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Satellite rainfall estimation products (SRPs) can help overcome the absence

of rain gauge data to monitor rainfall-related risks and provide early warning.

However, SRPs can be subject to several sources of errors and need to be

validated before specific uses. In this study, a comprehensive validation of

nine high spatial resolution SRPs (less than 10 km) was performed on monthly

and dekadal time scales for the period 2001–2015 in West Africa. Both SRPs

and reference data were remapped to a spatial resolution of 0.1 ◦ and the

validation process was carried out on a grid scale, with 1,202 grids having at

least one rain gauge throughout West Africa. Unconditional statistical metrics,

such as mean absolute error, Pearson correlation, Kling-Gupta e�ciency and

relative bias, as well as the reproducibility of rainfall seasonality, were used to

describe the agreement between SRPs and reference data. The PROMETHEE

II multi-criteria decision analysis (MCDA) method was employed to rank SRPs

by considering criteria encompassing both their intrinsic characteristics and

performance metrics. Overall, IMERGv6-Final, MSWEPv2.2, RFE2, ARC2, and

TAMSATv3.1, performed reasonably well, regardless of West African climate zones

and rainy season period. Given the performances displayed by each of these

SRPs, RFE2, ARC2, and MSWEPv2.2 would be suitable for drought monitoring.

TAMSATv3.1, IMERGv6-Final, RFE2, ARC2, and MSWEPv2.2 are recommended for

comprehensive basin water resources assessments. TAMSATv3.1 and MSWEPv2.2

would be of interest for the characterization of variability and long-term changes

in precipitation. Finally, TAMSATv3.1, ARC2, and MSWEPv2.2, could be good

alternatives to observed data as predictants in West African Regional Climate

Outlook Forum (RCOF) process.
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1. Introduction

High variability in rainfall and the resurgence of extreme

hydro-meteorological events such as floods, droughts, and heavy

rains have highlighted the vulnerability of humans and ecosystems

in West Africa. The agricultural sector, a crucial component of the

population’s survival, relies heavily on rainfall. Indeed, significant

production losses may result from decreases in water resources

and increases in waterborne diseases with deviations from normal

precipitation levels. To address these challenges, it is essential

to have accurate rainfall data in the region to track changes in

the rainfall pattern over time and for practical applications in

hydrology and agriculture. This information will help mitigate the

risks associated with rainfall.

Different methods, such as rain gauges, radar, satellite sensors,

and, more recently, microwave signals from commercial cellular

networks, have been used to measure rainfall. Rain gauges

are the most accurate method, but the data collected is only

representative of a small area around the gauge. Therefore, a

dense network of gauges is needed for reliable precipitation

analyses. In West Africa, the rainfall network is sparse with

often incomplete historical series (Dembélé and Zwart, 2016;

Maidment et al., 2017), making it challenging to gather accurate

data. Additionally, real-time data transmission is difficult, slowing

down the dissemination of information for decision-making

(Nicholson et al., 2003a).

Advances in remote sensing science have allowed for

the estimation of rainfall from satellite observations using

microwave and infrared spectral bands. This provides a viable

alternative to traditional ground-based precipitation measurement

methods in West Africa, as it offers continuous coverage

with high spatiotemporal resolution. Organizations such as the

AGRHYMET Regional Climate Center for West Africa and the

Sahel (AGRHYMET RCC-WAS) use these satellite-based estimates

for climate monitoring and decision-making. However, there

are sources of error such as gaps in revisiting times, a weak

correlation between remote sensing signals and precipitation

rates, and atmospheric effects that alter the radiation field (Bitew

and Gebremichael, 2011). Thus, it is important to conduct

validation studies to determine the error in the estimation and

ensure confidence in the use of these satellite products for

various applications.

Several studies have been conducted in West Africa to validate

SRPs. Early studies include Laurent et al. (1998), Ali et al. (2005),

Roca et al. (2010), Novella and Thiaw (2010), Jobard et al. (2011),

and Pierre et al. (2011) that focused on the Sahel subregion, and

Nicholson et al. (2003a), Nicholson et al. (2003b), and Lamptey

(2008) on a larger scale in West Africa. Ali et al. (2005) compared

GPCC and three satellite-based products (CMAP, GPCP, and GPI)

over the Sahel using a network of AGRHYMET RCC-WAS rain

gauges at a monthly scale and a spatial resolution of 2.5◦. They

found that CMAP performed the best, followed by GPCC and

GPCP, with GPI being far behind. Comparing three satellite-based

products (EPSAT-SG, GSMAP, and TMPA) with a rain gauge

network (580 rain gauges) over the Sahel, Roca et al. (2010) showed

that combined infrared–microwave (IR–MW) satellite products

described rainfall variability similar to ground measurements.

Novella and Thiaw (2010) compared the gauge-only product CPC

unified to five satellite-based products over the Sahel and found

the good performance of RFE2 and CMORPH in discriminating

rainfall occurrences and good accuracy of RFE, ARC2, and CPC

unified. Jobard et al. (2011) found that near-real-time products

3B42-RT, CMORPH, and PERSIANN performed poorly compared

to other products considered for intercomparison. Regional

products EPSAT-SG, TAMSAT, and RFE2 had the best performance

compared to global products. Nicholson et al. (2003a) assessed

gauge-only (GPCC), satellite (GPI, SSM/I), and blended rainfall

(GPCP) products over West Africa using 515 rain gauges datasets.

They found that the mean fields derived from the gauge network,

the GPCC gauge-only analysis, and the GPCP were similar, but

there were large systematic errors in the satellite-only products with

biases of 20 and 40% for the mean rain field as a whole and much

larger biases in individual years.

The most recent studies have focused more on the country

level (Gosset et al., 2013, 2018; Amekudzi et al., 2016; Dembélé

and Zwart, 2016; Akinyemi et al., 2020; Atiah et al., 2020a,b;

Dembélé et al., 2020; Ogbu et al., 2020; Abdourahamane, 2021)

except Satgé et al. (2020). Such studies have revealed the

adequacy/inadequacy of SRPs at small scales generally in areas

with diverse climates, complex topographies, coastal regions, and

forest zones. Two dense research gauge networks from the AMMA-

CATCH observing system in Benin (Sudanian area) and Niger

(Sahelian area), were used by Gosset et al. (2013) to evaluate

eight global (PERSIANN, CMORPH, TMPA 3B42-RT, GSMaP,

GSMaP-RT, GPCP-1DD, TMPA 3B4) and regional (RFE2, EPSAT-

SG) satellite-based rainfall products. Regional products tend to

underestimate rainfall amounts with too many days with low

rainfall. Global products, especially real-time ones (GSMAP-RT,

CMORPH, PERSIANN, and TRMM 3B42RT), overestimate high

rainfall rates. EPSAT-SG showed the best correlation, while RFE2

showed a low correlation and bias. Dembélé and Zwart (2016)

evaluated SRPs in Burkina-Faso and found that on a daily scale, all

the SRPs used showed poor performance, with the best correlation

observed for the CHIRPS data. On the dekadal and monthly scales,

RFE2 performed the best, followed by ARC2 and CHIRPS. Another

study evaluated TAPEER, GSMAP, CMORPH, PERSIANN, TMPA,

and IMERG using rain gauge networks in Niger, Burkina Faso, and

Benin, with TAPEER demonstrating excellent abilities, particularly

over Niger and Burkina Faso (Gosset et al., 2018). The other

products showed less bias in Benin, with CMORPH standing

out with relatively good correlations, GSMAP slightly less, and

PERSIANN having a strong bias in the Sahel. Atiah et al. (2020a)

validated satellite products using gridded rain gauge data at various

time scales. It was observed that the performance of the products

in the country was mostly scale and location-dependent, with

CHIRPS revealing a better skill on both seasonal and annual

scales countrywide. In Nigeria, Akinyemi et al. (2020) compared

TRMM, CHIRPS, RFE2, and NOAA with the ground reference

and found CHIRPS and TRMM to be the best performing at all

the locations studied. Ogbu et al. (2020) also found CHIRPS to

perform the best in all Nigerian climatic zones. The evaluation of

four SRPs (CHIRPSv2.0, ARC2, CMORPH, and TAMSAT) over

Niger revealed that the 3-h CMORPH data set is a good sub-

daily rainfall product, whereas CHIRPS and ARC2 have good

potential for hydroclimatological applications on a daily, dekadal,

and monthly basis (Abdourahamane, 2021).
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For regional climate institutions, such as AGRHYMET RCC-

WAS which monitors rainfall for seventeen countries across West

and Central Africa, regional assessments are more valuable when

selecting the most skillful SRP for region-wide monitoring of

rainfall-related risks and providing early warning. In this regard,

the most recent study was conducted by Satgé et al. (2020). They

evaluated 23 gridded precipitation datasets across West Africa

through direct comparisons with rain gauge measurements at

daily and monthly time scales. Similar to the early studies at

the regional level, the main shortcoming of this study was the

limited number of rain gauges used as a reference, which was

not sufficiently representative of the study area. Additionally, most

previous studies at a regional scale need to be updated due to the

improvements in satellite rainfall estimation algorithms and new

product development over time. As such, the objective of this study

is to evaluate satellite precipitation products for rainfall monitoring

and early warning in West Africa. This research focuses on satellite

products with a relatively high spatial resolution (≤ 10 km) in order

to provide early rainfall warnings at the most accurate spatial scale

possible.

This paper, which summarizes the main findings of the study,

is divided into four parts. The first part describes the study area

and the data used, including a physical description of the study

area and an overview of the reference data and satellite estimates.

The second part covers the methods used in the study, including

the presentation of the main statistical metrics used for validation.

The third and fourth parts present the results and discussion,

respectively. Finally, the conclusion synthesizes the key findings of

the study, along with its limitations and future perspectives.

2. Study area and data source

2.1. Study area

The study area encompasses the Economic Community of

West African States (ECOWAS) and the Permanent Interstate

Committee for Drought Control in the Sahel (CILSS) member

countries, which are located between latitudes 3◦N and 25◦N, and

longitudes 20◦W and 25◦E (Figure 1). Bordered by the Gulf of

Guinea in the South, Mauritania, Mali, and Niger in the North,

the highlands of Chad in the East and the Atlantic Ocean in the

West, this region experiences an average annual temperature of

approximately 18◦C, with maximum temperatures reaching over

40◦C in March/April. The West African monsoon, ocean currents,

and local characteristics such as topography primarily affect the

rainfall patterns in this region.

The West African monsoon is driven by the opposition of the

continental mass (the West African land surface) and the Atlantic

Ocean, which results in significant differences in temperature and

pressure. The wind moves from high pressures above the ocean

to low pressures above the continent, thus supplying energy to

the Intertropical Convergence Zone (ITCZ) and leading to heavy

rainfall. The circulation of the African monsoon system, which is

determined by anticyclones and thermal depressions, results in the

summer monsoon in West Africa. The Intertropical Front (ITF)

represents the confluence of southeasterly and southwesterly winds

in the lower layers of the atmosphere. The seasonal rainfall cycle

in this region is influenced by the monsoon in two phases (Lebel

et al., 2009). The first phase is characterized by the gradual onset

of rain from the tropical Atlantic and is referred to as the “oceanic

regime.” The second phase involves a sudden increase in average

daily rainfall and is referred to as the “continental regime”. The

continental regime begins in late June and accounts for 75–90% of

the total annual rainfall in the region.

Regarding the bioclimatic zones, the study area can be divided

into five regions (Figure 1), according to CILSS (2016). The

transitions between these zones represent a continuous ecological

gradient. The first region is the Saharan zone, which is located

in the northernmost part of the region with annual rainfall lower

than 200 mm and is characterized by an arid desert climate. This is

followed by the Sahelian zone, which is located southward between

the 200 and 600 mm isohyets and has a semi-arid climate. The

third zone is the Sudanian zone, located south of the semi-arid

Sahelian strip, with an average annual rainfall of 600–1,200mm and

a dry season lasting 5–7 months. The fourth zone is the Guinean

area, which is defined by an average annual rainfall of 1,200–2,200

mm, with some parts having a bimodal seasonal cycle driven by

the movements of the intertropical front. It is located immediately

south of the Sudanian zone. The last zone, the southernmost one, is

the Guineo-Congolian region, which is the wettest in West Africa

with an average annual rainfall higher than 2,200 mm.

2.2. Reference and satellite data used

The reference data used in the study was supplied by the

AGRHYMET RCC-WAS and consisted of merged rain gauge and

satellite precipitation products covering the period 2001–2015 at

a dekadal time scale and with a spatial resolution of 5 km. The

CHIRPSv2.0 data (Funk et al., 2015) represents the satellite rainfall

product used by the AGRHYMET RCC-WAS in their merging

process. Basically, CHIRPSv2.0 is itself a merged product and

integrates several rain gauges from the study area (rain gauge

in red in Figure 2). This integration is variable and depends on

the availability of observations at rainfall stations. Figure 3 shows

the number of rainfall stations involved at least once a year in

the CHIRPSv2.0 and AGRHYMET RCC-WAS merging processes.

There was a significant decrease in the number of rainfall stations

included in the CHIRPSv2.0 data from 2005. The CRA’s merged

product aims tomaximize the benefits of both data sources (satellite

and rain gauges), CHIRPSv2.0 because it provides full spatial

coverage, while the rain gauges from AGRHYMET RCC-WAS

(1,325 rain gauges in red and black in Figure 2) providemuch better

information on rainfall amounts. However, the AGRHYMET RCC-

WAS final merged product is not entirely independent of other

satellite datasets that are being evaluated (because some of them

also contain the same TIR imagery used in CHIRPS), and is also

subject to constraints associated with the sharing of in-situ rainfall

data. Therefore, for this study, grids of the AGRHYMET RCC-

WAS merged product that had at least one rain gauge were used

(Figure 2).

The satellite rainfall products used in the study have three key

characteristics: a long historical record (at least 20 years), near real-

time availability for rainfall monitoring, and a spatial resolution

of 0.1◦ or higher. The high spatial resolution of these products is

crucial because in case of abnormal rainfall, early warning systems
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FIGURE 1

Map of the study area showing average annual rainfall (Period 2001–2015, AGRHYMET RCC-WAS merged product) and bioclimatic zones (CILSS,

2016).

FIGURE 2

Rain gauges used in AGRHYMET RCC-WAS merged rainfall product (red and black dot) and those used in CHIRPSv2.0’s merged product (red dot).

focus on the affected area to identify the specific locations impacted

and inform decision-making. Table 1 provides the specifications of

the satellite rainfall products used.

3. Methods

3.1. Reference data merging

The method for merging CHIRPSv2.0 with the AGRHYMET

RCC-WAS rain gauge network involves quality control of in-

situ data and a simple bias adjustment, as described in Dinku

et al. (2013). This bias adjustment involves extracting satellite

rainfall estimates at rain gauge locations, computing the difference

between the satellite estimate and rain gauge values at each station,

interpolating these differences to each grid point using inverse

distance weighting, and adding the interpolated differences back to

the satellite estimate. The final product has a resolution of 0.05◦,

which is that of CHIRPsv2.0. This method is implemented using

R-based software called Climate Data Tools (Dinku et al., 2022).

However, the main limitation of these data is that they are difficult

to update due to delays in transmitting country rain gauge data to

the regional level. Additionally, the low number of rainfall stations

involved in the merging process for countries like Nigeria, Sierra

Leone, and Liberia means that special attention should be given to

these regions for different uses.
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FIGURE 3

Annual evolution of a number of rain gauges involved in AGRHYMET RCC-WAS and CHIRPSv2.0 merged products.

3.2. Validation statistics

The validation was carried out over the overlapping period

of 2001–2015 with all SRPs used on the dekadal and monthly

timescales. These two timescales aligned with the frequency of

dissemination used in most West African meteorological services

for rainfall reports. SRPs with spatial resolutions higher than 0.1◦

and reference data were bilinearly interpolated at 0.1◦ to facilitate

the comparison process, which was carried out on a grid scale.

Across West Africa, 1202 grids (0.1◦) with at least one rain gauge

were considered in the validation process (Figure 2). These include

391, 542, 177, and 92 for the Sahelian, Sudanian, Guinean, and

Guineo-Congolian zones, respectively.

Table 2 lists the validation statistics used in this study.

Continuous statistical metrics are used to describe the agreement

between SRPs and reference data and include Pearson’s correlation

(r), relative bias (RB), mean absolute error (MAE), and Kling-

Gupta efficiency (KGE). r indicates how well the SRPs correspond

to the reference data; RB is used to quantify the magnitude of

the overestimation or underestimation of SRPs; MAE measures

the mean deviation of the SRPs from the reference data; and

KGE (Gupta et al., 2009) is used to quantify how well the SRPs

can estimate the observed rainfall amount. Pearson’s correlation

is classified as weak when its value is less than 0.2, moderate

when it falls between 0.2 and 0.5, and strong when it exceeds

0.5 (de Carvalho et al., 2017). According to Thiemig et al. (2013)

and Yonaba et al. (2021), the SRP (Satellite Rainfall Product) is

considered to have failed in estimating the observed rainfall amount

if the KGE is less than 0.5. It is deemed acceptable if the KGE falls

within the range of 0.50 to 0.75, good if it is between 0.75 and 0.9,

and very good or excellent if the KGE is equal to or greater than 0.9.

For the comparison on the dekadal scale, the metrics were

computed for each period of the rainy season. These are the onset,

peak (full) rainfall, and cessation periods of the rainy season,

determined based on the study by Dunning et al. (2016). For the

onset period, the following dekads are considered by region: dekads

May 1 to June 3 for the Sahel, March 3 to May 2 for the Sudan,

March 2 to April 2 for the Guinean, and February 1 to April 1

for the Congolo-Guinean. The cessation period included dekads

October 1 to October 3 for the Sahel, October 2 to November 1 for

the Sudan and November 2 for the Guinean and Congolo-Guinean

regions. The full rainfall period for each zone is comprised of the

remaining dekads between onset and cessation. The presentation

aims to assist climatologists in selecting the best performing SRPs

for these different periods. Additionally, the metrics of the wettest

months (March to October) are presented for comparison on a

monthly scale.

Taylor diagrams (Taylor, 2001) were used to display the

global performance of SRP across each bioclimatic zone. These

diagrams offer a visual tool to compare SRPs against reference data

based on continuous metrics. The integrated continuous metrics

include Pearson’s correlation, the root mean square error, and

the variance ratio between the reference values and those of SRP.

In addition, the reproducibility of the seasonal cycle by different

SRPs was assessed in four major bioclimatic zones in West Africa,

namely Sahelian, Sudanian, Guinean, and Guineo-Congolian (see

Figure 1). To accomplish this, the average monthly rainfall was

computed from the rain gauge data for the delimited regions within

each bioclimatic zone.

3.3. Ranking of satellite rainfall estimation
products

MCDA’s PROMETHEE II (Behzadian et al., 2010 and Greco

and Greco, 2015 for further details) method was used to rank SRPs

(referred to as alternatives) considering various criteria, including

their intrinsic characteristics (which are important in rainfall
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TABLE 1 Satellite rainfall estimate products used in this study and their characteristics.

Name Data input Temporal
coverage

Spatial
resolution

Temporal
resolution

Latency How is gauge data
integrated?

References

ARC2 IR

gauges

January 1983-present 0.1◦ × 0.1◦ Daily 13 h Merged Novella and Thiaw, 2013

RFE2 IR

PMW

gauges

January 2001-present 0.1◦ × 0.1◦ Daily 13h Merged NOAA/CPC, 2001

MSWEPv2.2 A set of

rainfall

products

January 1979-present 0.1◦ × 0.1◦ 3-hourly Irregular/ 3h Merged Beck et al., 2019

IMERGv6-Late IR, PMW

Satellite radar

gauges

Juin 2000-present 0.1◦ × 0.1◦ Half-hourly 12h Merged Huffman et al., 2018

IMERGv6-Final IR, PMW,

Satellite radar,

gauges

Juin 2000-present 0.1◦ × 0.1◦ Half-hourly 2.5

months

Merged Huffman et al., 2018

CMORPHv1.0 IR,

PMW,

gauges

January 1998-present 8 km× 8 km Half-hourly 3–4

months

Bias

adjustment

Xie et al., 2017

PERSIANN-CCS-CDR GPCP v2.3,

PERSIANN-CCS

January 1983-present 0.04◦ × 0.04◦ 3-hourly ∼18-24
months

Bias

adjustment

Sadeghi et al., 2021

PDIR-Now IMERGv6 (PMW),

PERSIANN-CDR (IR),

CHPClim, (Gauges)

March 2000-present 0.04◦ × 0.04◦ hourly 15–60

min

Bias

adjustment

Nguyen et al., 2020

TAMSATv3.1 IR, gauges January 1983-present 0.0375◦ × 0.0375◦ Daily 5 days Calibration Maidment et al., 2017
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TABLE 2 Continuous statistical metrics used for validation.

Statistical indicator Formula Values range Perfect score

Correlation (r)
∑n

i (oi−o)(si−s)
∑n

i

√
(oi−o)2

√
(si−s)2

[-1,1] 1

Mean absolute error (MAE)
∑n

i |si−oi |
n

[0, +∞] 0 mm

Relative bias (RB)
∑n

i (si−oi)
∑n

i oi
∗ 100 [-∞, +∞] 0 %

Kling-Gupta

efficiency (KGE)

KGE = 1−
√

(r − 1)2 + ( s̄
ō
− 1)2 + ( CVs

CVo
− 1)2 [-∞, 1] 1

o denotes reference, s satellite rainfall estimation products (SRP), ō the reference average, s̄ the SRP average. CV, coefficient of variation.

monitoring and early warning) and their performances, such as

correlation, MAE, RB, KGE and seasonal cycle reproducibility.

Their intrinsic characteristics considered are temporal coverage,

spatial resolution and latency. The performance metrics were

computed for all grids within each zone and for each period

for the dekadal analysis. For the monthly analysis, the metrics

were computed for all months collectively, not independently, for

each month. Two rankings were conducted, the first considering

only performance metrics weighted equally (0.2) and the second

considering all criteria. In the latter case, Table 3 displays each

criterion’s weight, preference function, preference and indifference

threshold, and the direction of the criterion. The weights assigned

to the criteria consider the criterion’s importance in producing

information for rainfall monitoring and early warning. Thus, the

criteria on the performance of the SRPs have more weight (0.14)

than all the other criteria. This is followed by the latency criterion

(with a weight of 0.12), which is very important, as the timeliness

of rainfall information gives users sufficient time to implement

strategies. A latency of more than 5 days, for example, is almost

useless in the production of rainfall monitoring reports. A weight

of 0.105 is assigned to the temporal coverage criterion. SRPs

with good temporal depth allow the characterization of rainfall

anomalies, rainfall variability, and long-term changes. For these

analyses, it is recommended to consider time series of at least 30

years (WMO, 2007). The spatial resolution has the lowest weight,

as the SRPs considered already have a resolution of less than 0.1◦.

Among the performance criteria, the seasonal cycle reproducibility

is considered as a criterion level with the levels very good, good,

average, bad and very bad. These levels are coded from 1 to 5,

with 1 considered very bad. Relative bias is classified into 7 classes:

−100 ≤ RB < −80, −80 ≤ RB < −40, −40 ≤ RB < −20,
−20 ≤ RB ≤ 20, 20 < RB ≤ 40, 40 < RB ≤ 80, 80 < RB ≤ 100

and coded 4 for classes −100 ≤ RB < −80 and 80 < RB ≤ 100,

3 for classes −80 ≤ RB < −40 and 40 < RB ≤ 80, 2 for

classes −40 ≤ RB < −20 and 20 < RB ≤ 40 and 1 for class

−20 ≤ RB ≤ 20. KGE is classified on the basis of the work

of Yonaba et al. (2021). Class −∞ < KGE < 0 coded 1, class

0 ≤ KGE < 0.5 coded 2, class 0.5 ≤ KGE < 0.75 coded 3, class

0.75 ≤ KGE < 0.9 coded 4, and class KGE ≥ 0.9 coded 5. SRPs

latencies were converted to days and spatial resolutions to km. The

temporal coverage was categorized into three classes: class 1, coded

as SRPs with a temporal coverage of less than 20 years; class 2, coded

as SRPs with a temporal coverage between 20 and 30 years; and class

3, coded as SRPs with a temporal coverage of more than 30 years.

The first ranking differs from the second only in terms of weight

and the criteria taken into account. The decision matrix used for

the Sahelian zone and the rainfall period at the dekadal timescale is

provided as an example in Table 4.

4. Results

4.1. Performance of satellite rainfall
estimation products across individual grid
cells and bioclimate zones

Figures 4–7 display the correlation coefficient, mean absolute

error, relative bias, and Kling-Gupta efficiency for the dekadal and

monthly comparison. For dekadal data comparison, the correlation

coefficients between the SRPs and reference data are greater than

0.2 for over 60% of the grids examined, regardless of climatic

zone, onset, cessation, or peak rainfall periods (Figure 4A). In the

Sahel region, during the onset, over 75% of the grids indicate

good correlation (> 0.5) with the reference data for all SRPs

except PDIR-Now, with MSWEPv2.2, IMERGv6-FINAL, ARC2,

TAMSATv3.1, and RFE2 displaying the strongest correlation.

During the peak rainfall period, all SRPs showed better correlations

in the Sahel, with MSWEPv2.2 performing the best. During the

cessation period, IMERGv6-FINAL performed well, with over 75%

of grids exhibiting a correlation greater than 0.5. In the Sudanian

region, PDIR-Now had the worst correlation with the reference

data regardless of the season period, whileMSWEPv2.2, IMERGv6-

FINAL, IMERGv6-LATE, ARC2, TAMSATv3.1, and RFE2 were

the best correlated with over 75% of the grids displaying a

correlation greater than 0.5. In the Guinean region, during the

peak and cessation of the rainy season, MSWEPv2.2, IMERGv6-

FINAL, TAMSATv3.1, and RFE2 outperformed all other SRPs.

During the onset period, MSWEPv2.2, IMERGv6-FINAL, RFE2,

and ARC2 exhibited better performance than other SRPs, with

fewer grids having a correlation greater than 0.5. During the onset

and cessation periods of the rainy season in the Guineo-Congolian

region, MSWEPv2.2, ARC2, the two IMERGs, and TAMSATv3.1

products showed good correlation with reference data compared

to other SRPs. TAMSATv3.1 outperformed all other SRPs in terms

of correlation during the peak rainfall period, with over 70% of

the grids displaying good correlation. MSWEPv2.2, the IMERG

products, ARC2, and RFE2 followed as the next best SRPs.
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TABLE 3 Criteria with their weight, preference function, preference and indi�erence threshold, and the direction of the criterion.

Temporal coverage Spatial resolution Latency Seasonal cycle reproducibility Correlation Mean absolute error Relative bias KGE

Weight 0.105 0.075 0.12 0.14 0.14 0.14 0.14 0.14

Preference threshold 1 5 5 2 0.1 10 1 1

Indifference threshold 0 3 0.042 1 0.01 5 0 0

Preference function Level Gaussian Gaussian Level Linear Linear Level Level

Direction of criteria Max Min Min Max Max Min Min Max

TABLE 4 Decision matrix used for the Sahelian zone and the rainfall period at the dekadal timescale.

Criteria

Temporal
coverage

Spatial
resolution

Latency (days) Seasonal cycle reproducibility Correlation Mean absolute error Relative bias KGE

A
lt
er
n
at
iv
es

ARC2 3 11.1 0.5417 5 0.6768992 15.80756 1 3

RFE2 2 11.1 0.5417 5 0.6875763 15.56282 1 3

MSWEPv2.2 3 11.1 0.125 4 0.7095117 15.84456 1 3

IMERGv6-Late 2 11.1 0.5 2 0.6342082 29.32944 3 2

IMERGv6-Final 2 11.1 75 5 0.6861750 17.33361 1 3

CMORPHv1.0 2 8 120 5 0.6517023 19.03401 1 3

PERSIANN-CCS-

CDR

3 4.4 540 4 0.5966250 21.43904 2 3

PDIR-Now 2 4.4 0.0417 2 0.4866975 24.83120 3 1

TAMSATv3.1 3 4.1625 5 4 0.6475500 15.92268 1 2
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The magnitude of the mean absolute error (MAE) shown

in Figure 5A is proportional not only to the amount of rainfall

in each region but also to the rainfall total for each period

of the rainy season. In the Sahel region, more than 80% of

the pixels considered had an MAE of less than 50 mm for

all SRPs, with TAMSATv3.1, RFE2, ARC2, MSWEPv2.2, and

IMERGv6-FINAL showing excellent to good MAEs in that order.

Regarding the Sudanian zone, the SRPs’ performance in terms

of MAE ranged from excellent to good in the following order:

MSWEPv2.2, TAMSATv3.1, IMERGv6-FINAL, RFE2, and ARC2.

In the Guinean and Guineo-Congolese regions, TAMSATv3.1,

RFE2, ARC2, MSWEPv2.2, and IMERGv6-FINAL hadMAE values

below 50 mm for more than 75% of the selected grids.

In the Sahel region, RFE2, IMERGv6-FINAL, and ARC2

outperformed other SRPs, with RBs between −20 and 20% for

more than 70% and less than 40% of the grids considered for

the peak rainfall period and for the onset and cessation periods,

respectively (Figure 6A). TAMSATv3.1, PDIR-Now, MSWEPv2.2,

and CMORPHv1.0 underestimated the dekadal rainfall for over

60% of the grid cells during the onset of the season. During the

period of cessation of rainfall, this underestimate characterized

more than 75% of the grids for these 4 SRPs. PDIR-Now

significantly underestimated rainfall during the peak rainfall

period for more than 90% of the grids. Only IMERGv6-

LATE and PERSIANN-CCS-CDR significantly overestimated

rainfall during the peak rainfall period. In the Sudanian region,

TAMSATv3.1, RFE2, MSWEPv2.2, CMORPHv1.0, ARC2, and

IMERGv6-FINAL outperformed other SRPs, with RBs between -

20 and 20% for more than 60% of the grids during the peak

rainfall period. At the onset and cessation periods, TAMSATv3.1,

CMORPHv1.0, and IMERGv6-FINAL had RBs close to zero

for more than 40% of the grids and outperformed other

SRPs. In the Guinean and Guinean-Congolian regions, RFE2,

IMERGv6-FINAL, MSWEPv2.2 and ARC2 outperformed other

SRPs during the peak rainfall period. At the beginning and

end of the rainy season, almost all SRPs overestimated observed

rainfall for more than 60% of the grids. RFE2, ARC2, and

CMORPHv1.0 showed biases close to zero for more than 30%

of the grids at the start of the rainy season in the Guinean-

Congolian zone, while for the Guinean region only TAMSATv3.1,

IMERGv6-FINAL, CMORPHv1.0, and MSWEPv2.2 presented

similar statistics.

Regarding to the KGE performance metric (Figure 7A), it

was observed that, regardless of the period and zone, the SRPs

MSWEPv2.2, IMERGv6-FINAL, RFE2, ARC2, and to some extent,

TAMSATv3.1 exhibited superior performance over all other SRPs.

Additionally, it was noted that these SRPs had fewer grids with KGE

values greater than 0.5 the onset and cessation periods compared to

during the peak of the rainy season.

For monthly data comparison, RFE2, MSWEPv2.2, IMERGv6-

FINAL, CMORPHv1.0, and ARC2 outperformed other SRPs in

terms of correlation (Figure 4B), relative bias (Figure 5B), MAE

(Figure 6B), and KGE (Figure 7B) for the Sahel region from July to

September. Over 60% of selected grids showed correlations higher

than 0.5, MAE lower than 50 mm, and relative bias close to zero,

except for MSWEPv2.2, which was underestimated for more than

50% of grids. KGE values above 0.5 were observed for only 15% of

the grids. The same SRPs and TAMSATv3.1 showed good scores for

April to June and October but for fewer grids.

Except for PDIR-Now, IMERG-LATE, and PERSIANN-CCS-

CDR, all SRPs performed well in the Sudanian region, showing

correlations greater than 0.5 and an MAE of less than 50 mm with

a close-to-zero relative bias for over 50% of the pixels considered.

However, very few pixels showed KGE values above 0.5.

TAMSATv3.1, MSWEPv2.2, IMERGv6-FINAL, CMORPHv1.0,

RFE2, and ARC2 outperformed other SRPs in terms of correlation

and MAE over the Guinean and Guinean-Congolian regions.

MSWEPv2.2, IMERGv6-FINAL, CMORPHv1.0, and TAMSATv3.1

showed good scores in terms of KGE in the Guinean region. For the

Guineo-Congolian region, only MSWEPv2.2 and, to a lesser extent,

IMERGv6-FINAL showed good scores for some grids.

4.2. Global performance of satellite rainfall
estimation products across each
bioclimatic zone

Figures 8, 9 present the global performance for each bioclimatic

zone. For the dekadal timescale (Figure 8), and considering the

Sahelian region, MSWEPv2.2, IMERGv6-FINAL, ARC2, RFE2,

CMORPHv1.0 and to some extent, TAMSATv3.1 performed

well during the onset, cessation and the rainfall period, with

MSWEPv2.2 performing the best. TAMSATv3.1 underestimated

the variance in observed dekadaly precipitation over the

region. Regarding the Soudan region, TAMSATv3.1 was the

best SRP reproducing the observed precipitation, followed

by MSWEPv2.2, ARC2, and RFE2. In the Guinean region,

TAMSATv3.1, MSWEPv2.2, IMERGv6-FINAL, ARC2, and RFE2

were closer to the observation than any other SRPs. In the Guineo-

Congolian region, ARC2, RFE2, and TAMSATv3.1 performed well

during onset, the peak of rainfall and cessation period. For the

monthly timescale (Figure 9), TAMSATv3.1, IMERGv6-FINAL,

MSWEPv2.2, ARC2, RFE2, and CMORPHv1.0, to some extent,

outperformed other SRPs regardless of the month considered and

climates zone.

4.3. Seasonal cycle reproducibility

All SRPs captured relatively well the seasonal rainfall cycles for

the Sahelian, Guinean, and Sudanian zones, as shown in Figure 10,

with TAMSATv3.1, IMERGv6-FINAL, and MSWEPv2.2 exhibiting

the best performance in reproducing the observed cycles. In

the Guineo-Congolian zone, only MSWEPv2.2, IMERGv6-FINAL,

TAMSATv3.1, and CMORPHv1.0 managed to capture the observed

seasonal cycle to some extent.

4.4. Ranking of satellite rainfall estimation
products

The ranking of SRPs based on multi-criteria decision analysis

(MCDA) is presented in Tables 5, 6. For dekadal timescales, when
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FIGURE 4

Correlation between satellite rainfall estimate products and reference rainfall data at dekadaly (A) and monthly (B) times scales, for retained grids,

bioclimatic zones, and di�erent period or months of rainfall season (period: 2001–2015).
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FIGURE 5

Mean absolute error between satellite rainfall estimate products and reference rainfall data at dekadaly (A) and monthly (B) times scales, for retained

grids, bioclimatic zones, and di�erent period of rainfall season (period: 2001–2015).
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FIGURE 6

Relative bias between satellite rainfall estimate products and reference rainfall data at dekadaly (A) and monthly (B) times scales, for retained grids,

bioclimatic zones, and di�erent period of rainfall season (period: 2001–2015).
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FIGURE 7

Relative bias between satellite rainfall estimate products and reference rainfall data at dekadaly (A) and monthly (B) times scales, for retained grids,

bioclimatic zones, and di�erent period of rainfall season (period: 2001–2015).

Frontiers inClimate 13 frontiersin.org

https://doi.org/10.3389/fclim.2023.1185754
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Houngnibo et al. 10.3389/fclim.2023.1185754

FIGURE 8

(A–D) Global performance across bioclimatic zones at dekadal timescale.

considering only performance measures as criteria, it was observed

that in the Sahel zone, the top-ranked SRPs are IMERGv6-Final

(0.067812734), RFE2 (0.062893636), ARC2 (0.053909615), and

MSWEPv2.2 (0.009763298) for the onset period. For the peak

of the rainfall period, the top-ranked SRPs are MSWEPv2.2

(0.05891219), RFE2 (0.05703134), IMERGv6-Final (0.05395747),

and ARC2 (0.05350077). For the end of the season period, the

top-ranked SRPs are RFE2 (0.06600511), ARC2 (0.06317200),

IMERGv6-Final (0.03061368), and PERSIANN-CCS-CDR

(0.02690026). Regarding the Sudan region, the top-ranked SRPs for

the onset period are IMERGv6-Final (0.040407544), MSWEPv2.2

(0.032534353), TAMSATv3.1 (0.030659878), and CMORPHv1.0

(0.026660983). For the rainfall period, the top-ranked SRPs are

MSWEPv2.2 (0.04988319), TAMSATv3.1 (0.04742750), IMERGv6-

Final (0.03452907), and RFE2 (0.02920657). For the cessation

period, the top-ranked SRPs are MSWEPv2.2 (0.045164178),

IMERGv6-Final (0.031119061), RFE2 (0.022786589), and

ARC2 (0.018931378). In the Guinean zone, the highest-ranked

SRPs for the onset period are MSWEPv2.2 (0.05776333),

ARC2 (0.03732968), RFE2 (0.03695255), and TAMSATv3.1

(0.03155087). For the rainfall period, the top-ranked SRPs

are TAMSATv3.1 (0.047359401), MSWEPv2.2 (0.041264439),

Frontiers inClimate 14 frontiersin.org

https://doi.org/10.3389/fclim.2023.1185754
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Houngnibo et al. 10.3389/fclim.2023.1185754

FIGURE 9

(A–D) Global performance across bioclimatic zones at monthly timescale.

IMERGv6-Final (0.038629148), and RFE2 (0.029885019). For

the cessation period, the top-ranked SRPs are MSWEPv2.2

(0.0471161944), IMERGv6-Final (0.0437619111), RFE2

(0.0285247833), and TAMSATv3.1 (0.0068729500). In the Guineo

Congolian region, the best-ranked SRPs for the onset period

are ARC2 (0.073283218), RFE2 (0.066633598), TAMSATv3.1

(0.055200090), and IMERGv6-Final (0.022751446). For the

peak of rainfall period, the top-ranked SRPs are MSWEPv2.2

(0.05188385), TAMSATv3.1 (0.03893638), PERSIANN-CCS-

CDR (0.01441509), and IMERGv6-Final. For the cessation

period, the top-ranked SRPs are MSWEPv2.2 (0.06891526),

IMERGv6-Final (0.05251435), ARC2 (0.05218624), and RFE2

(0.05205250).

When combining performance metrics with intrinsic

characteristics of SRPs as criteria for the MCDA, the best-

ranked SRPs for the onset period in the Sahel region are ARC2

(0.03117182), RFE2 (0.02771952), IMERGv6-Final (0.01590396),

and MSWEPv2.2 (0.01202606). For the peak of rainfall in the

same region, the best-ranked SRPs are MSWEPv2.2 (0.033528697),

ARC2 (0.030992955), RFE2 (0.025154768), and TAMSATv3.1

(0.016533315). For the cessation period, the best-ranked SRPs are

ARC2 (0.035224118), RFE2 (0.029080789), PERSIANN-CCS-CDR

(0.005677151), and IMERGv6-Final (-0.000370623). In the Sudan

region, TAMSATv3.1 and MSWEPv2.2 are the top-ranked SRPs

for the onset and peak of rainfall period, while MSWEPv2.2

and ARC2 are the top-ranked SRPs for the cessation period.
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FIGURE 10

Ability of satellite rainfall estimate to reproduce observed rainfall seasonal cycle over di�erent bioclimatic zones (period: 2001–2015).

In the Guinean region, TAMSATv3.1 and MSWEPv2.2 are the

best-ranked SRPs for all periods of the rainfall season. However,

in the Guineo Congolian region, the highest-ranked SRPs are

ARC2 and TAMSATv3.1 for the onset period, MSWEPv2.2 and

TAMSATv3.1 for the rainfall period, and MSWEPv2.2 and ARC2

for the cessation period.

For monthly timescales, the ranking of SRPs based only

on performance metrics as criteria resulted in ARC2, RFE2,

MSWEPv2.2, and TAMSATv3.1 as the best-ranked SRPs in the

Sahel, Sudan, and Guinean regions. However, in the Guineo

Congolian region, the top-ranked SRPs were TAMSATv3.1,

IMERGv6-Final, MSWEPv2.2, and PERSIANN-CCS-CDR. The

ranking based on all criteria (intrinsic characteristics of SRPs

and performance metrics) resulted in IMERGv6-Final as the best-

ranked SRP in the Guinean and Guineo Congolian regions, and

RFE2 and TAMSATv3.1 as the top-ranked SRPs in the Sahel and

Sudan regions.

5. Discussion

5.1. Performance of SRPs over di�erent
bioclimatic regions and times scales

In the Sahelian and Sudanian regions, the majority of

SRPs exhibited good performance, except for PDIR-Now, with

MSWEPv2.2, IMERGv6-FINAL, RFE2, and ARC2 performing the

best on the dekadal time scale. On the monthly time scale,

RFE2, MSWEPv2.2, TAMSATv3.1, ARC2, and IMERGv6-FINAL,

to some extent, outperformed other SRPs. The good performance

of these SRPs can be attributed to the high number of rain

gauges used in the retrieval algorithms: in the merging process

for the IMERGv6-Final, ARC2, RFE2, and MSWEPv2.2 products

and in the calibration process for TAMSATv3.1. This good

performance could also be explained by the predominance of

convective rainfall over these regions. Indeed, both IR-based and

PMW-based estimation methods perform well with convective

precipitation (Ebert et al., 2007), hence the generally good skill

over these regions. Dembélé and Zwart (2016) validated ARC2,

RFE2, TARCAT (an older version of TAMSATv3.1), and other

SRPs over Burkina-Faso and found that all SRPs showed a very

good correlation for monthly time scales. Regarding the general

performance, they found that RFE2 and ARC2 performed better

than TARCAT. Other studies over the Sahel, such as those of

Jobard et al. (2011) and Pierre et al. (2011) have also revealed

the good performance of RFE2 in the sub-region. However,

RFE2 was not compared in these studies with the SRPs chosen

in the present study. On a monthly scale, Abdourahamane

(2021) found that CHIRPS and ARC2 have good potential for

hydroclimatological applications in Niger. However, four SRPs

(CHIRPSv2.0, ARC2, CMORPH, and TAMSAT) were used in his

study.

In the Guinean area, TAMSATv3.1, MSWEPv2.2, IMERGv6-

FINAL, RFE2, and ARC2 were the best SRPs, whatever the time

scales and period of the rainfall season. Nwachukwu et al. (2020)

also found MSWEPv2.2 and IMERGv6-FINAL to be the best

performing all over Nigeria, including the Guinean area. However,

ARC2 was found to have the worst performance among several

SRPs, including ARC2, CHIRPSv02 and TAMSATv3.0 in four

agroecological zones of Ghana.
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TABLE 5 PROMETHEE II ranking output for dekadal timescales.

Ranking based only on

performance metrics as criteria
Ranking based on all criteria

Onset

period

Rainfall

period

Cessation

period

Onset

period

Rainfall

period

Cessation

period

ARC2 0.053909615 0.05350077 0.06317200 0.03117182 0.030992955 0.035224118

RFE2 0.062893636 0.05703134 0.06600511 0.02771952 0.025154768 0.029080789

MSWEPv2.2 0.009763298 0.05891219 −0.02476521 0.01202606 0.033528697 −0.003080162

IMERGv6-Late −0.067752950 −0.10964496 −0.01636247 −0.02942211 −0.047749867 −0.006938776

IMERGv6-Final 0.067812734 0.05395747 0.03061368 0.01590396 0.009842285 −0.000370623

CMORPHv1.0 −0.002003767 0.03992043 −0.03447844 −0.01510066 0.003241179 −0.029308331

PERSIANN-CCS-CDR −0.026809928 −0.01385931 0.02690026 −0.01782105 −0.012155157 0.005677151

PDIR-Now −0.100000000 −0.15448196 −0.05916747 −0.03555232 −0.059388175 −0.017688086

S
A
H
E
L

TAMSATv3.1 0.002187361 0.01466402 −0.05191745 0.01107477 0.016533315 −0.012596080

ARC2 0.003844156 0.02461846 0.018931378 0.009268186 0.018356942 0.0158688455

RFE2 0.003714733 0.02920657 0.022786589 0.001828751 0.012981432 0.0101726878

MSWEPv2.2 0.032534353 0.04988319 0.045164178 0.021988395 0.029578511 0.0275139435

IMERGv6-Late −0.050912308 −0.08061602 −0.037304167 −0.022054331 −0.035049705 −0.0161007695

IMERGv6-Final 0.040407544 0.03452907 0.031119061 0.003914194 0.001342359 −0.0001495178

CMORPHv1.0 0.026660983 0.02337833 0.008187767 −0.002559831 −0.003995990 −0.0106418632

PERSIANN-CCS-CDR −0.063886456 −0.02503815 −0.081270756 −0.034042035 −0.017045900 −0.0416476663

PDIR-Now −0.023022883 −0.10338895 −0.016088156 −0.001874829 −0.037034983 0.0011591146

S
O
U
D
A
N

TAMSATv3.1 0.030659878 0.04742750 0.008474106 0.023531501 0.030867334 0.0138252256

ARC2 0.03732968 0.024366277 0.0008358444 0.023918101 0.018246614 0.007952050

RFE2 0.03695255 0.029885019 0.0285247833 0.016370295 0.013278251 0.012683148

MSWEPv2.2 0.05776333 0.041264439 0.0471161944 0.033026073 0.025807808 0.028367951

IMERGv6-Late −0.07710261 −0.073734786 −0.0257494167 −0.033512588 −0.032039165 −0.011045566

IMERGv6-Final 0.02639889 0.038629148 0.0437619111 −0.002214595 0.003136145 0.005381729

CMORPHv1.0 0.01134329 0.002716964 −0.0017623778 −0.009261322 −0.013035339 −0.014995051

PERSIANN-CCS-CDR −0.06881733 −0.015023718 −0.0398650000 −0.036199292 −0.012664587 −0.023532648

PDIR-Now −0.05541866 −0.095462744 −0.0597348889 −0.016047982 −0.033567268 −0.017936331

G
U
I
N
E
A
N

TAMSATv3.1 0.03155087 0.047359401 0.0068729500 0.023921310 0.030837542 0.013124720

ARC2 0.073283218 −0.01022657 0.05218624 0.039647775 0.0031122443 0.030417847

RFE2 0.066633598 −0.01100728 0.05205250 0.029355754 −0.0046121279 0.022976522

MSWEPv2.2 −0.012936949 0.05188385 0.06891526 0.002094701 0.0304538006 0.037905041

IMERGv6-Late −0.096241290 −0.01094480 −0.05395747 −0.041885761 −0.0045685451 −0.023386592

IMERGv6-Final 0.022751446 0.00150929 0.05251435 −0.003810350 −0.0131037927 0.009210923

CMORPHv1.0 −0.001361462 −0.02752379 −0.02549004 −0.014819651 −0.0262656693 −0.025375905

PERSIANN-CCS-CDR −0.032917728 0.01441509 −0.07947045 −0.020493217 0.0002148891 −0.040860032

PDIR-Now −0.074410922 −0.04704218 −0.01359173 −0.024357096 −0.0123832702 0.002251299

G
U
I
N
E
O

C
O
N
G
O
L
I
A
N

TAMSATv3.1 0.055200090 0.03893638 −0.05315865 0.034267844 0.0271524711 −0.013139104

← Least performing Best performing →

Ranking scores are grayscaled from least performing (white) to best performing (black).
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TABLE 6 PROMETHEE II ranking output for monthly timescales.

Ranking based only on performance metrics as
criteria

Ranking based on all criteria

SAHEL SOUDAN GUINEAN GUINEO
CONGOLIAN

SAHEL SOUDAN GUINEAN GUINEO
CONGOLIAN

ARC2 0.0380780566 0.0199079753 0.009973427 −0.0105555143 0.069695289 0.02816367 0.0054561367 −0.04146716

RFE2 0.0311257830 0.0222772186 0.014259387 −0.0046507324 0.070679378 0.05045409 0.0321276167 −0.01109551

MSWEP

v2.2

0.0100595115 0.0357673737 0.029592112 0.0210487659 0.005268333 0.06402916 0.0499142778 0.03038663

IMERGv

6-Late

−0.0553521801 −0.0440914984 −0.032476839 −0.0244752953 −0.127021677 −0.10128298 −0.0747351822 −0.05644594

IMERGv

6-Final

0.0098681112 0.0027435977 0.012367431 0.0247729259 0.054016499 0.03773190 0.0597292300 0.08808465

CMORPH

v1.0

0.0056760025 0.0009145359 −0.014391356 −0.0257224178 0.045485746 0.03460239 −0.0003825033 −0.02628207

PERSIANN

-CCS-

CDR

0.0006713032 −0.0298732400 −0.027196221 0.0002228264 0.015458318 −0.05435778 −0.0482388800 0.01443323

PDIR

-Now

−0.0626510246 −0.0466155286 −0.025418492 −0.0068543853 −0.161939902 −0.12528734 −0.0768369711 −0.03440473

TAMSAT

v3.1

0.0225244367 0.0389695659 0.033290550 0.0262138270 0.028358017 0.06594688 0.0529662756 0.03679091

← Least performing Best performing →

Ranking scores are grayscaled from least performing (white) to best performing (black).

The SRPs performed less well in the Guineo-Congolian

regions than in the Sahel, Sudan, and Guinean regions. The

underperformance in the Guineo-Congolian region reflects the

inability of IR-based or PMW-based products to capture warm

cloud precipitation over coastal and orographic regions. According

to Dinku et al. (2007, 2008, 2011), this is mainly due to the

threshold they use to discriminate rain clouds, which is too cold

for such processes. PMW-based algorithms are mainly scattered

by ice aloft, but orographic rainfall is a warm-cloud process

that does not necessarily produce much ice, which can lead to

underestimation. Over this region, MSWEPv2.2, TAMSATv3.1,

ARC2, RFE2, IMERGv6-Final, and somewhat PERSIANN-CCS-

CDR, outperformed all other SRPs.

In general, SRPs performed well during the peak rainfall period

of the season compared with the others period, probably due

to the convective nature of the rainfall during this wet season,

andMSWEPv2.2, ARC2, RFE2, IMERGv6-Final, and TAMSATv3.1

outperformed all SRPs across bioclimatic zones and time scales.

Similar conclusions were drawn by Gosset et al. (2013) and

Satgé et al. (2020) on West Africa, which put emphasis on the

good performance of MSWEPv2.2 and IMERGv6-Final. Very few

studies have considered the reproducibility of rainfall patterns

in these regions, whereas Cattani et al. (2016) and Romilly

and Gebremichael (2011) showed the relevance of evaluating

this characteristic. Seasonal rainfall cycles were relatively well-

reproduced by all SRPs, with TAMSATv3.1, IMERGv6-FINAL

and MSWEPv2.2 being the best at reproducing the observed

seasonal cycles in the Sahel, Sudan and Guinean regions. Over the

Guineo-Congolian area, only MSWEPv2.2, IMERGv6-FINAL, and

TAMSATv3.1 reproduced, to some extent, the observed seasonal

cycle.

The ranking of SRPs, whether based on performance

measures as criteria or based on both performance measures and

intrinsic characteristics of SRPs, generally resulted in MSWEPv2.2,

IMERGv6-Final, ARC2, RFE2, and TAMSATv3.1 as top-ranked

SRPs across different climatic zones and time scales. While

PROMETHEE II is a widely used multi-criteria decision analysis

method, it also has certain limitations (De Keyser and Peeters,

1996). Some of the key limitations of the PROMETHEE II ranking

method include the following:

• Sensitivity to criteria weights: PROMETHEE II requires

the assignment of weights to criteria, and the ranking

of alternatives can be sensitive to these weights. Small

changes in weights can lead to significant changes in the

ranking results, potentially affecting the overall decision

outcome;

• Independence assumption: PROMETHEE II assumes that the

criteria are independent of each other, meaning that changes

in one criterion do not affect the evaluation of other criteria.

However, we can not guarantee this assumption in our

analysis;

• Lack of sensitivity analysis: PROMETHEE II does not offer a

built-in mechanism for sensitivity analysis, which could assess

the robustness of the ranking results to changes in criteria or

weights. Sensitivity analysis is valuable for understanding the
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stability of the rankings and providing insights into the impact

of uncertainties or variations in the decision-making process.

These limitations must be considered in interpreting SRPs’

ranking results.

This study primarily focused on SRPs utilizing microwave,

infrared spectral band, or satellite radar technologies. However, in

addition to these types of SRPs, emerging products have gained

popularity in recent years, offering high spatial detail and accuracy.

Two notable examples are rainfall estimates derived from bottom-

up soil moisture inversion (Pellarin et al., 2020; Krishnan et al.,

2022) and the utilization of microwave signals from commercial

cellular networks (Gosset et al., 2016). An evaluation of one such

product has been conducted in Burkina Faso (Yonaba et al., 2022),

highlighting the importance of further research in this promising

field.

5.2. Use cases

The intended use of an SRP determines its choice. Depending

on the envisaged applications, certain metrics/characteristics

(latency, temporal and spatial resolution, bias, etc.) are more

important than others to consider. It is also important to

understand the algorithm underlying an SRP to understand its

strengths and limitations. The use cases are discussed here for

some rainfall-related risks and with some recommendations about

the SRPs used. Over West Africa, drought and floods are the

main risks affecting rain-fed agriculture, food and water security,

economic losses, and loss of human life. Thus, a monthly timescale

can be used for drought monitoring and early warning, and

SRPs with low relative biases should be preferred (Le Coz and

van de Giesen, 2020). In this regard, RFE2, ARC2, CMORPHv1.0,

MSWEPv2.2, and to some extent, PDIR-Now and TAMSATv3.1

would be better suited for monitoring droughts on a monthly

time scale. Dembélé and Zwart (2016) also recommended the old

versions of ARC2 (ARC), RFE2 (RFE), and (TAMSAT) TARCAT

to monitor dry spells in Burkina Faso. Monthly or even seasonal

rainfall can be considered for the overall assessment of water

resources of river basins Bajracharya et al. (2015). As such,

MSWEPv2.2, TAMSATv3.1, IMERGv6-Final, RFE2, ARC2, and

SRPs are recommended given the generally good performance

displayed by these SRPs at these time scales. Dembélé et al.

(2020) and Gbohoui et al. (2021) reached the same conclusion

regarding ARC2 over the Volta and Nakanbé watersheds in West

Africa, respectively. For climatological applications, SRPs should

cover a long time period and be able to represent yearly and

seasonal variability with algorithms that do not change over

time, making them more consistent (Le Coz and van de Giesen,

2020). Thus, given their good performance and long time series,

TAMSATv3.1, MSWEPv2.2, and ARC2 would be interesting to

characterize rainfall variability and long-term changes. The last,

but not least application is the use of these SRPs within the

framework of the West African Regional Climate Outlook Forum

(RCOFs). AGRHYMET supports the National Meteorological and

Hydrological Services (NMHS) in the region by organizing regional

climate outlook forums (RCOFs), called seasonal forecasts for

the Sudanian and Sahelian regions of West Africa (PRESASS),

and seasonal forecasts for countries along the Gulf of Guinea

(PRESAGG). Statistical seasonal forecasts were developed using

the climate predictability tool (Mason and Tippett, 2022). For

spatially consistent reasons, it recommended using gridded fields

as a predictand (WMO, 2020). Thus, SRPs constitute a very good

alternative to observed precipitation analysis, given the scarcity

of rain gauges in West Africa. Thus, TAMSATv3.1, MSWEPv2.2,

and ARC2 could be good alternatives to observed data for both

PRESAGG and PRESASS.

6. Conclusion

In areas with sparse rainfall networks, such as West Africa,

Satellite Rainfall Products (SRPs) serve as a viable alternative for

monitoring rainfall-related risks and providing early warnings.

However, product suitability varies based on its intended

application. For instance, RFE2, ARC2, CMORPHv1.0, and

MSWEPv2.2 which have relatively lower relative biases, are more

suited for drought monitoring. TAMSATv3.1, IMERGv6-Final,

RFE2, ARC2, and MSWEPv2.2, because they generally have good

performances at monthly time scales, are recommended for a

comprehensive assessment of basin water resources. TAMSATv3.1

and MSWEPv2.2 are of particular interest for characterizing

precipitation variability and long-term changes due to their long

time series availability and good performance with algorithms that

remain unchanged over time. Lastly, TAMSATv3.1, MSWEPv2.2,

and ARC2, because of their best performance in estimating

monthly rainfall and their long time series could be good

alternatives to observed data for predictands to the PRESAGG and

PRESASS RCOFs.

This research emphasizes the assessment of rainfall products

at a regional scale for their application in specific contexts and

outlines some constraints. The merging process for some regions

is based on a limited number of rain gauges, which demands

particular consideration for various purposes. Additionally, the

upscaling of SRPs and reference data may result in more important

biases in the findings. Consequently, evaluating rainfall products at

the country level is highly recommended to ensure their efficacy for

specific applications.
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