low index values. Hence although the absolute difference

in the distributions is larger, the relative difference may not be.

However, we have not added any normalization to these plots

using, e.g., the climatology. It is also therefore important to

remember that although spatial patterns of IQD variation can

be compared between indices, numerical values should only be

compared within index (families).

For this reason, regions with large values for the indices have

a tendency for a larger IQD, but this is not always the case. For

R10mm, the eastern part of North America has higher values for

R10mm than the west, but this region does not stand out in the
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IQD especially when contrasted to similar values for R10mm in

South America. Similarly over the Indian subcontinent, the IQD

values are smaller there than in neighboring south-east Asia but

both have similar R10mm values. In the Rx1day panel, the IQD

values are comparatively lower around the Mediterranean than

they are in eastern North America for similar values of Rx1day.

In Figure A2, we show the cumulative distribution plots

from which the IQD is calculated for one grid box from

each of the four panels in Figure 10, two from regions of

low IQD and two from high IQD. In regions of low IQD

(ERA5: north-western USA,MERRA2: south-eastern Australia),

the cumulative difference curves are close, though ERA5

has consistently lower Rx1day values than HadEX3, whereas

MERRA2 is a very close match to HadEX3 for R10mm. In

the regions of high IQD (JRA55: south-western India, CFSR:

Cambodia), the curves are well separated. JRA55 also has lower

Rx1day values than HadEX3, but by between 50 and 200 mm,

rather than the 5 mm that ERA5 is lower, with the highest

HadEX3 values being much higher than JRA55 compared to the

lowest values. This is similar for CFSR in R10mm, but in this

case CFSR has more of these very wet days, and this difference

increases as the number of wet days increases.

The regional variation shown by exceedences

of set accumulation thresholds (R10mm, R20mm,

Supplementary Figures 57, 60) is greater in the tropics,

with lower values at mid and high latitudes. A similar

pattern is seen for the percentile exceedences (R95p, R99p,

Supplementary Figures 78, 81) and the intense accumulations

(Rx1day, Rx5day, Supplementary Figures 72, 75), but with

less of a decrease toward higher latitudes. For R95pTOT

and R99pTOT, the normalizing effect of PRCPTOT in the

construction of these indices results in the IQD being relatively

uniform across the globe (Supplementary Figures 84, 87).

In each pair of similar indices the regional variation is

similar, but the indices measuring more extreme events had on

average a lower IQD, with, e.g., R99pTOT, R99p and R20mm

all having lower values than R95pTOT, R95p, and R10mm,

respectively. This arises naturally from the construction of the

indices, where those measuring more extreme characteristics

result in smaller quantities, and hence the difference between

these distributions is also smaller. However, the IQD values for

Rx1day and Rx5day are relatively similar. The duration indices

show very different behavior, with CWD showing high IQD in

the tropics, especially in those regions with monsoonal rains,

likely because these are not well represented inHadEX3, as noted

earlier for the temperature indices (Supplementary Figures 63,

66).

5. Discussion

Overall, both the year-to-year and long-term changes match

very well between the different reanalysis and observational

datasets for the globally-averaged timeseries of the temperature

indices (Figure 1). As there are differences in the average

absolute values between the datasets, this agreement is clearer in

the anomalies. Deviations between datasets are most commonly

seen toward the end of the record of the observational datasets,

as their spatial coverage reduces (Dunn et al., 2020a). Changes in

the spatial coverage can result in contiguous regions no longer

contributing to the global average, which for some indices can

lead to a deviation, especially for those using fixed thresholds.

The relative offsets in absolute values for the global averages

of the temperature indices means that some datasets are

“warmer” and others are “cooler” when comparing to one

another. However, given the much closer agreement when using

anomalies, any single dataset is good at capturing both the

year-to-year variation and long term change of these indices,

apart from those where we identify issues, in particular with

cold-tail indices toward the end of the data period (CFSR and

NCEP2). Hence when using absolute values of these indices in

the reanalyses, we recommend that more than one product is

used so that the range in values can be captured.

The precipitation indices do not show such close agreement

in the reanalyses, either with the observational datasets or with

each other. These indices show on average a much larger range

in absolute average values between the different datasets. Even

when using anomalies, both long and short term variations do

not align as well in many indices, though for many precipitation

indices there is no strong long-term trend over the time period

used herein. On a regional basis, the correlations of these

indices are average lower than the temperature indices in

many locations.

High IQD values are often found in regions which also

have high values for the precipitation indices, but this is not

always the case. Where low IQD values are found in regions

with high index values, then there is very good agreement

between the cumulative probability distributions. In some cases

these regions are those which have sparser station networks,

which affects both the ability of HadEX3 to capture the detail

of the precipitation properties, and the quantity of observations

available for assimilation by reanalyses (where performed).

As noted in Section 2.3, there is an order-of-operation

difference between the observation-based datasets (index-then-

grid) compared to the reanalyses (grid-then-index). For Rx1day,

for the two example grid boxes shown in Figure A2, HadEX3

shows higher values than the two reanalyses. This suggests

that the maximum one day precipitation amounts in the

reanalyses are not as extreme as in the observation based

HadEX3, perhaps the consequence of the grid-box-average

nature of the precipitation values (with more muted extremes)

in the reanalyses.

Alexander et al. (2020) compared a number of reanalysis

datasets with in situ and space-based datasets on a common grid.

The HadEX family of datasets were not included in that study,

but many of the reanalysis datasets included here were. They
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found substantial differences even in the climatological values

for different datasets (as we do here), with reanalyses tending

to fall into “wet” or “dry” groups, and variation across all data

sources depending on the index.

The maps shown in earlier sections for selected indices (and

also in the Supplementary material) are useful in highlighting

which regions in each reanalysis have low or high correlations

or IQD values against HadEX3 across the globe. We summarize

these by showing global average values for each index in

Figure 11. The spatial fields of correlation or IQD for each

reanalysis (as shown in, e.g., Figures 4, 10) are averaged across

the globe using cosine latitude weighting.

Starting with the correlations, the split between temperature

and precipitation indices is clear, as are the families of the

different index types. The highest correlations for temperature

are in the indices counting the exceedence of percentile

thresholds (TX90p etc.) whereas for precipitation PRCPTOT

shows highest correlations, followed by R10mm. The lowest

correlations are for the indices counting the (fraction of) annual

precipitation amounts from days above the 99th percentile

(R99p, R99pTOT) and the maximum one day accumulation

(Rx1day). Across all indices, 20CR, ERA5, MERRA-2 have the

best correlations with HadEX3, with NCEP-2 showing clearly

lower correlations across almost all indices.

The range of IQD values shown for each index has a large

range, with TXn in the range of tens of ◦C, but PRCPTOT

measured in hundreds of mm. Hence comparing global average

values for each index is not trivial. Nonetheless, it would be

useful to be able to see how different reanalyses and index

families compare. In order to show these comparisons on a

single diagram we show the difference of the IQD from the

average across all reanalyses for each index and then normalized

by dividing by the standard deviation of the distribution of

values of the each index for the reanalyses. Hence this panel in

Figure 11 shows the standard deviation of a particular reanalysis

from the average, with lower values showing that a reanalysis has

a smaller IQD from HadEX3 than the average for the reanalyses

for that index.

The IQD, measuring differences between the cumulative

distributions at each grid box, will also depend on the absolute

magnitudes of the values forming these distributions. For

example, in desert regions distributions of PRCPTOT will be

formed from values of low numbers of mm/year, whereas in

regions with high annual rainfall, values could be in the 1,000

s mm/year. Hence, for this index, and others which show large

variation in absolute values across the globe, a global average

may be dominated by specific regions which have large IQDs

because of their climate. However, within a single index, these

effects should balance out and so enable the reanalyses to be

compared. But, as noted in Section 4, it will also be valuable

to refer to the maps of the IQD to obtain the more detailed

picture of where the cumulative distributions of HadEX3 and the

reanalyses differ.

For many of the precipitation indices, 20CR has greater than

average IQD values, whereas NCEP2 shows high IQD values

for some of the temperature indices, probably related to the

large drop in temperature toward the end of the time series. In

contrast, MERRA2 shows lower than average IQDs for R10mm

and PRCPTOT, and ERA5 is close to the average across almost

all indices.

Considering both panels in Figure 11, the correlation

measures how well the reanalyses track HadEX3, and the IQD

whether this tracking is offset, or under/over-estimates the

changes. So, for example, 20CR has good correlation for many

of the indices but the cumulative distributions differ for many

of the precipitation ones. As examples, in many of the regions

of high IQD for Rx1day, this is because the values in 20CR are

less extreme than in HadEX3 (similar to JRA55 in Figure A2),

whereas for R10mm the offset varies across the globe as to

whether HadEX3 has greater or fewer wet days. What is clear

is that ERA5 and MERRA-2 show both high correlations and

average or below-average IQDs for the majority of the indices.

But JRA-55 also compares well to HadEX3 except for the two

temperature range indices (DTR, ETR) which stand out in

the IQD.

Other recent studies have used one or other of these

reanalyses in comparisons with in situ and other datasets. In

comparisons to the CHIRTS dataset (Funk et al., 2019), they

found MERRA-2 did not track a recent increase in annual Tmax

values observed therein and also in CRU-TS 4.01 (Harris et al.,

2014), with the long term trend being of lower magnitude. Also

using CHIRTS along with station and forcing based datasets,

Verdin et al. (2020) found ERA5 the “coolest” in a metric of

days over 40.6◦C, and both the trend and short term variability

in this metric in ERA5 were smaller than in other datasets.

This is consistent with what we find in TXx, with only JRA55

and 20CRv3 being cooler than ERA5 in the un-anomalized

comparison (Supplementary Figure 13), andMERRA-2 showing

a smaller trend in TXx than in HadEX3 (not shown). There is no

ETCCDI index closely corresponding to the metric in Verdin

et al. (2020), but for SU (count of when Tx > 25◦C) ERA5 very

closely follows HadEX3 (Supplementary Figure 31).

5.1. E�ects of the angular distance
weighting scheme

Several of the analyses in this comparison between HadEX3

and reanalyses have referred to the HadEX3 gridding scheme

and its decorrelation length scale. Firstly, the spatial correlations

for the indices based on daily minimum temperatures are lower

than for their counterpart indices based on daily maximum

temperatures (Figure 2). The DLS is longer for the indices based

on minimum temperatures, which results in both more stations

contributing to a grid box average and also more interpolation
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FIGURE 11

Summary heatmaps for (A) the globally averaged (cosine-weighted) correlation and (B) normalized IQD values (di�erence of the IQD from the

average across all reanalyses per index, normalized by the standard deviation) calculated against HadEX3. Note the change in color scale used

for the correlation panel compared to the maps in other figures. The updated colors were chosen for clarity over the range shown.

into regions which only have stations at their edges. This reduces

how representative the grid boxes are of the underlying “true”

extremes, and also increases the chances of interpolating into

regions where the climate is different from those where there

are data. Both of these have the effect of smoothing the spatial

fields in indices with larger DLS values, and so the minimum

temperature indices are more strongly affected. The smoother

spatial fields result in greater differences between HadEX3 and

the reanalyses and hence smaller spatial correlations.

The effect of interpolating into regions with few stations is

seen in the correlation maps (Figure 4). For example, coverage

over the western parts of the Sahara has been interpolated

from stations to the north and south which have very different

climates. By using a wide variety of global data (e.g., satellite

measurements) and a physically motivatedmodel, the reanalyses

are more likely than HadEX3 to accurately capture the values of

the indices in this region. This difference of course will lead to

low (or even negative) correlations. A change to the network can

also lead to a similar effect. If the record of a large number of

stations in a region stops earlier than others, then contributions

from more distant stations within the DLS may result in a step-

change. In the construction of HadEX3, the effect of this was

minimized by selecting only stations which ended after 2009.

This date was chosen as a balance between retaining sufficient

stations while reducing this network change effect.

Secondly, these spatial rank correlations are lower than in

a similar comparison for HadEX2 and the previous generation

of datasets analyzed in Donat et al. (2014) despite an increase

in the number of stations and spatial coverage over the previous

dataset (Figure 2). This may be a consequence of using the ADW

gridding scheme on a finer spatial grid for HadEX3. This scheme

was used for consistency with the previous versions (HadEX and

HadEX2), though the grid box area in HadEX3 is a factor of four

smaller. Studies have shown that, althoughADW is helpful in the
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case of sparse station networks (New et al., 2000), when applied

at high spatial resolution (e.g., in smaller study regions) it results

in very smooth fields (Avila et al., 2015; Contractor et al., 2015).

Thirdly, for the temperature indices capturing absolute

values (e.g., TXn, TNx), the inability of ADW to easily

include co-variates like altitude means that in topographically

complex regions, even with the smaller grid boxes, the ADW

gridding routine smooths out the effects related to complex

orography. Additionally, with smaller grid boxes, the reanalyses

(which natively have an even higher spatial resolution) are

able to more closely follow the effects of the topography these

indices. Hence the cumulative distributions at each grid box

differ between HadEX3 and the reanalyses over these regions

(Figure 5, Figure A2).

Finally, there is also a further effect of where stations in

mountainous regions are likely to be located, more often than

not, in settlements in the valleys. The reanalyses on the other

hand include orographic information including altitude and so

can better represent the mountainous regions. Hence, for any

future update of the HadEX datasets it will be necessary to

carefully consider the gridding method used.

On the whole, the precipitation indices have much shorter

DLS values as the spatial scales of rain- and snow-fall are shorter,

and so are not as strongly affected by the issues mentioned

above as the temperature indices. Smaller DLS values means less

interpolation occurs into regions with no observations. Also, a

shorter DLS results in fewer stations contributing to the grid box

average compared to the case of a longer DLS (for a fixed station

network). These fewer stations will be more representative of

the local climate, compared to the case where stations at great

distance from the grid box form part of the weighted average.

Fewer stations results also in less smoothing, but in turn

makes the values more dependent on each of the contributing

stations, and so more variable, both over time and space

(compare Rx1day and R10mm in Figure 9). Despite a larger

number of precipitation stations than temperature stations

being used in HadEX3, the smaller DLS does mean the spatial

coverage is much reduced.

Lastly, this method does not appear to cope well when

changes in the station network result in sudden interpolation

over large distances, despite efforts to use a stable network over

time. Future work will look into alternative gridding schemes

for these ETCCDI indices to create global datasets, as these

datasets will still be needed to link other datasets (reanalyses and

historical model simulations) to an observational reference, as

well as for other applications.

6. Summary

We have compared the latest version of a dataset

of observation-based, gridded temperature and precipitation

extremes indices (HadEX3), to indices calculated from six

of the latest dynamical reanalysis datasets. In this work we

showed results of temporal and spatial comparisons from a

subset of these indices, with results for all indices available in

the Supplementary material.

The temporal agreement between many of the reanalysis

datasets and HadEX3 across almost all temperature indices

is very good for the coverage-matched global averages.

Both the inter-annual variation and long-term changes seen

in the time series of HadEX3 are clearly captured in

these reanalyses. However, there is a spread in the range

of absolute values for most of the indices, and hence

conclusions drawn from a single product may over- or

underestimate the magnitude of the extreme events captured.

Both NCEP and CFSR show inhomogeneities at the end

of their record in the temperature indices, of around

3◦C for 2017–2018 for NCEP and 0.75◦C for 2011–2018

for CFSR.

There is also good agreement demonstrated for many of the

ETCCDI indices by a spatial rank correlation and clustering

of the datasets around HadEX3 in a Taylor diagram. Spatial

agreement is assessed using maps of correlation and integrated

quadratic distance (IQD) between the cumulative distributions,

on a grid box level. For the temperature indices, the temporal

correlations are high overall (r > 0.8), but regions of lower

correlations can be seen in regions with low station densities.

The IQD also highlights regions with low station densities and

locations where the spatial interpolation inHadEX3 has not been

able to account for regional features in the underlying climate

(e.g., in high altitude regions).

A lower level of temporal agreement is found for the

precipitation indices, which on the whole show stronger year-

to-year variability than large long-term changes, which is

unsurprising as the spatial pattern of trends is inhomogeneous

compared to those from the temperature indices. However there

are indications that the short-timescale variability in the global

averages is captured by some of the reanalyses in some cases.

Again, many indices show a spread in their absolute values,

and the use of multiple products will help in demonstrating the

spread in the underlying precipitation values for regional and

global assessments.

The high spatial variation in the long-term trends leads to

lower correlations for some indices (e.g., Rx1day), but in others

there are large, contiguous regions of high correlation values

(e.g., R10mm). Interpreting the IQD for the precipitation indices

is made more complex because of the large range in values of

these indices.

Regions which show poorer agreement are sometimes areas

with relatively few or no stations, next to or in between areas

with a dense station network, especially for the temperature

indices. The HadEX3 infilling routine, especially for the

temperature indices where a long decorrelation length scale is

used, interpolates from the high station density region to regions

of low density. If the low density region has a very different
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climate (e.g., deserts, high altitude regions), the infilling routine

is unable to capture this change accurately.

HadEX3 and its predecessors were always intended for the

monitoring of extremes on a global or continental scale. The

use of the extremes indices allowed the sharing of information

on temperature and precipitation extremes at a time when

studies were limited by data availability. As can be seen in the

global time series for the temperature indices, the agreement of

HadEX3 and many of the reanalyses in year-to-year and long

term changes suggests that both types of datasets are useful

for this kind of assessment. Furthermore, the close agreement

between the coverage-matched and full reanalysis fields shows

that even with data gaps, HadEX3 provides a good estimate

of the global changes for these indices. This supports with the

coverage uncertainty presented in Dunn et al. (2020a) which is

not large in comparison to themagnitude of the long-term global

trend in the temperature indices.

As we have shown in this study, both HadEX3 and the

reanalysis datasets are useful when investigating the behavior

of the ETCCDI extremes indices. For the temperature indices,

almost all of the datasets agree with each other in most

areas, but we have also identified issues with some of the

modern reanalyses. Reanalyses have the advantage that they

have complete global coverage, but HadEX3 has a longer

record and is more closely linked to the observations. For

the precipitation indices it depends on the index, with those

assessing more moderate extremes or for longer accumulation

periods agreeing better.
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Appendix

Figure A1 shows the globally averaged time series of the

maximum and minimum temperature from NCEP2, with the

inhomogeneity in the last few years clearly visible.

In Figure A2, we show plots of the cumulative probability

distribution of HadEX3 and selected reanalyses for

selected individual grid boxes. The selected reanalyses

and layout matches Figures 5, 10, respectively. The

locations of the grid boxes are stated on the panels,

and also marked with a small blue cross in Figures 5,

10.

FIGURE A1

Globally averaged land-surface time series of maximum and minimum temperature from NCEP2.
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FIGURE A2

Cumulative probability distributions for HadEX3 and four selected reanalyses for selected individual grid boxes, showing the area defined by the

IQD measure. The rows show TXn, TNx, Rx1day, and R10mm, respectively.
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