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Agriculture remains the mainstay of Cameroon’s economy, with cocoa as one

of its key export commodities. However, cocoa production may be a�ected

by climate-related stressors. This study assesses the influence of climate and

non-climate parameters on cocoa performance in Cameroon. We use time series

data for temperature, rainfall, carbon dioxide emission, land use, labour hours,

pesticide application, and cocoa output in Cameroon spanning 60 years (1961

to 2021). Trend analyses reveal a stochastic response of crop production under

climate variation. Leveraging on the perennial crop supply response framework,

a Vector Error Correction Model (VECM) reveals short-term climate impacts on

cocoa production. The econometric estimation shows that climate and non-

climate parameters explain the variations in cocoa output. More specifically,

the short-run results reveal that temperature, carbon dioxide emission, land

use, and pesticide quantity significantly increase crop yield, whereas rainfall

decreases it substantially. Furthermore, the long-run analysis indicates that

temperature, rainfall, carbon dioxide emission, and land use are significant

negative determinants of the yearly changes in cocoa output. We recommend

government policy reforms which address access to land, subsidies/climate

finance and improved production technologies to reduce greenhouse gas

emissions and enhance farmers’ adaptive capacities to climatic stressors.

KEYWORDS

climate change, cocoa, supply response model, Vector Error Correction Model, climate-

smart agriculture, cameroon

1. Introduction

Climate change significantly impacts Africa’s agriculture, which is vital for the continent’s

economic growth and development (World Bank, 2019; FAO, 2022; Nkwi et al., 2023).

Extreme weather events, such as storms and droughts, have decreased food and water

security, making it challenging to meet the Sustainable Development Goals (IPCC, 2022).

Moreover, rising temperatures and changing precipitation patterns threaten human health

and safety, food and water security, and socioeconomic development (WorldMeteorological

Organization, 2019). It is reported that carbon dioxide (CO2(g)) levels have surpassed

another record threshold, increasing faster than the average of the last 10 years (World

Meteorological Organization, 2019). While previous emissions alone may not cause a 1.5◦C
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increase in the average global temperature from pre-industrial

levels, they will contribute to further changes (IPCC, 2018, 2021).

However, climate variations have already affected agricultural

output, forcing farmers to adapt to new environmental

conditions. Future climatic consequences, nonetheless, are

expected to exacerbate the impact on agricultural productivity,

with macroeconomic ramifications for African economies that lack

coping mechanisms (IPCC, 2014; Vargas et al., 2018; Molua, 2022).

Despite these exogenous stressors, the agricultural sector

remains essential for Africa’s development, employing

approximately 60% of the economically active population in

most Sub-Saharan African countries (IPCC, 2022). An increase

in farm productivity would result in higher rural incomes and

spending power, benefiting a significant portion of rural dwellers

and, thus, contributing toward no poverty and zero hunger, as

enshrined in SDGs 1 and 2. African governments have recognized

the importance of agriculture, prioritized the sector and increased

the share of national budgets allocated to it as their revenue bases

have expanded (Ngongi, 2016; Abei and Van Rooyen, 2018).

However, achieving sustainability in the export tree-crop subsector

requires more effort. Despite Africa’s comparative advantage of

65.7% in cocoa production (Figure 1), climatic variables severely

impact the continent (World Bank, 2019; FAO, 2022).

Cameroon is Central Africa’s leading cocoa producer, Africa’s

fourth largest, and the world’s sixth-largest producer (Figure 2).

Cocoa (Theobroma cacao L.) remains a cornerstone of Cameroon’s

export-based economy, making it important to assess the influence

of climate change on cocoa performance in the country. Over the

past 20 years, national production and the surface area planted

with cocoa have increased (FAO, 2022). While cocoa production

has risen significantly in Cameroon from approximately 122,600

tons in year 2000 to over 290,000 tons in 2021, Côte d’Ivoire, the

world’s largest producer, has increased its output over same period

to 800,000 tons, with production in the country increasing over

four times more than Cameroon (FAO, 2022). Cocoa is grown

over about 460,000 hectares of Cameroon’s total cultivated land,

with the highest cocoa output from the Southwest (35%), Center

(28%), and South (16%) regions, where it thrives best (FAO, 2017;

Ngong et al., 2019; Lescuyer et al., 2020). However, the Southwest

recently lost its leading position to the Center region owing to

socio-political turmoil. Cameroon earns about 250 billion francs

CFA (US$ 500,000,000) annually from cocoa, accounting for about

half of the country’s primary-sector exports (Ngong et al., 2019).

Cocoa makes up a significant share of the country’s agricultural

exports, providing about 90% of the income for rural communities

involved in its production (Abei and Van Rooyen, 2018).

Cocoa farming is essential to the welfare of the people in cocoa-

producing regions. Over 60% of Cameroon’s population depends

(directly or indirectly) on the cocoa industry for their livelihood,

with roughly 600,000 people directly involved in its cultivation.

There are over 250,000 cocoa farms, with smallholder farmers

making up roughly 95% with an average farm size ranging between

2.5 to 5 ha (Hütz-Adams et al., 2016). During the harvest seasons

(July–December), cocoa’s crucial role in these regions becomes

apparent. Most commercial and economic actors benefit from

cocoa farmers throughout this period. One local farmer says, “cocoa

season is a season of cash”. Hence, discussing the welfare of people

living in these regions without mentioning cocoa production is

almost impossible.

Cameroon exports over 90% of its raw cocoa bean, while

only about 10% is locally processed. The Netherlands, Belgium,

Germany, Italy, and Spain are the top countries importing cocoa

from Cameroon (ITC, 2021). The European Union is the primary

market for cocoa exports from Cameroon, concentrated in a few

nations, creating dependency on these countries. Any significant

changes in their markets could negatively impact the Cameroon’s

cocoa industry. Cameroon’s cocoa beans often trade at a discount

of 400 FCFA ($0.65)/kg in the international market due to

contamination with polycyclic aromatic hydrocarbons (PAH).

While Cameroon faces various economic, social, political, and

environmental challenges, its production sectors rely heavily on

agriculture to supply food and raw materials and release surplus

labor. The majority of Cameroon’s over 27 million people thus

live in rural areas relying on agriculture for gainful employment

and livelihoods (Achankeng, 2021). Poverty, hunger, and climate

change are significant issues challenging the rural landscape. To

address these challenges, the country has committed to achieving

the Sustainable Development Goals (SDGs) 1, 2, and 13, which

focus on ending poverty, eradicating hunger, and combating

climate change (IPCC, 2021; UNDP, 2021). However, progress

toward achieving these goals has been slow. There is a need

for studies to guide the government’s efforts to lift Cameroon’s

people out of poverty, eradicate food insecurity, and protect the

environment from the negative impacts of climate change.

Promoting the growth of the cocoa subsector shall provide

impetus in the export crop sector and agriculture in general in

realizing national development objectives. However, a significant

knowledge gap exists on how the agricultural subsector for

perennial crops will respond to climate variation and change. On

this guise, this study seeks to examine as its goal the role of climatic

and non-climatic factors in driving cocoa production. In addition,

we hypothesize that climate parameters of temperature, rainfall,

carbon dioxide, and socio-economic factors related to land access

and economic performance may influence cocoa production. On

subjecting the data to econometric tests, we observe significant

positive and negative associations of these variables with cocoa

production, evoking the need for a policy response to cushion and

promote the subsector’s performance. To properly contextualize

our study, we divide this paper into subsections. In section two,

we address the nexus of climate and agricultural production. In

section three, the nature and source of data as well as the analytical

techniques employed, are presented. The results and discussion

are presented in section four, while the paper ends with section

five, which highlights some policy implications and suggestions for

better performance of the cocoa subsector.

2. The nexus: climate, non-climatic
parameters and cocoa production

The unrelenting threat of climate change to Cameroon’s

agricultural sector strains particularly smallholder farmers relying

on rain-fed agriculture (Nkouathio et al., 2018; Nouck et al.,

2019). The IPCC (2014, 2018, 2021, 2022) predicts that changes in

rainfall patterns and higher temperatures will result in short-term
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FIGURE 1

Cocoa production share by region. Source: Authors’ computation from FAO, 2022.

FIGURE 2

Average cocoa bean production by country. Source: Authors’ computation from FAO, 2022.

crop failures and long-term output losses, exacerbating poverty

and hunger in tropical regions. The prevalence of pests and

diseases may also increase, leading to reduced crop yields, as

the FAO (2020) notes. Overall, the effects of climate change on

agriculture are expected to be negative, despite some potential

for crop improvements. As climate change continues to put

increasing pressure on the agricultural sector of developing

and developed countries and the livelihoods of people in these

countries, understanding and prioritizing vulnerable regions at the

national and sub-national levels is crucial.

Studies have demonstrated that changes in rainfall patterns

and higher temperatures resulting from climate change have led to

short-term crop failures and long-term output losses (Djoumessi

et al., 2019; Njoya et al., 2021). In addition, Nouck et al. (2019)

used crop models to evaluate the potential effects of climate

change on cocoa production in the country. They found that

temperature increases and changes in rainfall patterns could

reduce cocoa yields by up to 40% by the end of the century.

Similarly, Tchinda-Metagne et al. (2020) used a crop model to

evaluate the impact of climate change on cocoa production in

three agroecological zones of Cameroon. Their results showed

that temperature increases and changes in rainfall patterns could

significantly reduce cocoa yields, with the most severe impacts

expected in the Sudano-Guinean zone. Similarly, Ngo Bieng et al.

(2018) surveyed cocoa farmers in three regions of Cameroon to

assess their perceptions of climate change and its impacts on

cocoa production. They found that farmers were experiencing

changes in rainfall patterns and temperature increases, negatively

affecting cocoa yields. Likewise, Fonjong et al. (2019) assessed

farmers’ perception of climate change and its impacts on cocoa

production in the Southwest region of Cameroon. They found that

farmers were experiencing changes in rainfall patterns, increasing

temperatures, and pest and disease commonness with negative

ripple effect on cocoa yields.
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Furthermore, research has indicated that the prevalence of

pests and diseases has increased because of climate change, leading

to further reductions in crop yields (Njoya et al., 2021; Nkem

et al., 2021). Suh and Molua (2022) discovered that climate

variability significantly impacts cocoa production. They also

revealed that socio-economic factors, such as farm management

techniques that control pests and diseases and soil management

practices, significantly influence yield. Climate change enhances

the proliferation of pests and diseases (World Bank, 2019;

Aikpokpodion and Obayagbona, 2020; Aikpokpodion et al., 2021;

Oduro et al., 2021), devastatingly affecting cocoa output. According

to Mahob et al. (2021), capsid bugs and the cocoa pod borer are

Cameroon’s most prevalent and destructive cocoa pests, causing

yearly output losses of 30%−70% and 50%, respectively. To ensure

the livelihood and survival of peasant cocoa farmers over the

long term, reducing pest and disease attacks on cocoa crops and

increasing productivity in this sector (Mahot et al., 2020). Although

fertilizers, pesticides, and disease control techniques boost cocoa

productivity (Tchokote et al., 2015; Ngong et al., 2019; Pratama

et al., 2019), however, changing climate can also affect how pests

and diseases that harm cocoa develops, altering the host’s resilience

to pesticides (Oyekale, 2015).

Climate change alters crop composition and nutritional value,

in addition to its impact on crop yields. For instance, a study

by Sielinou et al. (2021) found that elevated atmospheric carbon

dioxide concentrations and increased temperatures could decrease

protein while increasing carbohydrate content in cassava, a staple

crop in Cameroon. However, The IPCC’s fifth assessment report

acknowledges that higher levels of atmospheric carbon dioxide can

boost plant growth and carbon sequestration, but this increase can

be limited by water stress and nutrient imbalances (IPCC, 2014). It

notes that carbon dioxide is one of the most important greenhouse

gases in the earth’s atmosphere and is a major contributor to climate

change. Additionally, climate change is predicted to exacerbate

extreme weather events like droughts and floods, which can

negatively impact crop yields (IPCC, 2014). By tracking changes in

its emissions over time, it is possible to understand the historical

trends and patterns of anthropogenic impact on the Earth’s climate

system (IPCC, 2014). The potential negative implications for the

health and nutrition of the population have led to the proposal

of various strategies to help farmers in Cameroon adapt to the

impacts of climate change on agriculture. One such strategy is

using drought-tolerant crops, which can help mitigate the effects of

reduced rainfall (Njoya et al., 2021). Agroforestry, which involves

integrating trees with crops and livestock, has also been suggested

to improve resilience to climate change in Cameroon (Nkem et al.,

2021).

Ojumo et al. (2020), Ayanlade et al. (2017), and Kreft et al.

(2017) conducted research indicating that industries at the local,

national, and international levels would feel the effects of climate

change. However, small-scale rain-fed agriculture, which is relied

upon by disadvantaged and impoverished groups in developing

nations, is expected to be the most vulnerable. Also, Schroth et al.

(2017) estimated losses in cocoa production in West Africa and

developed a regional adaptation strategy for tropical commodities

based on site-level projections (Ojumo et al., 2020). Similarly, Bunn

et al. (2015) examined the impact of climate change on global cocoa

and coffee production. They found that production losses could

threaten nations’ economies and local, regional, and international

supply chains that depend on these crops as inputs. According to

Bunn et al. (2019), increasing temperatures, decreasing rainfall, and

changing weather patterns will result in a decline in suitable areas

for cocoa cultivation in West African countries. Also, projections

show that Ivory Coast could lose up to 40% of its current cocoa-

growing regions by 2050, while Ghana may lose up to 20%.

Similarly, Coulibaly et al. (2017) studied the long-term impact of

climate change on the export earnings of the cocoa business in

Cote d’Ivoire. They found that precipitationmay impact the Ivorian

economy’s revenue from cocoa exports.

The vulnerability of cocoa farm to climate change remains a

growing concern in various parts of the world. In Nigeria’s Ekiti

State, Oyedokun and Oyelana (2016) investigated how weather

fluctuations affect cocoa growers. The study found that extreme

climate change events, such as floods, high temperatures, and heat,

reduced the productivity of cocoa plants, making cocoa producers

vulnerable to hunger and poverty. Cocoa production is highly

vulnerable to extreme weather events, and timely and moderate

rainfall distribution is essential for effective production. Cocoa

thrives in conditions of year-round, modest but persistent water

supply, and the ideal annual rainfall regime for maximum growth

and yield is between 1500–2500mm. However, higher rainfall can

slow cocoa drying and processing, lowering bean value and increase

processing costs (Hutchins et al., 2015). Climatic factors, including

temperature, rainfall, humidity, and sunshine, affect cocoa growth

(Owoeye and Sekumade, 2016). Temperature and rainfall remain

the most significant determinants of cocoa growth. Thus, climate

oscillations and exceedingly prolonged drought make it difficult to

establish new cocoa farms and marked dry periods reduce cocoa

yields. Increased evapotranspiration due to changes in temperature

affects the crop’s flowering time, which reduces seed production.

At the same time, moisture loss leads to plant water demand and

crop stress throughout the dry season due to drought (Schroth et al.,

2016).

Peasant farmers produce most of Cameroon’s high-demand

crops, including cocoa. However, Ngoe et al. (2018) noted

inadequate access to economic resources, and the sector remains

underperforming, characterized by low productivity, poor quality,

and low prices. According to Abei and Van Rooyen (2018), climate

shocks have disrupted cocoa output in the cocoa sector, threatening

export earnings and food security. Moreover, climate change is

affecting cocoa production in Cameroon, and the vulnerability of

cocoa farmers to climate change has become a growing concern.

Extreme weather events, such as floods, high temperatures, and

heat, reduce the productivity of cocoa plants, making cocoa

producers vulnerable to hunger and poverty. Effective cocoa

production requires timely and moderate rainfall distribution, and

socioeconomic factors, including farm management techniques

such as pest and disease control, significantly impact yield.

However, inadequate access to economic resources hinders cocoa

production, and climate shocks limit the farmers’ ability to adapt to

the changing climate, threatening export earnings and food security

(Agyeman et al., 2022).

It is clear that the impact of climate change on cocoa production

extends beyond physical changes in climate parameters and has
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significant economic implications (Jabir et al., 2021). Policymakers

must consider the economic implications of climate change when

formulating policies to address its impact on cocoa production.

Economic factors such as net farm income influence the adaptation

measures adopted by cocoa farmers (Suh and Molua, 2022). The

need for financial support to adopt effective adaptation measures

also suggests that government intervention may be necessary to

support farmers in their adaptation efforts.

Though climate change has been widely discussed and its

impact on agriculture has become increasingly concerning, many

studies have focused mainly on the micro-effects on food

crops or the agricultural sector. Most often, the macroeconomic

impacts of climate stressors on cocoa production have received

little attention. By providing more comprehensive and reliable

data and appropriate analytical techniques, our current study

makes a significant contribution to the existing literature on

the impact of climate change on agriculture. It highlights the

need for policymakers to take immediate action to address the

effects of climate change on cocoa production in Cameroon

and beyond.

3. Materials and methods

3.1. Analytical framework

We present a framework to understand the interrelation

between climate-related shocks, non-climate factors, and cocoa

production. The framework explores the possible mechanisms

through which climatic stressors and economic factors impact

production activities and crop output, requiring adaptations. Our

study utilizes the Crop Yield Response theory to analyse the

weather’s influence on crops in agricultural production. According

to this theory, the output is generally a result of a production

function involving land, labor, and capital. However, the direct

application of such a function to agriculture overlooks the

importance of weather as an exogenous factor. Therefore, the

study combines rainfall and temperature to create composite aridity

indexes, which consider rainfall, temperature, solar radiation, and

other weather factors as non-cost inputs into the production

process, particularly when they deviate from the average. The

methodology assumes a log normal distribution of climate (C),

and represented as a non-linear specification in equation (1)

as follows:

Q = aLlNnKkCc (1)

The researchers adopt a model represented by the equation to

analyse cocoa production, with each term representing a different

factor. Q represents cocoa output, while land, labor, and capital

(pesticide) are represented by L, N, and K, respectively. The

coefficients l, n, k, and w indicate each input factor’s impact on

the output, with a being a constant term. The climatic index,

represented by C, is crucial in understanding the relationship

between climate and cocoa production. When climatic conditions

are as expected, C equals 1, and logC equals 0. Other functional

forms capture the effects of climatic variables, including trans-

log formation. The translog model is essential for understanding

the complex relationship between climate, cocoa production, and

economic factors.

lnQ = α +
∑

βilnxi +
∑

i

∑

j

δij(lnxi)(lnxj) (2)

When determining crop output (Q), there are several inputs

to consider, including weather variables represented by xi and xj.

Different functional forms can model the relationship between

inputs and output, such as quadratic, square root, Mitscherlich-

Baule (MB), linear, and nonlinear Von-Liebig functions, which all

have applications in crop response theory. However, researchers

choose the functional form based on the study’s objective and

the underlying production processes they intend to model. By

carefully considering these factors, researchers and farmers can

make informed decisions to optimize crop productivity.

As climate change continues to wreak havoc on our planet, the

future of cocoa production looks increasingly uncertain. Figure 3

demonstrates the inherent relationship between climate change and

cocoa production. It highlights how climate change impacts not

only cocoa trees but also the livelihoods of farmers who depend

on cocoa production. This graphic is a crucial tool as it visually

represents the relationship between climate change and cocoa

production, making the complex issues easier to understand for

readers (Carberry et al., 2016). It highlights the extreme variations

in climatic factors that can increase the risk of farmers’ efforts

not paying off in the future, leading to fatalism and despair. This

is pivotal because it illustrates how climate change affects cocoa

production and can have adverse psychological effects on farmers.

Additionally, the graphic explains how climate change impacts

cocoa production by altering the development of cocoa pods, insect

pests, and pathogens, leading to lower crop output and reduced

farm income (Jabir et al., 2021).

Moreover, climate change affects cocoa trees directly and

indirectly. It notes that temperature extremes during flowering lead

to a lower seed count, directly impacting climate change on cocoa

trees (Bunn et al., 2019). However, climate variability and change

affects cocoa production by influencing other factors of production,

such as soil nutrients and moisture, pesticide application, farming

methods, seed varieties, and even the health of the farmers. In

addition, it explains the interconnectedness of factors affecting

cocoa production. Also, it affirms the urgent need for action to

address the impact of climate change on cocoa production and

the livelihoods of farmers who depend on this crop (Jabir et al.,

2021). Furthermore, it emphasizes the importance of developing

innovative solutions to mitigate the impact of climate change on

cocoa production and secure the future of this valuable commodity.

This conceptualization highlights the impact of climate change

on cocoa production and the resulting need for cocoa farmers

adapt to minimize the impact on their output. Climate change

may cause extreme variations in climatic factors such as rainfall

and temperature, which may decrease in cocoa output. As a

result, cocoa farmers adopt new adaptation measures to mitigate

the impact of climate variability on their output (Ekwe et al.,

2020; Komakech et al., 2020). The adaptation measures adopted

by cocoa farmers not only affect the quantity and use of other

economic determinants of cocoa production, but they also improve
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FIGURE 3

Interconnectedness between climatic, non-climatic factors, cocoa output, and adaptation. Source: Authors’ Conceptualization, 2022.

other factors of production (Suh and Molua, 2022), such as

the use of improved varieties of cocoa, the application of more

fertilizer to enrich soil nutrients, and the use of pesticides to

reduce the incidence of pests and diseases (Schroth et al., 2016).

Farmers have implemented measures to improve the other factors

of production in line with macro-adaptation policies provided

by the government, while individual farmers have taken micro-

adaptation measures. These measures mainly consist of decision-

making processes to increase output and net farm income despite

climate stressors. Notably, these measures require farmers to have

some income to purchase necessary inputs and make informed

decisions. Therefore, net farm income determines the level and type

of climate adaptation measures farmers adopt to improve cocoa

output (Jabir et al., 2021).

Most studies conducted at the micro-level have relied mainly

on cross-sectional data, which is susceptible to errors due to

farmers’ recall. Different techniques have been employed, including

OLS (Suh and Molua, 2022), PCA (Ngong et al., 2019), VECM

(Adinew and Gebresilasie, 2019), and ARDL (Coulibaly et al.,

2017), with data sets below 30 years. However, some of these

methods have limitations in capturing both short- and long-run

relationships, which may lead to inaccurate results. For instance,

Loves et al. (2021) and Adinew and Gebresilasie (2019) used

the cointegration and VECM estimation technique. Coulibaly

et al. (2017) employed the Autoregressive Distributed Lag (ARDL)

method, while Coulibaly and Erbao (2019) tested the ECM to

find significant short-run relationships between climate and the

sector. Our current study closes the knowledge gap by focusing

on a perennial crop and evaluates the impact of climate at the

macro level. To improve accuracy, we use time series data spanning

over 60 years for climate parameters such as rainfall, temperature,

carbon dioxide emissions, and economic factors. This study thus

employs the perennial crop supply response approach and the

vector error correction regression to assess how climate and non-

climatic factors affect cocoa production in Cameroon.

3.2. Data collection

Secondary data is collected from various sources over 60

years, from 1961 to 2021. Specifically, the study collected

temperature and rainfall data from the World Bank climate portal

(World Bank, 2022: https://climateknowledgeportal.worldbank.

org/). It also sourced information on cocoa production, pesticide

quantity, and carbon dioxide emission from FAO statistics (2022)

(FAOSTAT: https://www.fao.org/faostat/en/#home). In addition,

labor data is computed from Cameroon’s national institute of

statistics (INS, 2022: https://ins-cameroun.cm/en/statistiques/).

The study applies the average labor productivity method, which

divides the total labor used in cocoa production by the average

labor productivity per worker. This method assumes that labor

productivity has been relatively constant over time and may

not have accounted for fluctuations due to climatic conditions,

technology improvements, or changes in farming practices.

Before performing analysis, the time series data have been

appropriately treated to minimize errors and ensure accurate and

meaningful analysis. Also, the study data smoothing is done to

remove any random fluctuations or noise, such as missing or

invalid data points, outliers, or anomalies. Seasonal adjustments

have also been performed to make identifying underlying trends

or patterns easier. This involves using moving averages while

calculating the average value of the data over a fixed period

(annually) and subtracting this average from each data point in

that period. Moreover, detrending helps remove trend components

by differencing the data sets repeatedly until the time series are

stationary (Adinew and Gebresilasie, 2019).

This study measures total annual cocoa output in tons, mean

annual rainfall variations in mm, mean annual temperature in

degrees centigrade, and mean annual carbon dioxide emissions

in metric tons per capita. Additionally, we calibrate non-climatic

parameters like the land size in hectares. The researchers also

measure labor in man-days, where one man-day equals 8 h, and
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TABLE 1 Variable description and a priori expectation.

Variable Calibration A priori expectation

Dependent variable

Cocoa output Annual quantity produced

(tons)

Explanatory variables

Rainfall Mean annual rainfall

variations (mm)

-

Temperature Mean annual temperature

variations (◦C)

-

CO2(g) Mean Annual CO2(g)

emissions (Mt/capita)

-

Land Hectares (1Ha= 10,000m2) +

Labor Man-days (8 hours/man-day) +

Pesticide use The quantity used in (L) +

Source: Authors’ construction, 2022.

+ signifies a positive relationship between the dependent and independent variables.

– indicates a negative relationship.

pesticide quantity in liters (Table 1). This is because data from

FAOSTAT (cocoa output, land size, carbon dioxide emission

quantities, and pesticide quantity) relies on a combination

of imputed and estimated/simulated data through complex

algorithms. Likewise, data for temperature and rainfall are

based on observed data recorded from meteorological agencies,

supplemented with data from satellite-remote technologies.

Using the secondary data collection method allows for

obtaining a significant amount of data on the variables of interest

over a long period, making it possible to draw meaningful

conclusions about the effects of climate variations on cocoa output

in Cameroon. This study uses Microsoft Excel for trend analysis

and Stata 17 for econometric regressions. These tools identify

patterns and relationships between themodel variables and develop

statistical models that predict future outcomes. Moreover, it is

a comprehensive and user-friendly statistical software tool. Its

strengths include statistical tools, high-quality graphics, robust data

management capabilities, and reproducibility and transparency

features. Nevertheless, it works primarily with its file format,

which may not provide the customization or flexibility required

for more complex or specialized analyses. Overall, the combination

of various secondary data sources and statistical tools provided

the researchers with a robust dataset to examine the research

questions and generate empirical evidence for policymakers and

other stakeholders in the cocoa industry.

3.3. Pre- and Post-estimation Tests

Macroeconomic time series data are prone to non-stationary

issues, causing variations in mean and variance that contradict the

fundamental assumption of OLS (Harris, 1995). Non-stationary

series change their means and variance over time. Regressing

them on one or more non-stationary time series variables may

lead to spurious results (Adinew and Gebresilasie, 2019). Thus,

we employ methods which emphasize the significance of the

stationary assumption in classical estimation methods (Gujarati,

2004). To overcome these problems, the variables are tested using

unit root, cointegrated and error correction models that assess

the estimated long- and short-term relationships and effects of

the variables. Non-stationary time series data have a covariance

value that varies between two time periods on distance or lag,

while their mean and variance remain constant across time.

Hence, non-stationary time series data have non-time-invariant

mean, variance, and autocovariance of individual time series. The

study underlines the importance of testing for stationarity before

estimation and highlights that the non-stationarity of variables can

lead to false regression issues. It also emphasizes the need to use

appropriate econometric models to evaluate the long- and short-

term relationships and effects of variables, particularly in the case

of macroeconomic time series data.

3.3.1. Unit-root test for stationarity
The study used the Philips-Perron test to identify the unit

root problem in non-stationary series that follow the random walk

model. The order of integration for a variable (climatic, non-

climatic, and cocoa output factors) is crucial in determining its

stationarity. If the climatic, non-climatic, and cocoa output factors

become stationary at the level indicated as I(0) if they become

stationary at first, the difference is indicated as I(1). Additionally,

the climatic, non-climatic, and cocoa output factors are integrated

of order n, I(n), if differencing it n times leads to a stationary

series (Wooldridge, 2003; Burke and Hunter, 2005; Adinew and

Gebresilasie, 2019).

△Yt = α1 + α2t + δYt−1 + βi

n
∑

i=1

△Yt−i + µt (3)

Equation (3) expresses the relationship between time and the

pure white noise error term, where t represents time, and µt

represents the error term. E(µt)= 0.

△Yt−1 = (△Yt−1 − Yt−2) , (4)

△Yt−2 = (△Yt−2 − Yt−3) etc (5)

The non-parametric Philips-Perron test requires less serial

correlation than the Augmented Dickey-Fuller (ADF) test.

However, the estimation method is likened to the DF test

with the correction of autocorrelations and heteroscedasticity in

the statistic.

3.3.2. Cointegration test
The cointegration analysis provides a framework for

estimation, inference, and interpretation when the variables

are not covariance stationary. Engle and Granger introduced

the concept of cointegration, and Johansen later developed

practical and inferential estimation methods (Engle and Granger,

1987; Johansen, 1988). If a time series for the climatic and
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non-climatic factors, denoted as xt, is integrated with the order

of sequencing 1, or I(1), it means that (1-B)xt is stationary and

non-reversible. For a univariate time series xt, it is referred to

as process I(d) if (1-B)d xt is stationary and non-invertible.

However, if the time series data for the climatic, non-climatic,

cocoa output parameters are stationary and reversible, it is called

process I(0). Johansen’s estimation and inferential technique,

introduced by Burke and Hunter (2005), is commonly used for

this process (6). The Johansen cointegration test is a widely

used method for cointegration testing, and it uses the VAR (p)

model. When variables have cointegration, it is crucial to test the

cointegration ranking. For this purpose, we leverage the trace

test and maximal eigenvalue measurement (Engle and Granger,

1987).

Yt = αt Yt−1 + . . . + αpYt−p + βxt+µt (6)

The equation VAR (p) can be expressed in terms of a vector

Yt (cocoa output) with k non-stationary variables of order I(1), a

vector xt with d deterministic variables (climatic and non-climatic),

and a pure white noise error term or error vector denoted as

µt (7).

△Yt = 5Yt−1 +

p−1
∑

i=1

Ŵi△Y t−i + βxt + µt (7)

Where,

5 =

p
∑

i=1

αi + I (8)

and

Ŵi = −

p
∑

i=1

αi (9)

We use the trace test for testing the hypotheses;

LRtr(r|k) = −T

k
∑

i=r+1

log(1− λi) (10)

The statistical test for maximum eigenvalue is given by;

LRtr (r|r + 1) = − T log(1− λr+1) (11)

This can also be written as;

LRtr
(

r
∣

∣k
)

− LRtr(r + 1|k) (12)

The null hypothesis H0 states that there is no cointegration

equation for the climatic, non-climatic, and cocoa output factors

that is for r= 0, 1, ..., k-1. If the trace test statistic and the maximum

eigenvalue are less than the critical value or the p-value is greater

than the significance level, we fail to reject H0 at the (1-α) 100%

significance level (Rosadi, 2012). If there is cointegration between

these variables, the VAR model is modified to become a Vector

Error Correction Model (Asteriou and Hall, 2007; Wei, 2019).

This study employs cointegration and the vector error

correction model to determine the long-term relationship between

the climatic, non-climatic factors, and cocoa output. If two

I(1) series either climatic or non-climatic and cocoa output are

cointegrated, then there are unique α0 and α1 such that;

µt ≡ yt − α0 − αtxt = I (0) (13)

The constant is only present in the long-run relationship. In a

single equation cointegration model where y is the cocoa output,

and x is a set of explanatory variables (climatic and non-climatic),

the error correction model can be expressed as:

△Y = β0 + β1△xt + λµt−1 = β0 + β1△xt

+λ (Yt−1 − α0 − α1xt−1) + εt (14)

3.3.3. Vector autoregressive (VAR) model
The vector autoregressive (VAR) is a distinct type of

simultaneous equation system that can be applied when all the

climatic, non-climatic parameters, and cocoa output are stationary

(15). However, in non-stationary data where a cointegration

relationship exists, the Vector Error Correction Model (VECM) is

a suitable form of limited VAR (Enders, 2015).

Yt = α1Yt−1 + . . . + αpYt−p + βxt+εt (15)

If Yt represents the vector of observations, α is the matrix

of parameters, and εt is the vector error, and if the data used is

stationary at the same differencing level, and there is cointegration,

then the VAR model can be combined with the error correction

model to create the VEC model (Asteriou and Hall, 2007).

3.3.4. Test for normality of residuals
The Jarque-Bera (JB) test determines residual normality in a

multivariate model, which measures the skewness and kurtosis of

the residuals. The JB test is a normality test that helps determine if a

model’s residuals are normally distributed. The test is calculated by

including the number of predictor variables which are the climate

and non-climate, as illustrated below:

JB =

[

N

6
β2
1 +

N

24
(β2 − 3)2

]

(16)

The Jarque-Bera (JB) test of normality uses the following

parameters: N, the sample size; β1, the expected skewness; β2, the

expected excess kurtosis. The JB test statistic is compared to the

Chi-square χ2 distribution with 2 degrees of freedom (Jarque and

Bera, 1987).
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3.3.5. Granger causality test
Granger causality assesses the short-term causal relationships

between the climate, non-climate variables and cocoa output in

terms of their reciprocity. A VAR is considered stable if it meets

the following criteria:

Yt =

[

Y1t

Y2t

]

=

[

α11,1&α12,1

α21,1&α22,1

] [

Y1t−1

Y2t−1

]

+ . . .

+

[

α11,p&α12,p

α21,p&α22,p

][

Y1t−p

Y2t−p

]

+

[

ε1t

ε2t

]

(17)

Suppose Yt comprises two vectors, Y1t and Y2t, and Y2t does

not have a Granger causality effect on Y1t . In that case, it means

that the matrix coefficient of parameter VAR, denoted as α21,i = 0

for i= 1, 2, . . . , p, indicating no Granger causality effect (Lutkepohl,

2005; Loves et al., 2021). The Granger causality test bases on the F-

test, which aims to determine whether a change in another variable

causes a change in one variable. If the past value of X (climatic and

non-climatic parameters) can predict the current value of Y (cocoa

output). In that case, X is said to have a Granger causality effect on

cocoa output. This model is presented as follows:

Y t =

p
∑

i=1

ØiY t−i + εt (18)

The significance of the coefficients Ø on the lagged value

of cocoa output determines if the climatic and non-climatic

factors Granger causes cocoa output. If the coefficients are

significant, it indicates Granger causality from these climatic

and non-climatic variables to cocoa output. Indirect causality

arises when the climatic and non-climatic variables Granger

causes cocoa output but not the other way around. Bidirectional

causality occurs when there is causality in both directions

(Brooks and Chris, 2008; Warsono and Hartono, 2019,

2020).

3.4. Empirical model: multivariate vector
error correction model (VECM)
specification

If cointegration between variables is established and confirmed

to be stationary at the first difference value, the VAR model

transforms into a Vector Error Correction Model (VECM). The

VECM determines the influence of climatic and non-climatic

variables on cocoa yield using the impulse response function

and Granger causality (Tsay, 2014; Adinew and Gebresilasie,

2019; Loves et al., 2021). The VECM is a powerful tool

for investigating the short- and long-term crop responses to

changes in climatic and non-climatic factors. It provides a

sound economic interpretation and a good fit. The VECM

method assumes that the time series data is stationary and

that long-term effects occur only when the time series under

consideration are cointegrated. In this study, we use the single-

equation perennial crop supply response VECM to evaluate the

effects of climate variations on cocoa output in the short- and

long-term (19). The model estimates the rate at which cocoa

output is affected by variations in climatic and non-climatic

elements in the short and long-run. The VECM method corrects

the equilibrium error in one period by the next period, and

it is a restricted VAR model with a cointegration relationship

between variables.

△Yt = 5Yt−1 +

p−1
∑

i=1

Ŵi△Y t−i + Dt + εt (19)

Where; = operator differencing, that is, Yt = Yt −

Yt−1 , Yt−1 = vector variable endogenous with lag 1, εt =

kx1 vector residuals, Dt = kx1 vector constant, Ŵi = kxk

matrix coefficient of the ith endogenous variable. Also, 5 =

cointegration matrix coefficient [(5 = αβ
′

; β = adjustment

vector, kxr matrix and α matrix co-integration, that is, long-

run parameter (kxr)]. That is, αi are the adjustment coefficients

used to determine the long-term effects of variations in climatic

(temperature, rainfall, and carbon dioxide emissions) and non-

climatic (land, labor, pesticide) variables on cocoa output. While

βj, is the adjustment coefficient used to estimate the short-

term effects of these explanatory variables on cocoa output.

Also, 0 < αi≤ 1 and 0 < βi≤ 1 where i = 1, 2, 3,. . . , n.

We rewrite (19) as;

△Yt = αβ
′

Yt−1 +

p−1
∑

i=1

ŴiY t−i + Dt + εt (20)

Given that cocoa output, has a long-run relationship with

the independent factors, climate factors, temperature, rainfall,

carbon dioxide, and non-climate variables (land use, labor, and

pesticide). The Multivariate VECM model is explicitly expressed

as thus:

1lnCQt = γ
(

lnCQt−1 − α0 − α1lnTempt−1 − α2lnRaint−1

− α3lnCO2(g)t−1
− α4lnlandt−1 − α5lnlabt−1 − α6lnPest−1

)

+

p−1
∑

i=1

βi1LCQt−i +

p−1
∑

i=1

βi1Tempt−i +

p−1
∑

i=1

βi1Raint−i

+

p−1
∑

i=1

βi1CO2(g)t−i
+

p−1
∑

i=1

βi1landt−i +

p−1
∑

i=1

βi1labt−i

+

p−1
∑

i=1

βi1Pest−i + εt (21)

Although many factors influence cocoa output, this study

assumes that some fundamental factors remain constant.

The signs in the above mentioned variables indicate the

expected relationship between each explanatory variable

(temperature, rainfall, carbon dioxide emission, land use,

labor and pesticide quantity) and the cocoa output (CQt).

Table 1 displays the measures of the model’s variables and the

expected outcomes.
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FIGURE 4

Average annual temperature variations and cocoa production trends in Cameroon. Source: Authors’ computation based on data from the World

Bank Climate portal and FAO, 2022.

4. Results

4.1. Trend analyses

4.1.1. Temperature variations on cocoa
production trends

We present the mean annual temperature variation trends and

cocoa production in Cameroon from 1961 to 2021. Figure 4 shows

a gradual increase in temperature and cocoa output in the early

1960s, with a marked increase toward the late 1960s, up to 25◦C

and 108,186 tons, respectively, in 1969. In the early 1970s, the

temperature sharply decreased to 24.1◦C in 1971 and 24.0 ◦C in

1974 and 1976. Despite this, cocoa output continued to increase

until 1971, reaching 138,775 tons, but sharply decreased to 82,500

tons in 1976. Temperature variations subsequently increased to

24.8◦C in 1979 and up to 25.3◦C in 2016. Meanwhile, cocoa

production gradually increased from the early to the late 1980s,

reaching 132,800 tons, but dropped to 97,835 tons in 1992.

In the onset of 1995, cocoa crop output increased gradually,

up to 134,000 tons. In the early 2000s, crop output continuously

increased, reaching 264,077 tons while the average temperature

was 24.8◦C. From 2013 to 2016, cocoa output increased to 211,000

tons. Recent years have seen an unprecedented rise in temperatures

up to 25.22◦C, which correlates to an increase in cocoa output to

290,000 tons. The results suggest a complex relationship between

temperature and cocoa output, with some years showing a positive

correlation and others showing a negative correlation. The recent

temperature rise has a positive association with cocoa production,

but it remains to be seen if this trend will continue.

4.1.2. Rainfall variations and cocoa production
trends

The findings indicate a downward trend for rainfall and an

upward trend for cocoa production. In the early 1960s, there

was a decrease in rainfall to 1,675.12mm in 1963, but cocoa

output increased to 85,000 tons. In the late 60s, rainfall and cocoa

yield increased to 1912.46mm and 108,186 tons, respectively. The

early 1970s saw a decrease in rainfall (1,680.7mm) and cocoa

output (96,000 tons), while rainfall further dropped to 1,487.03mm

and cocoa output significantly increased to 107,000 tons in 1977

(Figure 5). Cocoa production gradually increased to 132,800 tons

in 1987, with a marked drop in rainfall to 1,357.89mm in 1983.

Fluctuations in rainfall patterns continued up to 1,679.47mm in

1992, while cocoa output dropped to 97,835 tons. In the late 1990s

and early 2000s, rainfall and cocoa output surged to 1,684.28mm

in 2002, while cocoa production increased to 125,000 tons. In

the later years, mean annual rainfall decreased continuously to

1,467.07mm in 2015, while cocoa production hit a record high

of over 310,000 tons. In 2016, there was a sharp decrease in

cocoa yield, while rainfall continued trending downwards. Still,

in the later years, with slight variations in rainfall patterns, cocoa

output experienced a marked increase to over 290,000 tons in

2021. The analysis underscores the importance of understanding

the relationship between rainfall and cocoa production.

4.1.3. Carbon dioxide (CO2(g)) emissions and
cocoa production trends

This association shows an upward trend in both Cameroon’s

carbon dioxide emissions and cocoa production from 1961 to 2021.

During the 1960s and early 1970s, there was a gradual increase in

carbon dioxide emissions, reaching a peak of 0.245 Mt/capita in the

late 1970s, coinciding with an increase in cocoa output in 1971 up

to 138,775 tons. However, cocoa production dropped to 82,500 tons

in 1976.

From the late 1970s to the early 1980s, there was a continuous

increase in carbon dioxide emissions, reaching a peak of 0.693

Mt/capita in 1983 and then dropping to 0.172 Mt/capita in 1987,

with a corresponding increase in cocoa production from 108,900
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FIGURE 5

Average annual rainfall variations and cocoa production trends in Cameroon. Source: Authors’ computation based on data from the World Bank

Climate portal and FAO, 2022.

FIGURE 6

Average annual carbon dioxide emission and cocoa production trends in Cameroon. Source: Authors’ computation based on data from the World

Bank Climate portal and FAO, 2022.

tons to 132,800 tons over the same period. There was a sharp

decrease in carbon dioxide emissions from 0.663 in 1989 to 0.221

metric tons per capita in 1990, and cocoa output dropped to

97,835 tons in 1992 (Figure 6). While carbon dioxide emissions

fluctuated at 0.217 Mt/capita, cocoa output remained relatively

stable. Furthermore, carbon dioxide emissions increased to 0.333

Mt/capita from 2009 through 2015, coinciding with a record high

of 310,000 tons of cocoa yield. From 2016 to 2021, emissions have

dropped to 0.260 Mt/capita, while cocoa output has increased to

over 290,000 tons. These results suggest a complex relationship

between carbon dioxide emissions and cocoa production, with

emissions and cocoa output fluctuations across the years.

4.2. Impact analysis

4.2.1. Pre-estimation test
4.2.1.1. Unit root test results

We employ the Phillips-Perron unit root test statistics to

determine the order of integration of variables and tested the null
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TABLE 2 Phillips-Perron unit root test.

Sample:
1961–2021;
Number of
obs = 60

New-West lags = 3

Variables t-stats 1%
critical
value

5%
critical
value

10%
critical
value

lncocoa output

(CQ)

−6.813 −3.573 −2.926 −2.598

lntemperature −3.701 −3.572 −2.925 −2.598

lnrainfall −6.052 −3.572 −2.925 −2.598

lncarbon dioxide

emission

−9.151 −3.573 −2.926 −2.598

lnlanduse −3.631 −3.572 −2.926 −2.598

lnlabour −6.578 −3.572 −2.925 −2.598

lnpesticide −5.558 −3.572 −2.925 −2.598

ln, natural logs.

Source: Analysis by authors based on data from the World Bank climate portal, FAOSTAT,

and NIS Cameroon, 2022.

TABLE 3 Johansen cointegration test.

Trend: constant;
Number of obs
= 60

Sample:
1961–2021;
Lags = 3;

∗Depicts
selected

rank

Maximum
rank

Parms LL Eigenvalue Trace
statistic
at 5%

Critical
value

0 105 449.4933 - 150.6145 124.24

1 118 474.5045 0.60400 100.5921 94.15

2 129 491.12307 0.45963 67.3549∗ 68.52

3 138 506.64494 0.43723 36.3112 47.21

4 145 515.93423 0.29111 17.7326 29.68

5 150 520.97637 0.17035 7.6483 15.41

6 153 524.29106 0.11553 1.0190 3.76

7 154 524.80054 0.01869

∗Shows the number of cointegrating equations on the Maximum rank at 5%.

hypothesis of non-stationarity against the alternative hypothesis

of a stationary process. Table 2 presents the unit root test results

for temperature, rainfall, labor hours, pesticide quantity, cocoa

output, carbon dioxide emissions, and land use. The results indicate

that all these variables are stationary after the first difference. The

unit root test results provide confidence in using the model. This

implies that it avoids the problem of spurious regression since the

variables have zero means, while the variance and autocovariance

are constant.

4.2.1.2. Johansen test for cointegration

The analysis employs the co-integration test to determine

whether there is a long-term relationship between two or more

variables. The co-integration test aims to determine whether the

model parameters move together over time and whether there is

an equilibrium relationship between them.

TABLE 4 Vector error correction estimation results (dependent variable =

D[CQ]).

Variables Parameter Estimates Std Err t-stat

Short-run estimarions

Error Correction

Term

−0.519 0.180 −2.88∗∗∗

1lntemperaturet 0.177 0.063 2.82∗∗∗

1lnrainfallt −0.213 0.124 −1.72∗∗

1lnCO2(g)

emissionst

0.114 0.077 1.49∗

1lnland uset 0.097 0.061 1.58∗

1lnlabour hourst 0.014 0.029 0.49

1lnpesticide

quantityt

0.028 0.015 1.82∗∗

Long-run Estimations

lntemperaturet−1 −0.390 0.132 −2.95∗∗∗

lnrainfallt−1 −0.330 0.200 −1.65∗

lncarbon dioxide −0.278 0.151 1.84∗∗

lnland uset−1 −1.643 0.574 −2.86∗∗∗

lnlabour hourst−1 0.638 0.363 1.76∗∗

lnpesticide

quantityt−1

0.105 0.072 1.46∗

constant (c) 0.010 0.018 0.55

N 60

Source: Authors’ computation based on data from the World Bank climate portal, FAOSTAT,

and NIS Cameroon, 2022.

ln, natural logs; est-statistics, ∗Significant at 10% level, ∗∗Significant at 5% level and
∗∗∗Significant at 1% level.

The results highlight that the estimation of VECM requires a

cointegration relationship. If no cointegration relationship exists,

a VAR model is used. This analysis tests the null hypothesis

of no long-run relationship between dependent and explanatory

variables against the alternative hypothesis. The trace statistics

column in Table 3 indicates two cointegrating equations that

confirm long-run dynamics among the climate- non-climate

parameters and cocoa output. Therefore, we reject the null

hypothesis of no long-run relationship.

4.2.2. Vector error correction model (VECM)
regression

The vector error correction estimation explores the relationship

between climatic shocks and cocoa output. Table 4 presents an

econometric analysis that examines the relationship between

climatic elements, economic inputs, and cocoa output. It explains

that the error correction model is used to assess the speed of

adjustment of a variable back to equilibrium when there is a

shock in cocoa production. The Johansen cointegration test results

indicate a long-run relationship among the variables. Additionally,

the presence of a significantly negative and less than one coefficient

of the error correction term confirms the existence of an error

correction mechanism that allows for more reliable estimates. The
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TABLE 5 Johansen normalization restrictions imposed.

Beta Coef. Std. Err. z P>|z|

Coefficient matrix for

first lag of the error

correction term (_ce1)

lncocoa output (CQ) 1 . . .

lntemperature 0 (dropped)

lnrainfall 2.11 0.425946 4.96 0.000

lncarbon dioxide 0.001 0.0357689 0.04 0.967

lnland use 0.655 0.1052899 6.23 0.000

lnlabour 0.057 0.0479594 1.18 0.236

lnpesticide −0.425 0.0309171 −13.73 0.000

constant −19.935 . . .

Coefficient matrix for

first lag of the error

correction term (_ce2)

lncocoa output (CQ) 0 (dropped)

lntemperature 1 . . .

lnrainfall −0.291 0.1048235 −2.78 0.005

lncarbon dioxide 0.0162 0.0088026 1.84 0.066

lnland use −0.096 0.0259114 −3.70 0.000

lnlabour −0.036 0.0118026 −3.06 0.002

lnpesticide 0.009 0.0076086 1.18 0.238

constant (c) −0.783 . . .

ln, natural logs.

Source: Computation by Authors based on data from the World Bank climate portal,

FAOSTAT, and NIS Cameroon, 2022.

negative sign of the error correction term implies that the crop

output will adjust to equilibrium, which is desirable.

Furthermore, the coefficient of the error correction term is

negative and statistically significant at a 1% significance level.

This highly significant error correction term is an additional

confirmation of a stable long-run association between the

variables. The error correction coefficient indicates that the

speed of adjustment of any short-run disequilibrium to long-run

equilibrium is 51.9% each year. Overall, the results indicate a long-

term relationship among the variables, and the error correction

mechanism allows for adjusting any short-run disequilibrium to

long-run equilibrium. The findings suggest that climatic shocks

significantly impact cocoa output and that the vector error

correction model is valuable for exploring this relationship.

4.2.3. Robustness tests
4.2.3.1. Johansen normalization restrictions imposed

The Johansen normalization confirms the relationship between

cocoa output and its predictor variables (temperature, rainfall,

carbon dioxide emission, land use, labor, and pesticide). The

number of error correction terms in the Johansen normalization

restrictions imposed reflects the number of cointegrating

equations. Table 5 shows that the Johansen identification

FIGURE 7

Eigenvalue stability condition. Source: Analysis by Authors based on

data from the World Bank climate portal and FAO, 2022.

places four constraints. The first constraint indicates a long-run

equilibrium relationship between cocoa output and the explanatory

variables. The second constraint indicates no long-run relationship

between temperature and the other variables in the model. In

the second cointegrating equation, the Johansen normalization

restricts the coefficient for the temperature to be unitary, meaning

there is an equally long-term relationship between temperature and

the other variables in the model. Thus, the unitary restrictions on

cocoa output and temperature uphold that it is exactly identified.

The results suggest a long-term equilibrium relationship between

cocoa output and the explanatory variables. The findings indicate

that mean annual temperature changes are crucial in the long-run

equilibrium relationship among the variables.

4.2.3.2. Test for model stability

Figure 7 demonstrates the stability of the VECM and ensures

that the number of cointegrating equations is correctly specified.

The eigenvalues of the companion matrix, the real component is

plotted on the x-axis, and the imaginary component is on the y-axis.

The number of unit eigenvalues equals the number of endogenous

variables minus the number of cointegrating equations. In this

study, the VECM specification imposed 2-unit moduli, indicating

that there are two unitary constraints on the eigenvalues.

Given that none of the remaining eigenvalues is close to the

unit circle, the results imply that all the remaining modulus values

are less than one. This suggests that the number of cointegrating

equations is correctly specified in the VECM and supports its

feasibility. Moreover, the graphical stability test provides additional

confirmation of the validity of the VECM and the accuracy of the

number of cointegrating equations specified, further validating the

study’s findings.
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TABLE 6 Diagnostic tests and model fitness.

Diagnostic checks p-value

Adjusted R-squared 0.533

F-statistics 0.000

Breusch-Godfrey Serial Correlation (LM) test 0.003

Jarque-Bera test 0.000

Ramsey RESET test 0.021

Authors’ analysis based on data from the World Bank climate portal, FAOSTAT, and NIS

Cameroon, 2022.

The overall p-value for all diagnostic tests is less than the critical value (0.05) at a 5%

significance level.

TABLE 7 Granger causality Wald test.

Equation Excluded P > Chi2 Decision

lncocoa output lntemperature 0.021 Reject Ho

lntemperature lncocoa output 0.001 Reject Ho

lncocoa output lnrainfall 0.033 Reject Ho

lnrainfall lncocoa output 0.005 Reject Ho

lncocoa output lncarbon dioxide 0.018 Reject Ho

lncocoa output lncocoa output 0.010 Reject Ho

Computation by Author based on data from the World Bank climate portal, and FAO, 2022.

The p-value for all tests is less than the critical value (0.05) at a 5% significance level.

4.2.3.3. Diagnostic tests and model fitness

The R-squared value measures how well the regression model

fits the data. In this study, the adjusted R-squared value of 53.3%

indicates that temperature, rainfall, carbon dioxide emissions, land

use, labor, and pesticides account for over half of the changes in

cocoa output (Table 6). The remaining 46.7% of changes in cocoa

output owe to other factors which affect the cocoa output but are

not included in the model, represented by the white noise error

term. Furthermore, the probability value of F-statistics of 0.000

suggests that the explanatory variables in the model are jointly

significant in explaining cocoa production. The model shows a

strong statistical relationship between the cocoa output and its

regressors, thus, confirming model reliability.

We perform the Breusch-Godfrey test for serial correlation,

the Jarque-Bera test for normality, and the Ramsey RESET test

for model misspecification. Based on the significance of the p-

values for all three tests, we reject the null hypotheses of serial

correlation, non-normality, and misspecification bias, implying

that the model is reliable. Specifically, the Lagrange multiplier test

shows no serial correlation in the residuals, and the Jarque-Bera test

indicated that the errors are both skewed and kurtotic. Therefore,

the VECM model is free from serial correlation, normality, and

misspecification problems.

4.2.3.4. Analysis of the Granger causality test

We then employ the Granger causality Wald test to determine

the causal linkages between temperature, rainfall and carbon

dioxide, and cocoa output. It further confirms the study’s findings

and ensures their robustness. Our analysis focuses on identifying

causal relationships between the variables and determining if there

was bi-directional (two-way) Granger causality in the VECM.

The results presented in Table 7 reveal that we reject the null

hypothesis of no Granger causality between climatic parameters

and cocoa output. It means there is a significant relationship

between the climate-changing variables and cocoa output (Granger

cause each other).

These findings suggest that the past values of climatic variables

have significant predictive power on cocoa output. Likewise, past

cocoa output also has significant predictive power on current values

of these climatic variables. These results also confirm the negative

relationship between climatic parameters and cocoa output, as

observed in Table 5. However, it is essential to note that the Granger

causality test does not reveal any information about the causal link

between variables, and it cannot predict when two ormore variables

are interdependent. The Granger causality test differs from cause-

and-effect analysis, which seeks to establish a direct causal link

between variables.

4.3. Discussion

Mean annual temperatures in Cameroon have increased by

0.7◦C since the 1960s, indicating continuous temperature rises

across the country. This steady increase in average temperatures

has led to climate change and affected cocoa output. Additionally,

the mean annual rainfall in Cameroon has been decreasing at a

rate of about 2.9mm per decade since 1961, with record declines

noted in 1977, 1983, 1987, 2011, and 2015 (see Figure 4), despite

controversial increases in cocoa output. This decrease in rainfall

might result in shorter rainy periods with higher intensity, directly

or indirectly affecting crop output (World Bank, 2021). Recent

studies have supported the findings of our analysis. A study by

Niyibituronsa et al. (2022) reports that there has been a significant

increase in mean annual temperatures in Cameroon, particularly

in the northern regions. The study also reported a decrease in

the amount and distribution of rainfall in the country, leading

to adverse effects on agricultural production, including cocoa. On

the other hand, some studies contradict the earlier findings on

the relationship between rainfall and cocoa production. Similarly,

Tening et al. (2021) affirm that changes in temperature and rainfall

patterns hurt cocoa production in Cameroon, particularly in the

southwestern region. Likewise, Gockowski et al. (2021) found that

increased rainfall intensity in some regions of Cameroon resulted in

higher cocoa yields. The study attributed this to the ability of cocoa

trees to tolerate brief periods of flooding and the increased nutrient

availability in the soil during and after flooding.

The analysis elucidates a surge in mean carbon dioxide

emissions since 1961. This could be attributed to the continuous

burning of fossil fuels and farming activities such as excessive

fertilizer and pesticide use and converting forested areas to

agricultural land, as earlier studies have also indicated (World

Bank, 2021). Studies confirm the findings regarding the rising

carbon dioxide emissions and their impact on the atmosphere. For

instance, Le Quéré et al. (2021) indicate that global carbon dioxide

emissions increased by 4.9% in 2021, the second-largest annual

increase ever recorded. Similarly, a study by IPCC (2021) highlights

that the concentration of carbon dioxide and other greenhouse
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gases in the atmosphere has continued to rise, resulting in

increased global warming and climate change. However, while it is

challenging to attribute current cocoa crop output solely to carbon

dioxide emissions from the 1960s, evidence suggests that climate

change and related factors are likely affecting cocoa production,

especially in regions experiencing high temperatures and limited

water resources. According to the IPCC’s 5th assessment report,

increased atmospheric carbon dioxide concentrations can improve

plant growth and productivity. Still, it can also lead to water stress

and nutrient imbalances in crops, particularly in areas already

facing high temperatures and limited water resources (IPCC, 2014).

The report also highlights that climate change is expected to

increase extreme weather events like droughts and floods, which

can negatively impact crop yields.

The trends show the changes in cocoa output associated

to the vagaries of climatic factors like temperature, rainfall,

and carbon dioxide emissions. These climatic parameters have

experienced oscillations over the years, with mean annual

rainfall trending downward (Figure 5), while the average annual

temperature (Figure 4) and mean annual carbon dioxide emissions

(Figure 6) trend upwards. These changes in climate elements result

in increased sun intensity, global warming, high evaporation,

condensation, increased droughts, and floods, which can harm

cocoa production (Kimengsi and Tosam, 2013; IPCC, 2014; Suh

and Molua, 2022). These findings are consistent with reports

from the World Meteorological Organization (2019, 2021) on

global climate.

However, some recent studies have provided contrasting

findings on the impact of climate change on cocoa production in

Cameroon. For example, a study by Njiti et al. (2021) suggests

that while climate change has plagued cocoa production in some

regions of Cameroon, it has positively impacted cocoa production

in other regions. The study argues that climate change has led to

the expansion of cocoa production areas in some regions due to

increased temperatures and rainfall patterns oscillations. Another

study by Foudjet et al. (2022) also highlights the positive impact of

climate change on cocoa production in some regions of Cameroon,

indicating that climate change has increased the length of the

cocoa growing season in some areas. Similarly, Schroth et al.

(2016) notes cocoa yields in Indonesia have increased by 10–

20% over the past three decades. The study affirms that although

climate change has led to changes in the phenology of cocoa trees

and an increase in pest and disease pressure, cocoa cultivation

is still possible in many regions by implementing climate-smart

practices. The study by Grüninger and Berndt (2019) posits that

technological innovation, such as precision agriculture and remote

sensing, helps farmers adapt to changing climatic conditions and

improve cocoa productivity. Amekawa et al. (2020) have shown that

genetic engineering and agroforestry systems can improve cocoa

farmers’ resilience to climate change. Additionally, farmers are

implementing various adaptation measures, such as intercropping,

using improved varieties, planting shade trees, and implementing

irrigation (Vaast and Somarriba, 2014; Thompson and Bekele, 2019;

Awazi et al., 2020; Adu-Bredu et al., 2021; Kwakye et al., 2021;

Mensah et al., 2021; Agyeman et al., 2022).

In evaluating the impact of climate stressors on cocoa

output, Table 4 provides insights into the impact of climate

stressors on cocoa production. According to Tchokote et al.

(2015) and Pratama et al. (2019), short-term temperature

fluctuations positively affect cocoa production. However, other

studies (Hutchins et al., 2015; Owoeye and Sekumade, 2016;

Schroth et al., 2016; Adinew and Gebresilasie, 2019; Ngong

et al., 2019; Suh and Molua, 2022) have found a significant

negative relationship between temperature and cocoa output.

Also, Schroth et al. (2016) report that cocoa yields in West

Africa have decreased by 30–40% over the past three decades

due to climate change and other factors. Navarro et al. (2018)

reviewed the literature on the impacts of climate change on

cocoa production. They found that while some regions are already

experiencing negative impacts, the severity of the impacts can vary

widely depending on factors such as temperature, rainfall, and

soil type.

Soil, pests, and diseases have a significant impact on cocoa

output. According to Aikpokpodion and Ighodaro (2020) and

Aikpokpodion and Obayagbona (2020), soil nutrients play a crucial

role in cocoa production, and their availability can affect the crop’s

growth, yield, and quality. Inadequate soil management practices,

such as overuse of fertilizers or land clearing, can deplete the

soil nutrients, reducing cocoa productivity. Additionally, pests and

diseases can devastate cocoa production, leading to significant yield

losses and reduced quality. Pest infestations, such as cocoa pod

borer, mirid bug, and capsids, Tamanjong and Neena (2014) can

cause premature fruit drop, while fungal diseases, such as black pod

and witches’ broom, can cause pod rot and stunt growth. Effective

management practices, such as integrated pest management (IPM)

and disease control, are essential to minimize the impact of pests

and diseases on cocoa output (Aikpokpodion and Obayagbona,

2020; Oduro et al., 2021). Overall, soil, pests, and diseases are

critical factors that should be considered in efforts to improve cocoa

productivity and sustainability.

The short-run marginal effects reveal a temperature increase

of 1◦C leads to a cocoa production increase of 0.18 tons. Adinew

and Gebresilasie (2019) used VECM, and their results support this

finding, indicating a significant positive short-term relationship

between temperature and cocoa output (an increase of 2.14 tons).

The reason for this could be that improved cocoa varieties, which

are drought-resistant, thrive well in hot areas. However, the long-

term estimates indicate that an increase in temperature by one

unit in the previous year leads to a significant decrease in cocoa

output by 0.39 tons in the next year, affirming the negative

relationship between temperature and cocoa output (Table 4).

Surging temperatures increase evapotranspiration (Schroth et al.,

2016), dehydrating some cocoa plants, and thus affecting their

growth with consequences such as alteration of the crop flowering

period, leading to a reduction in seed number. Although plant

growth requires heat, high temperatures could stress the plant

leading to low cocoa output. Suggesting increased temperatures

also provoke pest and disease incidence (Schroth et al., 2016), which

could lead to premature ripening of the cocoa fruits. The short-

term effect contradicts the a priori expectations that asserted an

inverse relationship between mean annual temperature and cocoa

output. In the short-term, better drought-resistant cocoa varieties

and favorable conditions for cocoa growth in hot areas are the

reasons for the improved impacts.
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Increased variations in average annual rainfall have significant

adverse effects on cocoa output in both the short-run and long-

run as anticipated (Adjei-Nsiah and Kermah, 2012; Owoeye and

Sekumade, 2016; Oyedokun and Oyelana, 2016; Sayouri et al.,

2021). This implies that an increase in mean annual rainfall will

reduce cocoa performance; in absolute terms, an increase in rainfall

by 1mm will result in a drop in cocoa output by 0.41 tons in the

short-run, which is significant at 5%. Similarly, the long-run results

show that the coefficient for rainfall is still negative, meaning a

negative association exists between the previous year’s mean rainfall

and current cocoa output. Quantitatively, Table 4 reports the long-

run result reveals that an increase in rainfall by 1mm in the

previous year will significantly cause cocoa output to reduce by 0.38

tons. However, Adinew and Gebresilasie (2019) argue the long-run

result and pose an increase of 0.14 tons depicting a positive long-

run relationship between rainfall and cocoa output. Current rainfall

patterns may already be above the required level for optimum

production. As such, more rainfall could lead to slower rates of

fruit development. Likewise, an increase in rainfall variations could

obstruct farming activities like spraying with farm chemicals such

as pesticides, fertilizers (Oyekale, 2015), harvesting, and off-farm

activities such as drying as testified by Hutchins et al. (2015)

leading to post-harvest losses. Increased rainfall variations could

also lead to droughts, floods, and inundations, causing leaching,

and soil erosion, destroying agricultural land, and, hence, reducing

production. The overall results imply that oscillations in mean

annual rainfall significantly reduce cocoa output.

In the short run, increased carbon dioxide emission into the

atmosphere depicts a positive relationship with cocoa output. More

specifically, it explains that an increase in atmospheric carbon

dioxide by 1Mt/capita leads to a significant increase in cocoa output

by 0.11 tons at a 10% level. This may be attributed to plants

absorbing carbon during photosynthesis for food production. It

contradicts our a priori expectations and the findings of Adinew

and Gebresilasie (2019), which saw a negative outcome between

carbon dioxide and cocoa output in the short run. However, as

expected in the long term, more carbon dioxide harms cocoa

production (Adinew and Gebresilasie, 2019). The study anticipated

a reverse relationship between cocoa production and carbon

dioxide emissions. Themarginal effects affirm an increase in carbon

dioxide emission by 1mt/capita leads to a significant decrease

in cocoa production by 0.28 tons at a 5% level (Table 4). Also,

this explains that the long-term effect on crop output results

from the previous year’s emissions affecting current production.

Although plants need carbon for food production, excess carbon

dioxide in the air can lead to problems like greenhouse gases,

ozone depletion, global warming, climate variability, and changes

in temperature and rainfall. These changes can ultimately decrease

crop production over time.

Table 4 equally presents economic factors as significant

determinants of cocoa output. The results show a positive short-

term relationship between land use and cocoa performance

Coulibaly and Erbao (2019). In the short-term, a unit change

in land use or increase in land size for cultivation will lead to

a 0.10 tons increase in cocoa, and the results are significant at

10%. The increased land used for cocoa production may lead

to greater output since plants might be more likely to survive

the climate stress. In cocoa production, land serves two typical

functions. Firstly, it serves as the basis for production. Secondly,

in cocoa-producing communities in Cameroon, forest land permits

climate-smart farming systems such as agroforestry, which can

help in carbon sequestration (carbon sink or store). This can

ultimately decrease global temperature warming and increase soil

precipitation, as observed in studies by Amekawa et al. (2020) and

Adinew and Gebresilasie (2019).

Similarly, organic farming practices can improve soil health,

enhance water retention, and increase cocoa plant resilience to

climate variability (Tahi et al., 2020). However, the long-run results

show that an increase in land size in the previous years has a

negative relationship with crop outputs. That will reduce by 1.64

tons for cocoa, significant at 1% (Table 4). Outcomes fromHutchins

et al. (2015) recount that climate oscillations, and prolonged

droughts on cocoa, make it difficult to establish new cocoa

farms. Expanding cocoa farms involves deforestation with adverse

trickle-down effects on increasing greenhouse gas emissions and

hence increased climate vagaries. Also, deforestation causes land

degradation, exposing the soil to erosion and leaching, decreasing

soil fertility as soil nutrients percolate. Deforestation destroys soil

nitrogen fixing and soil aeration organisms, which help increase

soil fertility because of flooding, soil erosion, droughts, and

inundations, reducing cocoa production in the long run.

As projected, long-run analysis shows a significant influence

of labor on cocoa production. The finding supports Ngong and

Forgha (2013) and Coulibaly and Erbao (2019), who reported that

labor significantly positively affects the cocoa output. The research

opines that an increase in labor by 1 man-day causes cocoa output

to increase by 0.64 tons (Table 4). On the other hand, labor shows

an insignificant positive impact on cocoa output in the short-run.

We can attribute this to cocoa being a perennial crop with seasonal

farm operations. Hence the demand for labor in cocoa farms is

also seasonal. Thus, short-run labor efforts may not immediately

pay off. Recent literature indicates that despite efforts to eradicate

child labor, it remains pervasive in the industry, particularly in

remote and hard-to-reach areas. Child labor affects the productivity

and quality of cocoa production. On the contrary, adult labor

is crucial to cocoa production, and labor shortages can lead to

decreased output and quality. Similarly, labor exploitation and poor

working conditions in cocoa production can lead to social and

ethical concerns that can impact consumer demand and market

access. (Olivier and Bakari, 2021; Ryan and Bicknell, 2021).

Furthermore, the analysis shows that pesticide quantity used

in cocoa production has significant optimistic estimates in both

the short and long run. It conforms to the findings of Ngong

et al. (2019), who reported that using chemical sprays has a

significant positive effect on cocoa production in the Southwest

region of Cameroon. The increase in the prevalence of pests and

diseases due to climate change (Schroth et al., 2016; Aikpokpodion

and Obayagbona, 2020; Oduro et al., 2021) requires the use

of pesticides. Table 4 shows that an increase in the pesticide

quantity used in production by 1 liter leads to a significant

increase in cocoa output by 0.028 tons and 0.11 tons in both the

short and long-run, respectively. Hence, researchers have found a

significant positive relationship between cocoa output and pesticide

application rates. Farmers use pesticides to treat cocoa diseases
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such as capsid, swollen shoot virus, and black pod propagated by

climatic elements such as high temperatures, leading to pest and

disease proliferation, as reported by Aikpokpodion et al. (2021).

Furthermore, appropriate use of pesticides makes the crops more

tolerant to pests and diseases, even though changes in climatic

parameters such as temperature and rainfall may bring about

resistance (Oyekale, 2015; Suh and Molua, 2022).

5. Conclusion and policy implications

Climate change has adverse effects on cocoa output.

Oscillations in climatic patterns, including temperature, rainfall,

and carbon dioxide emissions, cause variations in cocoa output.

However, short-run analysis shows warmer climate increases

cocoa output. In addition, land use and labor are significant

determinants of cocoa output in the short and long run.

An increase in land use or size for cultivation has a positive

relationship with cocoa production in the short term. In the long

run, increased land size has decreased crop output in previous

years. Labor positively influences cocoa production in both the

short and long run. As expected, pesticide quantity used in cocoa

production significantly affects cocoa output in the short and

long run.

Secondary data sources, such as theWorld Bank’s climate portal

and FAOSTAT, comprehensively cover global trends and patterns

in climate stressors, non-climate parameters, and cocoa output.

While these databases rely on standardized methodologies for data

collection and reporting and are publicly available, making them

accessible and easy to use, they are also subject to weaknesses

such as incomplete or inconsistent data, limited granularity, and

a time lag in reporting. Combining various secondary data sources

and statistical tools allows for a robust examination in the current

study. It provides empirical evidence for policymakers and other

stakeholders in the cocoa industry. However, it is crucial to consider

these strengths and weaknesses for research or policy analysis and

to supplement them with additional data sources or primary data

collection where necessary.

The findings suggest the long-run negative impact of a

changing climate on cocoa output in Cameroon, but recent studies

have shown contrasting findings on its impact in different regions.

Therefore, further research is needed to investigate the specific

impacts of climate change on cocoa production in different regions.

These involve conducting more localized studies to understand

better the biophysical (soil) and socioeconomic factors contributing

to variations in cocoa output and examining the potential for

targeted interventions to address these factors. It could involve

evaluating the impacts of different policy interventions on cocoa

productivity and farmer resilience, such as land tenure reforms or

improved access to training and extension services. There is also

need to explore the potential for new technologies and practices

by conducting experimental trials to test the effectiveness of these

approaches and identify barriers to their adoption by farmers.

Therefore, we recommend governments and policymakers

promote climate-smart practices to improve cocoa productivity.

This includes using genetic engineering, agroforestry systems,

intercropping, precision agriculture, remote sensing, and

forecasting of climate parameters. These practices are

imperative for adjusting the cocoa calendar while implementing

Climate-smart adaptive measures such as shade trees and

irrigation. Also, the government should prioritize reducing

carbon dioxide emissions by adopting green technology and

regulating pesticide usage. Furthermore, increased access

to land and improved capacity building of farmers could

improve their resilience. Prioritizing climate finance, these

policy interventions can help mitigate the negative impact

of climate change on cocoa production and improve the

resilience of farmers to climate stressors, thus making the cocoa

industry climate-proof.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

EB: conceptualization, methodology, formal analysis,

writing—original draft preparation, writing—review and

editing, visualization, and investigation. EM: conceptualization,

supervision, review and editing, and validation. All

authors contributed to the article and approved the

submitted version.

Acknowledgments

This study utilized data from the World Bank Group’s climate

portal (WBG), the Food and Agriculture Organization’s statistics

(FAOSTAT), and Cameroon’s National Institute of Statistics (NIS).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Author disclaimer

The views expressed are purely those of the authors and may

not in any circumstances be regarded as stating an official position

of the World Bank or the FAO.

Frontiers inClimate 17 frontiersin.org

https://doi.org/10.3389/fclim.2023.1069514
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Bomdzele and Molua 10.3389/fclim.2023.1069514

References

Abei, L., and Van Rooyen, J. (2018). “Competitiveness in the Cash Crop Sector:
The Case of the Cameroonian Cocoa Industry Value Chain,” in Paper presented at the
56th Annual Conference of the Agriculture Economics Association in South Africa, 25-27
September 2018, Somerset West.

Achankeng, E. (2021). Cameroon’s challenges in achieving the sustainable
development goals. J. Sustain. Dev. Afr. Africa Scholarly Science Communications
Trust (ASSCAT), 23, 103–120.

Adinew, M., and Gebresilasie, G. (2019). Effect of climate change on agricultural
output growth in ethiopia: cointegration and vector error correction model analysis.
Budapest Int. Res. Exact Sci. (BirEx). 1, 132–143. doi: 10.33258/birex.v1i4.461

Adjei-Nsiah, S., and Kermah, M. (2012). Climate Change and Shift in Cropping
System: From Cocoa to Maize Based Cropping System in Wenchi Area of Ghana.
doi: 10.5281/zenodo.8385

Adu-Bredu, S., Agyeman, K., Blay, E. T., and Appiah, M. (2021). The impact of
climate change on cocoa production in Ghana: a review. Climat Dev. Amsterdam:
Elsevier, 1–14.

Agyeman, K., Adu-Bredu, S., Blay, E. T., and Appiah, M. (2022). Examining the
impact of climate change on cocoa production in Ghana: a case study of the Ashanti
Region. Climate Risk Manag. Amsterdam: Elsevier, 33, 100326.

Aikpokpodion, P. O., Adetimirin, V. O., and Daramola, O. O. (2021). Effect of
climate change on the incidence and severity of cocoa pests and diseases in Nigeria.
J. Agric. Ecol. Amsterdam: Elsevier, 24, 31–38.

Aikpokpodion, P. O., and Ighodaro, O. M. (2020). Climate change, cacao
production and chocolate industry: challenges, opportunities and the way forward. J.
Agri. Stud. 8, 1–19. doi: 10.5296/jas.v8i2.16770

Aikpokpodion, P. O., and Obayagbona, O. N. (2020). Soil fertility management for
sustainable cocoa production: a review. J. Soil Sci. Environ. Lagos: Academic Journals,
11, 45–56.

Amekawa, Y., Chong, C., Umetsu, C., and Kozai, T. (2020). “Genetic engineering
and agroforestry systems for improving the adaptation of cocoa to climate change,” in
Biotechnology for Sustainable Agriculture. Singapore: Springer. p. 69–84.

Asteriou, D., andHall, S. G. (2007).Applied Econometrics: AModern Approach.New
York: Palgrave Macmillan.

Awazi, N. P., Tchamba, M. N., and Temgoua, L. F. (2020). Climate-smart practices
of smallholder farmers in Cameroon confronted with climate variability and change:
the example of agroforestry. Agric. Res. 2020, 1–14. doi: 10.1007/s40003-020-00477-0

Ayanlade, A., Radeny, M., and Morton, J. F. (2017). Comparing smallholder
farmers’ perception of climate change with meteorological data: a case study from
southwestern Nigeria.Weather Climate Ext. 15, 24–33. doi: 10.1016/j.wace.2016.12.001

Brooks and Chris (2008). Introductory Econometrics for Finance 2nd ed. New York:
Cambridge University Press. doi: 10.1017/CBO9780511841644

Bunn, C., Läderach, P., Ovalle Rivera, O., and Kirschke, D. (2015). A bitter cup:
climate change profile of global production of Arabica and Robusta coffee. Clim.
Change 129, 89–101. doi: 10.1007/s10584-014-1306-x

Bunn, C., Läderach, P., Pérez Jiménez, J., and Montagnon, C. (2019). Higher
temperatures shorten growing seasons of cocoa trees in Ghana. Glob. Chang. Biol.
Hoboken, NJ: Wiley, 25, 1658–1670.

Burke, S. P., and Hunter, J. (2005). Modelling Non-stationary Time Series:
A Multivariate Approach. New York: Palgrave Macmillan. doi: 10.1057/97802300
05785

Carberry, A. R., Doherty, A., Kornelsen, K. C., and Finnigan, S. (2016). The role
of visualizations and contextualisations in understanding climate change. Environm.
Educ. Res. Abingdon: Taylor & Francis, 22, 177–193.

Coulibaly, S. K., and Erbao, C. (2019). An empirical analysis of the
determinants of cocoa production in Cote d’Ivoire. Econ. Struc. 8, 1–22.
doi: 10.1186/s40008-019-0135-5

Coulibaly, S. K., Metuge, T. M., Erbao, C., and Ya Bin, Z. (2017). “Climate
Change Effects on Cocoa Export: Case study of Cote d’Ivoire,” in Allied Social
Science Association (ASSA)/American Economic Association (AEA). African Finance
and Economic Association (AFEA) Jan 8 Session 2017.Chicago – USA: Annual Meeting,
Chicago – USA.

Djoumessi, J. C. T., Mfopou, E. S., Tsafack, E. N., and Tsague, F. (2019). Climate
variability and crop yield in Cameroon: Evidence from time series data. J. Afr. Econ.
Oxford, UK: Oxford University Press, 28, 558–577.

Ekwe, K. C., Nkonya, E., Idrissa, M., and Kato, E. (2020). Climate
smart cocoa production in Nigeria: a value chain analysis of barriers and
opportunities. J. Envi. Manag. 256, 109934. doi: 10.1016/j.jenvman.2019.10
9934

Enders, W. (2015). Applied Econometric Time Series. USA: John Wiley and Sons
Interscience Publication.

Engle, R. F., and Granger, C. W. (1987). Co-integration and error
correction: representation, estimation, and testing. Econometrica. 55, 251–276.
doi: 10.2307/1913236

FAO (2017). The State of Food and Agriculture 2017 in Brief. Leveraging Food
Systems For Inclusive Rural Transformation. Food and Agriculture Organization of the
United Nations. Rome. Available online at: https://www.fao.org/3/i7833en/i7833en.pdf
(accessed June 6, 2022).

FAO (2020). The impact of pests and diseases on food security and livelihoods: a
global perspective. Food and Agriculture Organization of the United Nations. Rome,
Italy. Available at: http://www.fao.org/documents/card/en/c/ca9692en/ (accessed 29
September 2022).

FAO (2022). FAOSTAT Data Base. Rome, Italy: Food and Agriculture Data.
Available at: https://www.fao.org/faostat/en/#data/QCL (accessed 29 September, 2022).

Fonjong, L., Lekane, S., and Fobuzie, W. (2019). Climate change, cocoa production
and farmers’ livelihoods in the Southwest Region of Cameroon. Climate Dev.
Amsterdam: Elsevier, 11, 120–131.

Foudjet, A., Tchindjang, M., and Hensel, O. (2022). Impacts of climate change
on the production and quality of cocoa beans in cameroon: an econometric analysis.
Sustainability. Basel: MDPI, 14, 1686.

Gockowski, J., Bisseleua, D. H. B., and Tchoundjeu, Z. (2021). High rainfall intensity
increases cocoa yield in Cameroon. J. Agri. Sci. Cambridge, UK: Cambridge University
Press, 13, 1–13.

Grüninger, T., and Berndt, A. (2019). Climate-smart cocoa in Ghana: assessing
the benefits of climate-smart agriculture technologies for cocoa farmers. Climate Dev.
Amsterdam: Elsevier, 11, 215–226.

Gujarati (2004). Basic Econometrics New York, Fourth Edition. New York:Macgraw-
Hill Companies.

Harris, R. I. D. (1995). Using Co-integration Analysis in Econometric Modeling
prentice Hall/Harvester Wheatsh. Portsmouth: University of Portsmouth.

Hutchins, A., Tamargo, A., Bailey, C., and Kim, Y. (2015). Assessment of climate
change impacts on cocoa production and approaches to adaptation and mitigation: a
contextual view of Ghana and Costa Rica. Int. Dev. Stud. Oxford, UK: Wiley Online
Library, 1–22.

Hütz-Adams, F., Claudia, H., Irene, K., Pedro, M., and Mara, M. (2016).
Strengthening the competitiveness of cocoa production and improving the income of cocoa
producers in West and Central Africa. SUDWIND e.V. Bonn, Germany: Kaiserstr. 201,
53113.

INS (2022). Statistics – Institut National de la Statistique du Cameroun. Available
online at: https://ins-cameroun.cm/en/statistiques/ (accessed November 6, 2022).

IPCC (2014). “Summary for policymakers,” in Climate Change 2014: Impacts,
Adaptation, and Vulnerability. Part A: Global and Sectorial Aspects. The contribution
of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. United Kingdom and New York, NY, USA: Cambridge University
Press, Cambridge. p. 1–32.

IPCC (2018). An IPCC Special Report on the Impacts of Global Warming of 1.50C
Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways,
in the Context of Strengthening the Global Response to the Threat of Climate Change,
Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge
University Press

IPCC (2021). “Climate Change 2021: The Physical Science Basis,” in Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C.,
Berger, S., et al. (eds.). Cambridge: Cambridge University Press.

IPCC (2022). “Climate Change 2022: Impacts, Adaptation, and Vulnerability,”
in. Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Pörtner, H. O., Roberts, D.C. Tignor, M.
Poloczanska, E.S.Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V.Möller,
A. Okem, B. Rama (eds.). Cambridge: Cambridge University Press.

ITC (2021). Trade map. Available online at: http://www.trademap.org/ (accessed 12
November, 2021).

Jabir, A., Kimaro, A. A., and Temu, A. B. (2021). Climate change impact on cocoa
production in Tanzania: a review. Cogent Food Agricult. Abingdon: Taylor & Francis
Group, 7, 1966062.

Jarque, C. M., and Bera, A. K. (1987). A test for normality of observations and
regression residuals. Int. Statistical Rev. 55, 163–172. doi: 10.2307/1403192

Johansen, S. (1988). Statistical analysis of cointegration vectors. J Econ. Dynam.
Control Amsterdam: Elsevier, 12, 231–254. doi: 10.1016/0165-1889(88)90041-3

Kimengsi, J. N., and Tosam, J. N. (2013). Climate variability and cocoa production
in Meme Division of Cameroon: agricultural development policy options. Greener J.
Agricult. Sci. 3, 606–617. doi: 10.15580/GJAS.2013.3.022713505

Frontiers inClimate 18 frontiersin.org

https://doi.org/10.3389/fclim.2023.1069514
https://doi.org/10.33258/birex.v1i4.461
https://doi.org/10.5281/zenodo.8385
https://doi.org/10.5296/jas.v8i2.16770
https://doi.org/10.1007/s40003-020-00477-0
https://doi.org/10.1016/j.wace.2016.12.001
https://doi.org/10.1017/CBO9780511841644
https://doi.org/10.1007/s10584-014-1306-x
https://doi.org/10.1057/9780230005785
https://doi.org/10.1186/s40008-019-0135-5
https://doi.org/10.1016/j.jenvman.2019.109934
https://doi.org/10.2307/1913236
https://www.fao.org/3/i7833en/i7833en.pdf
http://www.fao.org/documents/card/en/c/ca9692en/
https://www.fao.org/faostat/en/#data/QCL
https://ins-cameroun.cm/en/statistiques/
http://www.trademap.org/
https://doi.org/10.2307/1403192
https://doi.org/10.1016/0165-1889(88)90041-3
https://doi.org/10.15580/GJAS.2013.3.022713505
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Bomdzele and Molua 10.3389/fclim.2023.1069514

Komakech, H. C., Obeng-Ofori, D., and Sakyi-Dawson, E. (2020). Intercropping
cocoa with nitrogen-fixing trees improves soil fertility and resilience to drought and
climate variability in a cocoa agroforestry system. Agroforestry Syst. Berlin: Springer,
94, 1251–1266.

Kreft, S., Eckstein, D., andMelchior, I. (2017).Global climate risk index. Who suffers
most from extreme weather events?Weather-related loss events in 2015 and 1996 to 2015.
Germanwatch Nord-Sud Iniative eV. Available online at: www.germanwatch.org/en/cri
(accessed November 11, 2022).

Kwakye, M., Bonsu, K. O., Darko-Obiri, B., and Gaisie, E. (2021). Impact of
climate change on cocoa production in Ghana: a case study of offinso municipality.
Sustainability. Basel: MDPI, 13, 10147.

Le Quéré, C., Jackson, R. B., Jones, M.W., Smith, A. J., Abernethy, S., Andrew, R.M.,
et al. (2021). Temporary reduction in daily global CO2(g) emissions during the COVID-
19 forced confinement.Nat. Clim. Chang. 11, 230–236. doi: 10.1038/s41558-020-0797-x

Lescuyer, G., Boutinot, L., Goglio, P., and Bassanaga, S. (2020). Analysis of the
cocoa value chain of Cameroon. Value chain analysis for development (VCA4D) report
funded by the European Commission/DEVCO and its implementing partner Agrinatura.
Available online at: https://eu/capacity4dev/value-chain-analysis-for-development-
vca4d- (accessed 11 March, 2023).

Loves, L., Usman, M., Warsono, W., and Russel, E. (2021). Modeling Multivariate
Time Series by Vector Error Correction Models (VECM). J. Phyicss. 1751, 012013.
doi: 10.1088/1742-6596/1751/1/012013

Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. (Berlin:
Springer Verlaag). doi: 10.1007/978-3-540-27752-1

Mahob, R. J., Taliedje, D. M., Mahot, H. C., Ngah, I. M., Enama, S. E., Cilas, C.,
et al. (2021). Biocontrol of the brown cocoa mirids using neem oil and an ethanolic
extract from neem under laboratory conditions. African Entomol. 29, 507–521.
doi: 10.4001/003.029.0507

Mahot, H. C., Mahob, J. R., Hall, D. R., Arnold, S. E., Fotso, A. K.,
Membang, G., et al. (2020). Visual cues from different trap colours affect
catches of Sahlbergella singularis (Hemiptera: Miridae) in sex pheromone traps in
Cameroon cocoa plantations. Crop Protect. 127, 104959. doi: 10.1016/j.cropro.2019.
104959

Mensah, M. A., Ibrahim, S., Adewuyi, S. A., and Mutalib, S. A. (2021). Effect of
climate change on cocoa production in West Africa: a review. Renewable Sust. Energy
Rev. Amsterdam: Elsevier, 148, 111320.

Molua, E. L. (2022). Private farmland autonomous adaptation to
climate variability and change in Cameroon. Rural Society. 31, 115–135.
doi: 10.1080/10371656.2022.2086223

Navarro, J. A., Pérez-Hernández, O., and Deheuvels, O. (2018). Climate change
impacts on cocoa: A review of the current knowledge and research gaps. Eur. J. Agron.
Amsterdam: Elsevier, 92, 129–141.

Ngo Bieng, M. A., Nkouathio, D. G., and Kuate Tegoum, P. (2018). Perception
and adaptation strategies of cocoa farmers to climate change: a case study in three
agroecological zones of Cameroon. J. Agri. Environ. Sci.Wiley Online Library, 7, 77–86.

Ngoe, M., Fonge, B. A., and Diopoh, J. K. (2018). Assessing the impact of cocoa
farming on livelihoods and poverty among smallholder farmers in Cameroon. J.
Agribusiness Dev. Emerg. Econ. 8, 1–15.

Ngong, J. T., Akume, A. D., Forgha, N. G., and Wujung, V. A. (2019). An empirical
investigation of the determinants of cocoa production in the Southwest Region of
Cameroon. Int. J. Econ. Commerce Manag. 7, 01–14.

Ngong, J. T., and Forgha, N. G. (2013). An analysis of the socio-economic
determinants of cocoa production in Meme Division, Cameroon. Greener J Business
Manag. Stud. 3, 298–308.

Ngongi, A. N. (2016).Africa Agriculture Status Report. Progress towards Agricultural
Transformation in Africa; Forward, International Journal of Economics, Commerce
and Management (IJECM) Publishing. Available online at: https://agra.org/aasr2016
(accessed 11 March 2023).

Niyibituronsa, A., Mbonimpa, E. G., Niyitugabira, V., and Nzeyimana, J. (2022).
Climate variability and changes in Burundi and their implications on agriculture.
Climate 10, 1–15.

Njiti, C. F., Ngome, A. F., Tchaleu, G. N., and Nkongho, R. N. (2021). Impacts
of climate change on cocoa production in Cameroon: evidence from the humid and
sub-humid regions. Agric. Syst. Amsterdam: Elsevier, 190, 103150.

Njoya, A., Suh, C., Kamga, R., and Nkongho, R. N. (2021). Farmers’ perception
of climate change and its impacts on crop production in the humid forest zone of
Cameroon. Climate Dev. Taylor & Francis Online, 13, 18–29.

Nkem, J., Mala, W. A., and Yinda, G. S. (2021). “Agroforestry as a climate change
adaptation strategy in Cameroon,” in Krishnaswamy, B. A., Singh, R. S., Lal, R., and
Lal, R. K. (eds.),Agroforestry for Climate Resilient Agriculture in Southern Africa. Berlin:
Springer Nature. p. 293–307.

Nkouathio, D. G., Kouam, E. R., andMfegue, C. V. (2018). Impact of climate change
on agriculture in Cameroon: a review. Adv Res. Cairo University, 14, 1–14.

Nkwi, G. E., Fani, D. C. R., Ahungwa, G. T., and Ukpe, U. H. (2023). “Climate
Change and Agricultural Output: The Need for Policy,” in Agricultural Transformation

in Africa: Contemporary Issues, Empirics, and Policies. Cham: Springer International
Publishing. p. 137–151. doi: 10.1007/978-3-031-19527-3_10

Nouck, P. N., Nchoutnji, I., Nchoutnji, R. J., and Ngosong, C. (2019). Impact of
climate change on agriculture and food security in Cameroon. Int. J. Environm. Sci.
Technol. 16, 1193–1204.

Oduro, W., Mensah, J. K., and Gyedu-Akoto, E. (2021). Impact o8f pests and
diseases on cocoa (Theobroma cacao L.) production in Ghana. African J. Agri. Res.
Lagos: Academic Journals, 16, 329-341.

Ojumo, O. G., Ojumo, M. F., and Joonas, k. (2020). A theoretical framework for
assessing the impact of climate change on crop yields. AIMS Int. J. Manag. 14, 65.
doi: 10.26573/2020.14.2.1

Olivier, G., and Bakari, S. (2021). The stubborn reality of child labor in the cocoa
industry: An analysis of the Ivory Coast and Ghana. Int. J. Children’s Rights. Leiden:
Brill, 29, 168-190.

Owoeye, R. S., and Sekumade, A. B. (2016). Effects of climate change on
cocoa production In Ondo State, Nigeria. J. Social Sci. Res. 10, 2014–2025.
doi: 10.24297/jssr.v10i2.4730

Oyedokun, T., and Oyelana, A. A. (2016). Climate variability and cocoa production
in Nigeria: Impacts and adaptation strategies. Int. J. Climate Change Strategies Manag.
Emerald Publishing, 8, 237–255.

Oyekale, A. S. (2015). Climate change induced occupational stress and reported
morbidity among cocoa farmers in South-Western Nigeria. Annals Agri. Environm.
Med. 22, 357–361. doi: 10.5604/12321966.1152095

Pratama, M. F., Rauf, R. A., Antara, M., and Basir-Cyio, M. (2019). Factors
influencing the efficiency of cocoa farms: a study to increase income in rural Indonesia.
PLoS ONE. 14, e0214569. doi: 10.1371/journal.pone.0214569

Rosadi, D. (2012). Ekonometrika dan Analisis Runtun Waktu Terapan dengan
Eviews Yogyakarta: Penerbit Andi Offset.

Ryan, S., and Bicknell, J. (2021). Child labor in cocoa production in Ghana and Ivory
Coast: Policy versus practice. Dev. Pract. Taylor & Francis, 31, 525–538.

Sayouri, A., Jabbour, J., andHénin, S. (2021). Evaluating the effects of climate change
on cocoa production in Côte d’Ivoire. J. Environ. Manage. Amsterdam: Elsevier, 291,
112555.

Schroth, G., Läderach, P., Martinez-Valle, A. I., and Bunn, C. (2017). From
site level to regional adaptation planning for tropical commodities: Cocoa in West
Africa. Mitig. Adapt. Strateg. Glob. Chang. 22, 903–927. doi: 10.1007/s11027-016-
9707-y

Schroth, G., Läderach, P., Martinez-Valle, A. I., Bunn, C., and Jassogne,
L. (2016). Vulnerability to climate change of cocoa in West Africa: Patterns,
opportunities and limits to adaptation. Sci. Total Environm. 556, 231–241.
doi: 10.1016/j.scitotenv.2016.03.024

Sielinou, V. T., Tchinda-Metagne, C., Noubissie, T. S., Ngosong, C., Ngonkeu, E.
L. M., and Kamga, R. (2021). Elevated atmospheric CO2(g) and temperature affect the
composition and nutritional quality of cassava storage roots in Cameroon. J. Agron.
Crop Sci.Wiley-Blackwell Publishing Ltd., 207, 346–357.

Suh, N. N., andMolua, E. L. (2022). Cocoa production under climate variability and
farm management challenges: some farmers’ perspective. J. Agri. Food Res. 8, 100282.
doi: 10.1016/j.jafr.2022.100282

Tahi, G.M.,Waeles, M., N’Guessan, A. K., Kouam,é, C., N’Goran, J. A. K., Kouakou,
K. T., et al. (2020). Assessing the impact of organic farming on soil quality and cocoa
production in Côte d’Ivoire. Agric. Ecosyst. Environ. Amsterdam: Elsevier, 289, 106733.

Tamanjong, E., and Neena, R. (2014). “Insect threat to Cameroon cocoa crop,”
in Sap-sucking bug infests African Nation as demand for chocolate ingredient is
set to outstrip supply, Wall St. J. (2014). Available online at: https://www.wsj.
com/articles/SB10001424052702303795904579433041249679608 (accessed August 05,
2020).

Tchinda-Metagne, C., Gockowski, J., and Nyemeck, J. (2020). Modeling the
potential impacts of climate change on cocoa (Theobroma cacao L.) production in
three agro-ecological zones of Cameroon. Climate Dev. Taylor and Francis Ltd.,
12, 731–745.

Tchokote, J., Martin, P., Nguezet, D., and Onyebuchi, O. K. (2015). An economic
appraisal of cocoa production in Cameroon: The case study of Lekie Division. J.
Econom. Sustain. Develop. 6, 168–181.

Tening, A. S., Njukeng, A. P., Kien, C. N., and Nkwatoh, A. F. (2021). Assessing the
impacts of climate change on cocoa production in southwestern Cameroon. Environ.
Sci. Pollut. Res. 28, 20271–20284.

Thompson, S. A., and Bekele, E. J. (2019). The impact of climate change on cocoa
production: a systematic review. Renewable Agri. Food Syst. Cambridge University
Press, 34, 12–25.

Tsay, R. S. (2014). Multivariate Time Series Analysis: With R and Financial
Applications. Hoboken New Jersey: John Wiley and Sons, Inc.

UNDP (2021). Cameroon. New York: UNDP. Available online at: https://
www.undp.org/content/undp/en/home/countries/cameroon.html. (accessed 11
March 2023).

Frontiers inClimate 19 frontiersin.org

https://doi.org/10.3389/fclim.2023.1069514
http://www.germanwatch.org/en/cri
https://doi.org/10.1038/s41558-020-0797-x
https://eu/capacity4dev/value-chain-analysis-for-development-vca4d-
https://eu/capacity4dev/value-chain-analysis-for-development-vca4d-
https://doi.org/10.1088/1742-6596/1751/1/012013
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10.4001/003.029.0507
https://doi.org/10.1016/j.cropro.2019.104959
https://doi.org/10.1080/10371656.2022.2086223
https://agra.org/aasr2016
https://doi.org/10.1007/978-3-031-19527-3_10
https://doi.org/10.26573/2020.14.2.1
https://doi.org/10.24297/jssr.v10i2.4730
https://doi.org/10.5604/12321966.1152095
https://doi.org/10.1371/journal.pone.0214569
https://doi.org/10.1007/s11027-016-9707-y
https://doi.org/10.1016/j.scitotenv.2016.03.024
https://doi.org/10.1016/j.jafr.2022.100282
https://www.wsj.com/articles/SB10001424052702303795904579433041249679608
https://www.wsj.com/articles/SB10001424052702303795904579433041249679608
https://www.undp.org/content/undp/en/home/countries/cameroon.html
https://www.undp.org/content/undp/en/home/countries/cameroon.html
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Bomdzele and Molua 10.3389/fclim.2023.1069514

Vaast, P., and Somarriba, E. (2014). Trade-offs between crop intensification and
ecosystem services: the role of agroforestry in cocoa cultivation, Agrofor. Syst. 88,
947–956. doi: 10.1007/s10457-014-9762-x

Vargas, R., Cabrera, M., Cicowiez, M., Escobar, P., Hernandez, V., Cabrera, J., et al.
(2018). Climate risk and food availability in Guatamala. Environm. Dev. Econ. 23,
558–579. doi: 10.1017/S1355770X18000335

Warsono, W.arsono, Sulung, L., and Hartono, M. (2019). Modeling and
forecasting by the vector autoregressive moving average model for export of
coal and oil data. Int. J. Energy Econ. Policy. 9, 240–247. doi: 10.32479/ijeep.
7605

Warsono, W.arsono, Sulung, L., and Hartono, M. (2020). Dynamic modeling
using vector error-correction model studying the relationship among data
share price of energy PGAS Malaysia, AKRA, Indonesia, and PTT PCL-
Thailand. Int. J. Energy Econ. Policy. 10, 360–373. doi: 10.32479/ijeep.
8946

Wei, W. W. S. (2019). Multivariate Time Series Analysis and Applications.
Hoboken New Jersey: John Wiley and Sons Inc. doi: 10.1002/97811195
02951

Wooldridge, J. M. (2003). Introductory Econometrics: A Modern Approach,
International Edition.

World Bank (2021). The Changing Wealth of Nations 2021: Building a Sustainable
Recovery.Washington, DC: World Bank.

World Bank (2022). Climate Change Knowledge Portal. Washington, DC: World
Bank Group. Available online at: https://climateknowledgeportal.worldbank.org/
(accessed December 3, 2022).

World Bank. (2019). World Development Report. 2019, The Changing Nature
of Work. Washington, DC: World Bank Group. Available online at: https://www.
worldbank.org/en/publication/wdr2019

World Meteorological Organization (2019). United in Science: High-level synthesis
report of latest climate science information convened by the Science Advisory Group
of the UN Climate Action Summit 2019. Geneva, Switzerland: WMO. Available online
at: https://public.wmo.int/en/resources/united_in_science (accessed March 11, 2023).

World Meteorological Organization (2021). State of the Global Climate 2020.
Geneva, Switzerland: WMO. Available at: https://library.wmo.int/doc_num.php?
explnum_id=10410 (accessed 11 March, 2023).

Frontiers inClimate 20 frontiersin.org

https://doi.org/10.3389/fclim.2023.1069514
https://doi.org/10.1007/s10457-014-9762-x
https://doi.org/10.1017/S1355770X18000335
https://doi.org/10.32479/ijeep.7605
https://doi.org/10.32479/ijeep.8946
https://doi.org/10.1002/9781119502951
https://climateknowledgeportal.worldbank.org/
https://www.worldbank.org/en/publication/wdr2019
https://www.worldbank.org/en/publication/wdr2019
https://public.wmo.int/en/resources/united_in_science
https://library.wmo.int/doc_num.php?explnum_id=10410
https://library.wmo.int/doc_num.php?explnum_id=10410
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

	Assessment of the impact of climate and non-climatic parameters on cocoa production: a contextual analysis for Cameroon
	1. Introduction
	2. The nexus: climate, non-climatic parameters and cocoa production
	3. Materials and methods
	3.1. Analytical framework
	3.2. Data collection
	3.3. Pre- and Post-estimation Tests
	3.3.1. Unit-root test for stationarity
	3.3.2. Cointegration test
	3.3.3. Vector autoregressive (VAR) model
	3.3.4. Test for normality of residuals
	3.3.5. Granger causality test

	3.4. Empirical model: multivariate vector error correction model (VECM) specification

	4. Results
	4.1. Trend analyses
	4.1.1. Temperature variations on cocoa production trends
	4.1.2. Rainfall variations and cocoa production trends
	4.1.3. Carbon dioxide (CO2(g)) emissions and cocoa production trends

	4.2. Impact analysis
	4.2.1. Pre-estimation test
	4.2.1.1. Unit root test results
	4.2.1.2. Johansen test for cointegration

	4.2.2. Vector error correction model (VECM) regression
	4.2.3. Robustness tests
	4.2.3.1. Johansen normalization restrictions imposed
	4.2.3.2. Test for model stability
	4.2.3.3. Diagnostic tests and model fitness
	4.2.3.4. Analysis of the Granger causality test


	4.3. Discussion

	5. Conclusion and policy implications
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	References


