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Drought poses a continual threat to both lives and livelihoods in the Global 
South. Although the impact on food security from drought could be reduced 
through early release of funds, the humanitarian sector typically reacts to crises 
rather than anticipates them. A significant challenge lies in devising a drought 
monitoring and forecasting system that can function across environmentally 
and economically diverse regions. This is particularly evident in Pakistan, which 
encompasses environments ranging from fertile riverbeds to arid deserts. 
This paper details the development, implementation, and operation of an 
anticipatory drought Disaster Risk Financing (DRF) programme for the provinces 
of Punjab, Sindh, and Baluchistan in Pakistan. Key to the DRF development are 
a new yield model for the primary crop in the target season (winter wheat), and 
a novel forecasting system for four seasonal drought indicators - namely winter 
wheat yield, precipitation, normalised difference vegetation index (NDVI) and 
vegetation health index (VHI). Formal evaluations demonstrate that the forecasts 
are skillful up to 2  months in advance of the end of the season – enabling 
anticipatory release of funds. The work presented here is applicable beyond 
Pakistan. Indeed, the model and the methodologies are sufficiently broad and 
adaptable to be utilised in arid and semi-arid regions across the Global South.
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1 Introduction

It is increasingly recognised that anticipatory action can mitigate the effects of climate-
related shocks, building resilience to climate variability and change (for example, Levine et al., 
2020; Boult et al., 2022). In this context, ‘anticipatory action’ encompasses a range of proactive 
measures taken before a disaster occurs (for example, Wilkinson et al., 2020; Chaves-Gonzalez 
et al., 2022). Anticipatory action may involve taking action based on forecasts (forecast-based 
action), potentially including releasing funds (forecast-based finance) (Coughlan de Perez 
et al., 2015, 2016). For fast-developing events, such as tropical cyclones, actions may include 
evacuation, issuing of bulletins/warnings and intensive monitoring to identify communities 
at immediate risk (Emerton et  al., 2020; Speight et  al., 2023). For slower developing 
phenomena, such as seasonal drought, anticipatory action may include issuing advisories and 
pre-positioning humanitarian aid. Despite improved access to early warning systems, drought 

OPEN ACCESS

EDITED BY

Clare Harris,  
Independent Researcher, London,  
United Kingdom

REVIEWED BY

Beatrice Monteleone,  
University Institute of Higher Studies in Pavia,  
Italy
Tufa Dinku,  
Columbia University, United States

*CORRESPONDENCE

Emily Black  
 e.c.l.black@reading.ac.uk

RECEIVED 02 November 2023
ACCEPTED 03 April 2024
PUBLISHED 02 May 2024

CITATION

Black E, Maidment RI, Rees E and 
Nderitu E (2024) A new drought model for 
disaster risk management in the Punjab, Sindh 
and Baluchistan provinces of Pakistan.
Front. Clim. 6:1332233.
doi: 10.3389/fclim.2024.1332233

COPYRIGHT

© 2024 Black, Maidment, Rees and Nderitu. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 02 May 2024
DOI 10.3389/fclim.2024.1332233

https://www.frontiersin.org/climate
https://www.frontiersin.org/climate
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2024.1332233﻿&domain=pdf&date_stamp=2024-05-02
https://www.frontiersin.org/articles/10.3389/fclim.2024.1332233/full
https://www.frontiersin.org/articles/10.3389/fclim.2024.1332233/full
https://www.frontiersin.org/articles/10.3389/fclim.2024.1332233/full
https://www.frontiersin.org/articles/10.3389/fclim.2024.1332233/full
mailto:e.c.l.black@reading.ac.uk
https://doi.org/10.3389/fclim.2024.1332233
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/climate#editorial-board
https://www.frontiersin.org/climate#editorial-board
https://doi.org/10.3389/fclim.2024.1332233


Black et al. 10.3389/fclim.2024.1332233

Frontiers in Climate 02 frontiersin.org

anticipatory action programmes have proved difficult to scale up, and 
delayed response continues to exacerbate food insecurity (Grunewald 
et  al., 2019; Levine et  al., 2020). The chronic food insecurity 
experienced by Pakistan’s rural population has motivated the Start 
Network to pilot a Disaster Risk Financing scheme (DRF) in order to 
allow civil society actors to proactively manage weather-related risk. 
The drought element of the DRF aims to facilitate anticipatory action 
by quantifying risks in advance of food insecurity, pre-positioning 
funds and then releasing them according to pre-agreed plans. Since it 
includes the use of forecasts, the DRF is arguably form of forecast-
based action/finance even though the emphasis is on pre-positioning 
of funds.

A range of factors need to be considered when implementing a 
DRF. Initial decisions include geographical domain, the growing 
season or seasons, and the severity of events targeted. In the case of 
the Pakistan DRF, the decision was taken to start in 2020–2021 with 
Punjab and Sindh and to expand to Baluchistan in 2021–2022. In line 
with the Start Network’s aim to trigger for events that occur every few 
years, the decision was taken to focus on moderate drought (1  in 
5 year events).

Pakistan has two growing seasons: Kharif (May–September) and 
Rabi (October–April). Although most operational drought monitoring 
for Pakistan focuses on the primary summer growing season (Kharif), 
crops grown during the secondary winter rainy season (Rabi) play a 
vital role in maintaining household food security, and Rabi droughts 
are thus also highly impactful (for example, Ahmed et al., 2018). The 
new DRF scheme was therefore implemented for the November–April 
Rabi growing season. The system was designed to target general 
drought-related risk to food security, which is primarily related to 
large-scale winter wheat production, especially in the high production 
regions of Punjab. With this in mind, for the DRF, in addition to 
considering drought metrics, such as precipitation and vegetation 
health, we also considered modelled winter wheat yield – as a proxy 
for drought-related food insecurity.

Pakistan has a diverse climate, mainly reflecting considerable 
variation in topography. The mountainous northernmost regions are 
cold, with heavy snowfall in the winter. Further south, high 
temperatures (>40°C) are common in the summer. Annual 
precipitation also varies, ranging from ~750 mm in the north to 
<200 mm in Sindh. Pakistan’s geographical complexity presents a 
challenge for large-scale drought monitoring. For example, in 
Baluchistan, although Rabi is the main rainy season, there is 
comparatively little cultivation of winter wheat because of the aridity 
of the environment. In Sindh and Punjab, in contrast, winter crops 
and pasture are supported by artificial and natural irrigation, as well 
as by rainfall (Badruddin 1993; Portmann et al., 2010; Biemans et al., 
2016). Thus although meteorologically-based metrics, such as the 
Standardised Precipitation Index (SPI) and Palmer Drought Index 
(PDI) may be  useful in Baluchistan, they have limited utility for 
monitoring agricultural drought in Punjab and Sindh. In these 
provinces, traditional crop models, such as the FAO’s Aquacrop 
would moreover overestimate the severity of drought because they 
do not account for irrigation (Steduto et al., 2009). Other crop models 
that do account for irrigation - for example, DSSAT (Jones et al., 
2003), APSIM (Keating et al., 2003) and EPIC (Williams et al., 1989) - 
cannot be  applied in this region because precise information on 
irrigation scheduling is lacking, and much of the irrigation is natural, 

rather than artificially applied. Furthermore, although empirical 
vulnerability functions, based on meteorological metrics of drought 
have been successfully applied in other regions (for example, Yue 
et al., 2015; Wu et al., 2021), the difficulty of relating agricultural 
drought stress to meteorological variability precludes this approach 
in Pakistan.

Direct observation of vegetation or soil moisture may provide 
a more robust basis for monitoring crop yield, and hence 
agricultural drought (Bastiaanssen et al., 2000). For example, a 
model based on directly measured soil moisture was successfully 
applied to a number of experimental locations in northern 
Punjab (Rafi and Ahmad, 2005). More widely, a model based on 
AVHRR (Advanced Very High Resolution Radiometer) passive 
microwave observations of NDVI (Normalised Difference 
Vegetation Index), surface temperature and surface albedo was 
applied across the Indus basin, with satisfactory results for 
simulating spatial variability in the production of several crops, 
including wheat (Bastiaanssen and Ali, 2003). Vegetation health 
metrics have been used to skillfully model wheat yield in other 
arid and semi-arid regions, such as Australia (Kogan et al., 2018), 
Kazakhstan (Bokusheva et al., 2016) and China (Kogan et al., 
2005). The excellent skill of models of this type has motivated the 
application of vegetation health based indices in weather index 
insurance schemes, building on earlier research on the 
exploitation of satellite-based rainfall estimates for this purpose 
(Black et al., 2016a,b). For example, a satellite-based index, based 
on a composite of several metrics of vegetation health, was 
implemented in India when a lack of direct yield observations 
threatened a well-established area-yield crop insurance scheme 
(Murthy et  al., 2022). Other studies have taken a machine 
learning approach to combining multiple streams of satellite 
observations into indices of drought-related risk. For example, Li 
et  al. (2021) describes a new index for wheat drought risk 
in China.

Given that it is established in the literature that variability in 
wheat yield in semi-arid regions can be captured by regressing yield 
against vegetation health indices, the primary focus of this paper is 
on the anticipatory DRF, rather than on the crop model. 
Implementation of an anticipatory DRF requires quantitative 
probabilistic assessments of the risk of drought. A scientific novelty 
of our approach is thus the use of a computationally light-weight 
forecasting technique to provide probabilistic predictions of key 
indices. Although similar approaches to forecasting precipitation, 
soil moisture, crop yield and NDVI have been applied in several 
regions (Brown et al., 2017; Asfaw et al., 2018; Boult et al., 2020; 
Salakpi et  al., 2022), to our knowledge the complex process of 
implementing such a system within a DRF has not been described 
in the literature.

In summary, the implementation of a DRF involves a series 
of scientific and policy decisions. Although successful DRFs 
build on the routine drought monitoring carried out by 
meteorological, hydrological and agricultural agencies, any 
scheme designed to trigger automatic release of funds requires 
robust formalisation of drought hazard. This paper describes the 
development, design and implementation of a DRF for the 
Punjab, Sindh and Baluchistan provinces of Pakistan, with the 
aim of illustrating the considerable challenges of developing 
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climate services for this environmentally complex region. The 
conceptional approach and implementation of the DRF are 
described in Sections 2 and 3. The operational system is described 
in section 4. The final section of the paper includes  
some reflections on the experience of the first years of running 
the DRF, along with suggestions for future directions for  
development.

2 Materials and methods

2.1 Data

2.1.1 Biophysical variables
The biophysical variables (NDVI, VHI and precipitation) were 

extracted from publicly available datasets and aggregated in time to 
twice monthly. All three datasets were re-gridded to a common 
5 km grid.

2.1.1.1 NDVI and VHI
For this study, the NOAA Blended Vegetation Health Products 

(VHP) Version 7.0 was selected (Yang et al., 2021) (see https://www.
star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php). VHP provides a 
collection of global satellite-derived variables related to plant health, 
including NDVI and VHI from August 1981 to the present day, at 
4 km x 4 km spatial resolution at a latency of 2 days. All VHP variables 
are provided as 7-day averages. Despite the data originating from 
multiple satellites, the dataset developers have implemented careful 
correction procedures to ensure the data are not prone to temporal 
discontinuities that result from a change in satellite during the data 
record (Yang et al., 2021).

2.1.1.2 Precipitation
Precipitation was extracted from the CHIRPS dataset (Funk 

et  al., 2015). CHIRPS was chosen for its long record (back to 
1982), and for its high spatial and temporal resolution (daily 
~5 km). CHIRPS is based on satellite imagery, calibrated 
historically and in real time both with a limited rain gauge dataset 
and TRMM imagery. Unlike purely gauge based gridded datasets, 
which are updated only occasionally, CHIRPS has low operational 
latency, with CHIRPS-Prelim available within ~2 days of the end 
of each pentad. In the operational implementation of the scheme, 
historical CHIRPS data are spliced together with CHIRPS-prelim. 
Some spatial artefacts are evident, particularly when the 
precipitation aggregated to long-term means (Figure  1). 
Nevertheless, evaluations have shown that CHIRPS represents 
temporal variability in Pakistan rainfall reasonably well (Nawaz 
et al., 2021).

2.1.2 Agricultural data
The agricultural data required were district and province scale yield 

and production area. The data were obtained from several sources. 
Province scale production data were obtained from the Pakistan 
Agricultural Information Service http://www.amis.pk/. The data are 
available from this source for 1947–48 to 2021–22.

District scale crop yield and production area data are freely 
available for 1982–2018 for Punjab and for 1982–2014 for Sindh 

and Baluchistan. For this project, 1981/1982–2008/2009 were 
obtained from the Government of Pakistan, statistics division 
(Khan et  al., 2009). More recent data were obtained from the 
Punjab crop reporting service: https://crs.agripunjab.gov.pk/
reports and the Pakistan Agricultural Marketing Information 
Service (AMIS): http://www.amis.pk/Agristatistics/DistrictWise/
DistrictWiseData.aspx. The later data include, not only total 
production and total production area, but also irrigated and 
unirrigated production. The district scale data are incomplete, in 
part because of changes to district boundaries and in part because 
of missing data in the archive.

2.1.3 Demographic data
The number of urban and rural households, and the total  

rural and urban population was recorded at the district level in  
the 2017–2018 census (http://www.pbs.gov.pk/content/block-wise-
provisional-summary-results-6th-population-housing-census-2017-
january-03-2018). Although data with greater spatial resolution are 
available, the drought model operates at the district level, and so the 
population data were aggregated at this level. The use of vulnerability 
metrics was explored during the 2020/2021 season. For the 
information of the technical working group the multi-dimensional 
poverty indicator index has been gathered for each district of 
Punjab, Sindh and Baluchistan, using UNDP data from https://www.
undp.org/content/dam/pakistan/docs/MPI/MPI4pager.pdf.

FIGURE 1

November – April (Rabi) precipitation total (top) and mean two-week 
maximum NDVI (bottom) for Pakistan and surrounding regions.
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2.2 Conceptual approach to drought 
monitoring and forecasting for the DRF

The output of the modelling process is an estimate of the 
provincial population at risk of drought. The scheme is operated at the 
provincial scale to fit in with agricultural decision making processes 
in Pakistan, which are governed primarily at this administrative level. 
The biophysical modelling and monitoring is, however, carried out at 
the district scale, to account for climatic and population variation and 
to capitalise on the high quality district yield data. The methodological 
approach is outlined in Figure 2.

2.3 Choice of metrics for the DRF for each 
province

2.3.1 Candidate drought metrics
The following candidate metrics for drought were considered:

 • Modelled wheat production generated using a statistical model 
that relates NDVI and observed production area to district winter 
wheat yield and production. It was only possible to develop a 
skillful model for Punjab because of quality issues with the yield 
observations of Sindh and Baluchistan (see Section 2.4).

 • Normalised Difference Vegetation Index (NDVI) is a metric of 
the greenness of the Earth’s surface. It is used as a proxy of 
vegetation health and biomass. The winter wheat crop model uses 
NDVI over key regions and periods to estimate district-
scale yield.

 • Vegetation Health Index (VHI) linearly combines the vegetation 
condition index (VCI) and temperature condition index (TCI) 
into an index of vegetative health. VCI and TCI are, respectively, 
indices of NDVI and temperature, normalised to location and 
time of year.

 • Precipitation derived from satellite imagery to produce a spatially 
and temporally contiguous dataset from the early 1980s to the 
delayed present.

2.3.2 Regional agro-meteorological context and 
choice of drought metric

A challenge of developing a drought monitoring system for a large 
region is spatial variation in climate, hydrological and agricultural 
settings. The modelling approach needs to account for these variations, 
without becoming overly complex. Figure 3 shows the distribution of 
cropland within Pakistan. It can be seen that most cropland is found 
in Punjab, with cropping in Baluchistan and Sindh restricted to a 
few districts.

FIGURE 2

Summary of the modelling process for triggering the DRF.
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Figure 1 shows the annual total precipitation and the annual 
mean NDVI for Pakistan and the surrounding regions. It can be seen 
that there is considerable spatial variation in precipitation, with 
northern regions of Punjab receiving orders of magnitude more 
rainfall than southern Sindh. The gross spatial pattern in NDVI does 
not follow the precipitation. In southern Sindh, where there is very 
little rainfall, NDVI is moderate. The reason for this is that vegetation 
in Sindh is supplied with water from the river overflow resulting 
from upstream glacial melt and monsoon rainfall. The discrepancy 
between vegetation and precipitation means that precipitation 
cannot, on its own, be  used to monitor agricultural drought in 
Sindh. The mismatch between vegetation and precipitation is 
underlined by Figure  4, which shows the Pearson correlation 
coefficient (r2) for NDVI with precipitation and VHI. The correlation 
with precipitation is low in all regions, and the correlation with VHI 

is moderate – suggesting that the temperature component of VHI is 
driving much of its variability.

Figure 5 shows the climatological mean half month cumulative 
precipitation and mean NDVI for the Rabi season for each of the 
provinces. VHI is not shown because it is normalised to the time of 
year and therefore does not exhibit a seasonal cycle. In Punjab, Rabi 
is clearly the secondary season, and most of Sindh does not experience 
a Rabi rainy season. In Baluchistan, on the other hand, Rabi is the 
main rainy season. The seasonal cycle plots underline how little 
precipitation Sindh experiences during Rabi (<10 mm over the whole 
season). The discrepancy between NDVI and precipitation discussed 
above is also evident, with Sindh having a peak in NDVI during the 
Rabi season, in spite of the low precipitation; in Punjab, although most 
precipitation occurs during the summer, the greatest NDVI is during 
the winter. In Baluchistan, the seasonal cycle in NDVI is weak, with 
NDVI remaining low (< 0.05) throughout the year. Figure 3 shows 
that winter wheat production is dominated by Punjab, with very low 
amounts of production in Baluchistan, and production in Sindh ~20% 
of production in Punjab. There is a strong positive trend in production 
in Punjab, and a weaker trend in Sindh. Trends in NDVI, VHI and 
precipitation are insignificant. Time series for each of the candidate 
drought metrics are shown in Figure 6. Consistent with Figure 1 and 
Figure  5, the annual precipitation for Sindh is far lower than for 
Punjab and Baluchistan, but NDVI is higher in Sindh than 
in Baluchistan.

Comparison of meteorological and hydrological settings thus 
show clear contrasts between the three provinces. Punjab has two 
strong rainy seasons per year and depends on winter wheat 
production. Winter wheat yield can is thus a reasonable proxy for 
winter drought. Although agricultural production is primarily rainfed 
in some districts, in others it is naturally or artificially irrigated, with 
water provided by upstream rainfall, groundwater and glacial melt. 
Drought assessments based purely on precipitation are hence unlikely 
to reflect the true risks to agriculture. In Sindh, in contrast, production 
of winter wheat is highly variable with some of the most vulnerable 
southern provinces cultivating very little. Precipitation in much of the 
province is extremely low (<20 mm over the whole Rabi season), with 
winter vegetation dependent on natural and artificial irrigation from 
rivers. The low level of rainfall and the sparse cultivation mean that 
the DRF funds release can depend neither on precipitation-based 
indices nor on estimation of winter wheat yield. In contrast to Sindh 
and Punjab, in much of Baluchistan, Rabi is the primary rainy season, 
with little or no rain during Kharif. Most vegetation is rainfed, and so 
meteorological drought (rainfall deficit) places the region at risk of 
agricultural and hydrological drought.

Based on these considerations, the drought metrics chosen for 
each province are:

 • For Punjab, the chosen metric is simulated winter wheat. This is 
because the wheat model is highly skillful (see Section 3) and 
because the economy of Punjab (and arguably all of Pakistan) is 
sensitive to national wheat production, which is determined 
primarily by production in Punjab.

 • For Sindh, the chosen metric is VHI. The reason for this is that 
the vegetation cover in large parts of the province is not sensitive 
to the very low amounts of rainfall experienced. For the very low 
rainfall districts of Sindh, it is not possible to determine the risk 
of agricultural drought on the basis of rainfall deficit. VHI is 

FIGURE 3

Observed district scale yield (top), production (middle) and 
production area (bottom) for the Punjab, Sindh and Baluchistan 
provinces of Pakistan. Grey shading denotes either provinces that 
were not included in the study, or districts for which no data were 
available.
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chosen over NDVI to reflect the sensitivity of the small-scale 
cultivation in low precipitation regimes to high temperatures 
(Ahmed et al., 2018)

 • For Baluchistan, the chosen metric is precipitation. The reason 
for this is that the condition of the land surface depends strongly 
on precipitation. In much of the province, furthermore, Rabi is 
the primary rainy season, which means that operational national 
level drought monitoring for the province reflects Rabi 
precipitation. Basing the DRF funds release on precipitation will 
thus bring Baluchistan in line with the Pakistan Meteorological 
Department’s drought assessments.

2.4 Wheat yield modelling methodology

Wheat yield is modelled by relating NDVI to observed district-
scale yield. The first stages of the modelling process aim to identify the 
period of interest and spatial mask that are maximally correlated with 
district-scale wheat yield. This process can be considered a proxy for 
identifying the most critical crop development stage, and the regions 
in each district where wheat is grown. Note that these temporal and 
spatial masks are assumed to be constant in time. The assumption of 
a static spatial mask is justifiable, given that variations in production 
area will tend to result from intensification of agriculture in the 

FIGURE 4

Correlation coefficient (Pearson r2) of interannual variability in November–April seasonal mean NDVI with seasonal cumulative precipitation (left) and 
seasonal mean VHI (right).

FIGURE 5

Seasonal cycles in two-week cumulative precipitation (top row) and two-week maximum NDVI (bottom row) for Punjab (left column), Sindh (middle 
column) and Baluchistan (right column). The error bars represent interannual standard deviation. The vertical green lines denote the beginning and end 
of the rabi season.
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regions known to be suitable for cultivation. The assumption of a static 
temporal mask is, moreover, a necessary simplification, given the 
twice monthly temporal resolution of the NDVI data and the wide 
range of planting times within individual districts.

The process of identifying the spatial crop mask and the period of 
interest are as follows:

 1. Calculate the Pearson correlation coefficient (r) between 
district yield and each NDVI grid point for NDVI averaged 
over all possible periods from 1st October – 30th April. The 
period can be any length, from 2 weeks to 6 months

 2. For each grid point select the period with the highest 
correlation (the grid point optimal period)

 3. Calculate the Pearson correlation coefficient between district yield 
and grid point NDVI averaged over the grid point optimal period.

 4. The crop mask consists of any points where either: r > 0.8 or 
r > 95th percentile in r for the district as a whole.

 5. The district period of interest is the mean of the optimal start and 
end dates, calculated only for points included in the crop mask.

Once the district period of interest and spatial crop mask have 
been identified, an annual time series of winter wheat NDVI is derived 
by averaging over temporally and spatially masked values for 
each year.

The final stage in the development of the statistical yield model is 
to relate the annual time series of NDVI to the annual district yield. 
For this, a generalized linear model approach was used. To ensure 
independent validation, a leave-one-out cross validation was 
performed, in which the yield for each year was estimated, based on a 
model trained using all of the other years in the time series.

Figure 7 and Figure 8 illustrate the modelling process for two 
example districts, one with a weak observed trend in yield (Attock) 
and one with a strong trend (Khairpur). For Khairpur, it can be seen 
from the correlation map that some regions have low or negative 
correlation with yield, whilst others are strongly correlated. 
Comparison with an independent survey (USAID, 2014) confirms 
that the regions selected in our modelling process broadly reflect 
regions of more intense cultivation.

2.5 Methodological approach to 
forecasting drought metrics

The Tropical Applications of Meteorology using SATellite data - 
AgricuLtural Early WaRning sysTem (TAMSAT-ALERT) approach 
(Brown et al., 2017; Asfaw et al., 2018; Boult et al., 2020) has been 
adapted for prediction of each of the candidate metrics, including the 
NDVI time series used to drive the wheat model described above.

FIGURE 6

Time series in rabi cumulative precipitation (top row), annual mean two-week rabi maximum NDVI (second row), annual two-week rabi mean VHI and 
seasonal winter wheat production for Punjab (left column), Sindh (middle column) and Baluchistan (right column).
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FIGURE 7

Modelling of interannual variability in yield at the district level for an example district in Punjab (Attock). The top left plot shows the Pearson correlation 
coefficient (r) between interannual NDVI at each grid point and interannual yield. The top right plot shows the selected points for the regression 
analysis. The bottom left plot is a time series of observed and simulated yield and the bottom right plot is a scatter plot of simulated yield plotted 
against observed yield (grey dashed line is a one to one line).

FIGURE 8

As for Figure 7 but for the Khairpur district in Sindh.
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TAMSAT-ALERT treats agricultural risk as an aggregation of 
events over a period of time. For example, yield depends on 
meteorological conditions over the whole growing season. If we are to 
update our risk assessments during seasons of interest, it is thus 
necessary to combine monitoring of the past, with forecasts of future 
conditions. The TAMSAT-ALERT approach is to generate an 
ensemble, with each member consisting of an observed time series for 
the past, spliced together with forecasts based on multiple possible 
futures. The future ensemble is generated from the local historical 
climatology, with each member being a time series from individual 
year from the past. For variables, such as NDVI, that are persistent in 
time, the system is initiated from the model state at the end of the 
historical period. For metrics like soil moisture, which are not 
routinely observed, a model is driven with meteorological data (Asfaw 
et al., 2018; Boult et al., 2020); for directly observed quantities, the 
metric is calculated directly from the monitoring and historical data 
(Brown et al., 2017). The implementation for the candidate drought 
metrics is summarised below.

2.5.1 Seasonal cumulative precipitation
On a given day within the growing season (the initiation date), 

ensemble forecasts are composed of observed precipitation from the 
start of the season of interest (1st November) until the initiation date, 
with precipitation from the initiation date until the end of the season 
(30th April) represented by a climatological ensemble (for 1983–
2020). Each ensemble member is thus historical rainfall from 1st 
November until the initiation date, spliced with the precipitation time 
series from a all years within the climatology. The ensemble mean is 
the November – April cumulative precipitation, calculated for each 
member, averaged over the whole ensemble. Analogously, the 
ensemble standard deviation is the standard deviation of the 
November–April cumulative precipitation, derived for the whole 
ensemble. The probability of the cumulative precipitation being lower 
than a user-defined threshold is calculated from the ensemble mean 
and standard deviation, assuming a Gaussian distribution. In this 
implementation, precipitation is assumed not to be persistent in time, 
and so the ensemble forecast is not initiated from the model state on 
the day of initiation. All skill in the forecasts thus arises from the 
inclusion of observed precipitation as the season progresses. On the 
first day of the season (November 1st), the skill is equivalent to a 
purely climatological forecast.

2.5.2 NDVI and VHI
Seasonal mean NDVI and VHI are predicted in an analogous 

fashion to cumulative precipitation. The only difference is that the 
ensemble forecasts on the initiation date are initialised from the 
NDVI/VHI on that day, with the climatology composed of time series 
of NDVI/VHI increments from the previous time-step. We expect, 
therefore, that even on the first day of the season (November 1st), skill 
may be better than climatology in regions where NDVI and VHI are 
strongly persistent in time.

2.5.3 Wheat yield
Wheat yield is predicted by running the yield model described in 

the previous section with an ensemble of predicted NDVI, in place of 
observations. The regression model is driven with each ensemble 
member, and the ensemble mean and standard deviation yield/
production is derived from in the same way as for the other variables. 

It should be noted that once the locally determined period of interest 
for yield estimation has passed, the yield predictions are based only on 
the observation part of each ensemble member time series, and so the 
ensemble standard deviation will be  zero. At this stage, the 
probabilities of the yield being lower than a user defined threshold will 
thus collapse to 0 or 1.

2.5.4 Example forecasts
Formal skill evaluations are included later in the paper, but to 

illustrate the principals of the method, example NDVI forecasts for 5 
and 2 month lead times are shown in Figure 9 for the drought-affected 
1999–2000 season (equivalent VHI and precipitation forecasts are 
provided in Supplementary Figures S1, S2). The persistence of NDVI 
means that, even near the beginning of the season (lead time 
5 months), there are strong negative anomalies – and in the northern 
part of the region, these anomalies persist. Comparison between the 
5- and 2-month leads indicates that the bias of the forecasts compared 
to the observations reduces strongly as the season progresses and 
additional observations are included.

As was described above, in contrast to the NDVI and VHI 
forecasts, the precipitation forecasts are not initialised from the model 
state at the end of the historical period. The predictive power of the 
precipitation forecasts thus depends solely on inclusion of observations 
as the season progresses. This means that near the beginning of the 
season (5 month lead), the forecast precipitation is close to climatology. 
The observed dry anomalies only become evident as the end of the 
season approaches, at which point the forecast is dominated 
by observations.

3 Results

3.1 Skill of the wheat crop model in 
representing district scale yield

The skill of the wheat crop model is assessed by running the 
model for all districts for 1983–2015 and comparing the simulated 
crop yields against observations for all districts in Punjab, Sindh and 
Baluchistan, for which sufficient observational data were available for 
calibration. Figure 10 shows that the correlation (Pearson r2) between 
observed and simulated yield is generally >0.8 in the high production 
districts of Punjab, but is significantly lower in some districts of Sindh. 
In Baluchistan, all correlations are lower than 0.5 – reflecting the low 
quality of the observed yield data throughout the province. 
Furthermore, in many districts in Baluchistan, there was not enough 
observational yield data to implement the yield model, and in any 
case, wheat production is low (Figure 3). Figure 10 also shows the 
correlation between observed winter wheat yield and the other 
candidate metrics (seasonal mean NDVI, seasonal mean VHI, and 
seasonal cumulative precipitation). Observed wheat yield correlates 
more closely with simulated yield than with seasonal mean NDVI, 
confirming that the optimization process of identifying critical regions 
and crop development periods improves the skill of the yield 
predictions. Correlation between observed yield and precipitation is 
weak – even in the high production and relatively high rainfall regions 
of Punjab (Figures 1, 3). This is because cultivation relies on natural 
and artificial irrigation rather than precipitation. Furthermore, the 
lack of correlation between precipitation and the principal crop grown 
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in Punjab supports our approach of considering a range of drought 
metrics for all regions of Pakistan.

3.2 Prediction skill at the district scale

Although the DRF is implemented at the province scale, it is 
relevant to evaluate the prediction model at the scale it is run. 
Hindcasts of NDVI, VHI and precipitation were carried out on the 
gridded dataset for 1983–2021, and then aggregated to the district 
scale. For yield, where gridded data are unavailable, the hindcasts 
were carried out at the district scale. The hindcasts were run for 
lead times of 6 months – 1 month, with lead time defined as the 
length of time before the end of the season (i.e., the length of time 
before April 30th). A leave-one-out cross-validation approach was 
used, with the model re-calibrated to exclude data from each 
target year.

The metrics forecast were: observed yield, simulated yield, 
November–April seasonal mean NDVI, seasonal mean VHI and 
seasonal cumulative precipitation. By the end of the season, (lead time 
0), the forecasts of simulated yield, precipitation, VHI and NDVI are 
by design perfect because the prediction is based entirely on 
observations. This is not, however, the case for observed yield because 
of the residual error in the wheat yield model (Figure 10). To allow fair 
comparison between the metrics, the skill scores shown in Figures 11, 
12 thus compare predicted yield with simulated yield at the end of the 
season. Equivalent correlation plots for each of the predicted metrics 
compared to observed yield are provided in the supplementary 
materials (Supplementary Figures S3, S4). Note that yield hindcasts 
for Baluchistan were not produced because of the poor performance 
of the wheat model for observed data.

Hindcasts are displayed for lead times of 5 months and 2 months 
in Figure 11 and Figure 12 respectively (other lead times not shown). 
Two metrics of skill were derived: Pearson correlation coefficient (r2) 

FIGURE 9

Example forecasts for year 2000 November–April seasonal mean NDVI seasonal for lead times of 5  months (left) and 2  months (middle) compared with 
observations (right). The rows are, from top to bottom: mean/ensemble mean NDVI; NDVI anomaly compared to a long term climatology; and bias 
compared to observations. Equivalent plots for precipitation and VHI are provided in the supplementary materials.
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and receiver operating characteristic area under curve (ROC-AUC) 
for a 25th percentile event1. It can be seen that for NDVI, simulated 
yield and VHI, there is significant skill at a 5 month lead (Figure 11). 
For precipitation, correlations are low, reflecting the concentration of 
precipitation in March and April (Figure  5), although in the low 
precipitation regions of Sindh, ROC-AUC scores are >0.5. The 
prediction skill for all metrics is markedly higher at a 2-month lead 
(Figure 12), with correlations >0.9 and near perfect ROC-AUC scores 
in most districts. From these results, it can be  surmised that at a 

1 The Pearson correlation coefficient quantifies the linear relationship between 

two quantities. An ‘r’ value of 1 indicates a perfect linear relationship, and an 

‘r’ value of −1 indicates a perfect inverse linear relationship. r2 is equivalent to 

the amount of variance of the independent variable explained by the dependent 

variable A statistically significant correlation at the 95% level for a 40 year time 

series of hindcasts is r = ~0.3 or r2 = 0.1. For a DRF, which targets droughts, it is 

necessary to assess the system’s ability to identify severe events. The ROC 

score accomplishes this by comparing false alarm rates (FAR) against true 

positive rates (TPR), with an event defined as having been predicted if a user-

defined probability threshold is breached. If the FAR and TPR are plotted against 

each other for a range of probability thresholds, the area under the curve is 

known as the ROC-AUC. A ROC-AUC of 0.5 indicates climatological skill with 

a perfect score being 1 (see https://www.swpc.noaa.gov/content/roc-receiver-

operating-characteristic-curves for an introduction to the ROC-AUC).

2-month lead, the primary issue is not with prediction of any 
particular metric, but of the relevance of that metric for impactful 
drought. This is illustrated by the comparisons with observed wheat 
yield (Supplementary Figures S3, S4), which show lower skill at both 
5- and 2- months lead. Further error is introduced in the scaling up of 
the district predictions to the province scale. The rest of this paper 
therefore focuses on the implementation of the DRF at the 
province scale.

3.3 What is the appropriate threshold for 
triggering the DRF?

The trigger threshold is determined at the district level for a given 
return period and for each metric as follows:

 • District level data are extracted for 2002–2021 (i.e., the last 
20 years)

 • The data are linearly detrended
 • The triggering threshold in the detrended data is determined 

using an empirical method to calculate the user 
specified percentile

The return period is the interval – generally measured in years – 
between events of a particular magnitude. It can be approximated as:

FIGURE 10

Correlations of observed yield with: (top left) simulated yield; (top right) observed NDVI, (bottom left) observed precipitation and (bottom right) 
observed VHI.
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The return period can be adjusted in two ways: by changing the 
metric threshold at which individual districts trigger (i.e., drought 
intensity); or by changing the population threshold at which the 

scheme is triggered at the province level (i.e., how many people 
affected). Figure 13 illustrates the estimated return periods for a range 
of combinations of individual district drought thresholds and province 
population threshold for the chosen province-scale metrics [all 
metrics are displayed in the supplementary materials 
(Supplementary Figure S5)].

FIGURE 11

Correlation (top set of plots) and ROC-AUC (bottom set of plots) showing the skill of the system for forecasting observed NDVI, simulated yield, 
observed VHI and observed Precipitation 5 months in advance of the end of the season. The plots include data for the districts in the Punjab, Sindh and 
Baluchistan provinces of Pakistan. The ROC-AUC is calculated for a 20th percentile event.
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Comparison between the regions shows that there is some 
variation between regions and metrics in return period for a given 
intensity and exposure. For example, for the parameters set for the 
2020/2021 model, the return period would be 3 years for precipitation 
in Punjab, 5 years for VHI in Sindh and 5 years for NDVI in 
Baluchistan. These values should be treated with caution, however, 
since the data are noisy, and the time span of the dataset is short. The 
trigger values chosen will depend on the desired trade-off between 
exposure and intensity and the severity of event targeted by the 

DRF. For the purposes of the evaluations reported here, we will use 
20th percentile drought; >25% of the population exposed.

It is possible to incorporate some notion of vulnerability into the 
DRF by adjusting the return period for triggering, or by adjusting the 
probability threshold for a pay out. For example, we know that the 
model has skill at detecting drought events well when the probability 
threshold is set to ≥0.5. However, it’s possible to adjust the probability 
threshold so that there are fewer false negatives (missing an event) for 
the vulnerable districts (albeit at the cost of more false alarms). This 

FIGURE 12

As for Figure 11, but with a 2-month lead.
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would mean that the most vulnerable districts trigger more often than 
the more prosperous regions (Boult et al., 2022).

To account for district-to-district variation in vulnerability, 
the system offers the facility to vary the probability threshold for 
identifying a district-scale drought. To identify which districts are 
classed as vulnerable, the decision was made to use the NDMA 
classification of vulnerable districts. By using the NDMA 
classification we  are aligning with the government’s view of 
drought risk. The districts classed as ‘severely vulnerable’ to 
drought, had their probability thresholds lowered to 0.4 – meaning 
that a drought affecting a vulnerable district was less likely to 
be missed.

3.4 Informal comparison against historical 
accounts

As was highlighted in the introduction, evaluation of drought 
metrics is highly challenging for the Rabi season for Pakistan because 
of the lack of reliable on-the-ground information on historical 
drought. It is nevertheless important to consider how the DRF would 
have triggered in the past. Figure  14 shows a time series of the 
percentage of the population affected by a worse than 20th percentile 
drought, as defined by VHI, NDVI, precipitation, observed wheat 
production and simulated wheat production. Supplementary Table S1 
summarises anecdotally reported incidences of drought. Maps 
showing which districts triggered in each year are provided in the 
Supplementary Materials (Supplementary Figures S6, S7). All the 
metrics, apart from NDVI triggered at the province scale during the 
catastrophic drought that affected Pakistan during 2001–2002. The 
continued impact on production for the 2002–2003, in spite of normal 
precipitation, was captured by the production observations (as would 
be  expected), and also by the production simulations. Anecdotal 
reports of moderate and mild Rabi droughts were less consistent, and 
it was often difficult to ascertain which season was being described – 
especially from earlier accounts.

Comparison between the variables confirms the sensitivity of the 
drought assessments to the choice of metric. For example, in 2012, 
there was widespread low precipitation and low yield in Punjab, but 
VHI-defined drought did not affect any of the three provinces. 
Interestingly, although the simulated production was based on NDVI, 
the correspondence between NDVI- and simulated 

production-defined droughts is low, reflecting the importance of 
defining the cropping area in the production simulation process (see 
Section 2.4). On the other hand, the correspondence between 
droughts defined by simulated and observed production is high, 
reflecting the good skill of the model, especially for Punjab. As would 
be  expected from the previous comparisons between NDVI, 
precipitation, VHI and precipitation, the proportion of the population 
affected by a 20th percentile event also varies between drought 
metrics, with widespread low yield occurring more frequently than 
widespread low VHI, for example.

3.5 How far ahead of the end of the season 
can we be confident that the DRF will 
be triggered?

The key factor for the DRF is not skill at a district scale (as 
described in Sections 3.1 and 3.2) but rather accurate triggering at the 
province level. The following discussion therefore analyses the drought 
model’s skill at triggering at the province level. A simulated or 
observed ‘event’ is a province level trigger of the scheme. For the sake 
of brevity, we only consider the following parameters:

 • Districts experience drought if the metric is predicted to be less 
than the 20th percentile

 • Provinces experience drought if more than 25% of the population 
are living in drought affected districts

 • An event is said to be predicted to occur if the probability is 
greater than 0.5

The results of the analysis are summarised in Figure 15 for each 
of the provinces. The skill metric shown is accuracy, which is simply 
the proportion of correctly forecast events, either true negatives or 
hits. Additional metrics of skill are supplied in Supplementary  
Figures S8–S10 in the supplementary materials. Because this set up 
of the TAMSAT-ALERT system does not include any meteorological 
forecasts, as was described in Section 3.2, for precipitation, there will 
be no skill until most of the climatological rainy season has passed. 
For NDVI and VHI, there will be some skill at the outset because of 
the persistence of antecedent conditions, and the model will peak in 
skill as incrementation of land surface greenness slows. The skill in 
the yield forecasts depends both on the predictability of NDVI and 

FIGURE 13

Heat maps of return period for droughts for each province, based on the selected drought metrics (Punjab wheat production; Baluchistan 
precipitation; Sindh VHI). The heat maps show the relationship between the % population exposed (how widespread the drought is), and the district 
scale triggering threshold (how intense the drought is). The colours and numbers show return period, with high return periods (rare events) shaded in 
darker colours than low return periods (common events).
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on the timing of the critical development period identified by the 
modelling system. Interestingly, there is some variation between the 
three provinces, reflecting the variation in the climatological seasonal 
cycles of the metrics. For all three metrics, the accuracy improves 
only slightly after February (2 months in advance of the season end), 
suggesting that robust assessments of drought can be made from 
February onwards.

4 Operational implementation of the 
DRF

The DRF was developed jointly by the Start Network (UK and 
Pakistan offices) and the University of Reading. During the first 
year of operation, the system was entirely run at the University of 
Reading, and since then responsibility for the DRF has gradually 

FIGURE 14

Time series of the percentage of the population of Punjab, Sindh and Baluchistan (shown as different coloured bars) living in districts where there is a 
drought event. Drought is defined as a district-scale mean  <  25th percentile of, from top to bottom: VHI, NDVI, precipitation, observed production of 
wheat, simulated production of wheat.
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been devolved to the Start Network technical team. All decisions 
on payouts are made by the Start Network, in consultation with 
local stakeholders.

Throughout the year, the variables that drive the system (see 
section 2) are automatically downloaded and subsetted for Pakistan. 
November–April forecasts for each variable are generated 
automatically whenever new data are available. Summary outputs, 
consisting of the number of districts triggering and the population 
affected, are shared via a dashboard http://192.248.167.129/pakistan_
drought_data/model_output/drought_model_output_summary.html.

From ~December/January onwards, the dashboard outputs are 
regularly reviewed and informally evaluated by the Start Network UK 
and Pakistan offices – as well as by the University of Reading. The final 
output is made available at the end of February. At this stage, the 
results are reviewed to ascertain whether a basis risk event may have 
occurred. Payouts are made at the province level, based on the donor 
funding available. If there is strong evidence for a basis risk event, 
further evaluations are conducted, and additional payments may 
be made.

5 Reflections and conclusions

Despite the potential value of seasonal forecasts for 
anticipatory action (for example Mwangi et al., 2022), their use 
in drought DRFs has historically been limited. The statistical 
observational/forecasting approach utilised in the Pakistan DRF 
enables quantitative assessment of the probability of drought in 
advance of the season end. As such, it differs from previous 
approaches to large-scale drought disaster risk financing and 
weather index insurance, which rely on monitoring of past and 
current conditions (for example, Black et al., 2016a,b; Fava and 
Vrieling, 2021). Developing a novel modelling approach and then 
immediately operationalising it proved highly challenging, and 
the process of supporting the DRF has taught us a number 
of lessons.

Firstly, although during the most severe events, most drought 
metrics agree, for mild and moderate events, agreement is poor. For 

example, in some years, low precipitation was not associated with low 
NDVI or low VHI, and vice versa. Given these findings, it might seem 
sensible to select the most ‘impact-relevant’ metric for each province. 
However, selecting metrics this way requires a systematic comparison 
against agreed occurrence of impactful drought. For the secondary 
growing season, such data are inconsistent and unreliable. The 
exception is winter wheat production in Punjab, which is undoubtedly 
impactful on both a province and national scale and which has been 
carefully recorded at district level since the 1980s. The development 
and operational implementation of an NDVI-based winter wheat 
forecasting model for Punjab represents a significant technological 
advance. For the other provinces, the only option was to base the 
drought metric selection on an informal assessment of the 
hydrometeorological setting.

Secondly, the predictive power of the drought monitoring and 
forecasting system facilitates decision-making, especially if there is a 
basis risk event. For example, during the 2021–2022 season, drought 
conditions in Sindh were not identified by our system. Having 
warning 2 months in advance of the season end that the DRF was 
unlikely to trigger enabled measures to be put into place for an ex 
gracia pay out, totalling ~300 K GBP.

Thirdly, the challenges we have had developing and validating 
our drought monitoring and prediction model for Sindh and 
Baluchistan are largely due to a lack of data on historical 
impactful drought. This contrasts with the high quality crop 
monitoring for Punjab, which enabled us (and others) to develop 
skillful wheat yield models. A key lesson from this study is the 
value of both historical observations and anecdotal accounts of 
drought (see also Mauerman et al., 2022). There is an urgent need 
for a systematic approach to collecting, curating and rescuing 
such data.

Finally, for technical and administrative reasons, during the 
pilot phase of the DRF, it has not been possible to implement a 
process by which precipitation forecasts are automatically 
downloaded from the Pakistan Meteorological Department 
(PMD) and assimilated into the TAMSAT-ALERT system. The 
skill of the predictions might, however, be  improved by the 
integration of meteorological forecasts (Boult et  al., 2020). 

FIGURE 15

Accuracy of forecasts (% correct forecasts) of province-scale triggering for NDVI, VHI, precipitation and modelled yield (shown as different colours) for 
forecasts initiated in successive months from November – April. From left – right: Punjab, Sindh and Baluchistan. The bold lines show the selected 
metric for the provinces.
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Importantly, using meteorological forecasts would ensure 
consistency between the meteorological drought warnings issued 
by the Pakistan Meteorological Department and the Start DRF 
– especially for Baluchistan, where the DRF is based on 
precipitation. A key lesson learnt is therefore the importance of 
strong engagement with national hydrometeorological services 
from the outset. Further collaboration with PMD, leading toward 
incorporation of meteorological forecasts would be a valuable 
future development.

In spite of the challenges described above, the DRF developed in this 
study represents a significant advance on the previous approaches for the 
region. In a hydrologically complex region like Pakistan, precipitation is 
not an adequate metric of drought – especially during the secondary 
growing season, when precipitation tends to be low. The use of a range 
of metrics including precipitation, wheat yield, NDVI and VHI, provides 
a holistic picture of agricultural drought. In the future, composite indices 
might provide a more precise metric. Another advance is the use of a 
computationally light-weight forecasting system. The forecasts enable the 
DRF to be truly anticipatory – facilitating prompt release of funds, and 
advance warning of basis risk events.

In conclusion, this paper has presented an account of the 
development of a drought monitoring and forecasting system for the 
Start Disaster Risk Finance (DRF) programme in three provinces of 
Pakistan. Implementing the DRF in such an environmentally diverse 
region has been a challenge, both scientifically and operationally. It is 
too early for robust evaluation, but it is hoped that the demonstration 
of the utility of Earth Observation data for prediction as well as 
monitoring, together with the development of a computationally light-
weight yield forecasting model will have wide application in Pakistan 
and beyond.
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