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Introduction: Studies examining sustained attention abilities typically utilize

metrics that quantify performance on vigilance tasks, such as response time and

response time variability. However, approaches that assess the duration that an

individual can maintain their attention over time are lacking.

Methods: Here we developed an objective attention span metric that quantified

the maximum amount of time that a participant continuously maintained an

optimal “in the zone” sustained attention state while performing a continuous

performance task.

Results: In a population of 262 individuals aged 7–85, we showed that attention

span was longer in young adults than in children and older adults. Furthermore,

declines in attention span over time during task engagement were related to

clinical symptoms of inattention in children.

Discussion: These results suggest that quantifying attention span is a unique and

meaningful method of assessing sustained attention across the lifespan and in

populations with inattention symptoms.

KEYWORDS

sustained attention, vigilance decrement, attention span, continuous performance task

(CPT), attentional modeling

1. Introduction

The ability to maintain a stable state of attention while performing a mundane activity

is often referred to as sustained attention (SA) or vigilance (Mackworth, 1948; Langner and

Eickhoff, 2013; Esterman et al., 2014). SA plays a crucial role on performance in real-world

situations, such as driving, academic settings, and success in the workplace (Wei et al., 2012;

Divekar et al., 2013; Clayton et al., 2015). Objective metrics that quantify different aspects

of SA may provide useful information for how individuals engage in daily activities (e.g.,

conduct on our roads, school curriculum, and workplace policy) with cognitive limitations

in mind. For instance, receiving feedback about when SA wanes can help signal when a break

may be beneficial.

Studies that have examined SA have historically focused on response time (RT) metrics,

such as average RT and response time variability (RTV), while participants perform

vigilance tasks that require continuous attention (McAvinue et al., 2012; Staub et al., 2013;

Fortenbaugh et al., 2015). In addition to traditionally used RT based metrics, measures
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derived from signal detection theory, such as D’, are commonly

used to assess performance accuracy during sustained attention

tasks (Fortenbaugh et al., 2015). While these metrics inform us

about an individual’s overall performance during a SA task, they

do not provide information about how long one can maintain their

attention over time. Some studies have assessed how performance

in the RT metrics change over the course of a SA task by

quantifying “vigilance decrements” (Parasuraman et al., 1989;

Tucha et al., 2009; Langner and Eickhoff, 2013; Rosenberg et al.,

2013; Wang et al., 2014). These studies have demonstrated that

performance on SA tasks decline over time (Mackworth, 1948),

that this worsening in task performance over time reflects cognitive

fatigue (Wang et al., 2014), and that it may be exacerbated by

conditions that affect attention, such as normal aging and ADHD

(Parasuraman et al., 1989; Huang-Pollock et al., 2012; Langner

and Eickhoff, 2013). While insightful, these types of analyses

still do not quantify the amount of time that an individual is

able to maintain a stable optimal attentional state, and thus do

not yield a direct, objective metric of attention span (A-span)—

the length of time that an individual can maintain an optimal

attentional state.

Although the phrase “attention span” is commonly used by

the general population to describe the ability to sustain attention,

methods to objectively quantify this capacity in both research and

clinical settings are largely lacking. To this end, we defined a new

metric to quantify an individual’s attention span (A-span): how

long one is able maintain a state of optimal attention, defined

as a period of high performance without response errors and

consistent RTs. We specifically calculated an individual’s A-span by

assessing the maximum length of time that a participant was able

to maintain this optimal attentional state while performing a visual

continuous performance task (CPT), a commonly used vigilance

task in which participants respond to frequently occurring targets

and withhold responses to infrequent non-targets (Esterman et al.,

2013, 2014). We also quantified vigilance decrements in A-span

to examine changes in A-span over the course of the CPT

(“A-span decrements”).

Here, we leveraged a large dataset from children, young

adults, and older adults to examine how A-span captures attention

abilities. First, we compared A-span to traditional metrics of

SA performance (i.e., RT and RTV) in a population of young

adults. We then tested the hypothesis that A-span measures would

follow an inverted-U pattern across the lifespan, such that it

peaks in young adulthood and is reduced in older adults and

children. Changing in a similar manner as traditional metrics

would suggest that A-span metrics are sensitive to detecting

age-related SA changes (McAvinue et al., 2012; Staub et al.,

2013; Fortenbaugh et al., 2015). Finally, we evaluated the clinical

utility of these metrics by examining if there were relationships

between A-span measures and real-world symptoms of inattention

in children, as indexed by the Vanderbilt ADHD Diagnostic

Rating Scale (VADRS), given that SA impairments are well

documented in individuals with ADHD (Huang-Pollock et al.,

2006, 2012). In doing so, we assess whether A-span can serve

as a unique and meaningful approach to evaluate SA abilities in

separate age groups across the lifespan and in populations with

attention impairments.

2. Materials and methods

2.1. Participants

We compiled CPT data from a series of studies recently

performed at the UCSF Neuroscape Center by the present authors,

with a total of 68 children (mean age = 9.57 +/– SD 1.62 years,

range 7–13 years; 15 female, 53 male) recruited from 3 studies

(Gallen et al., 2021; Mishra et al., 2021; Anguera et al., 2023), 88

young adults (mean age= 25.02+/– SD 2.96 years, range= 19–32

years; 55 female, 33 male) recruited from 3 studies (2 of which have

been published Ziegler et al., 2019; Mishra et al., 2021), and 106

older adults (mean age = 68.49 +/– SD 6.45 years, range = 56–85

years; 50 female, 56 male) recruited from 2 studies (1 of which has

been published Anguera et al., 2022). See Supplementary material

for more information about the studies in which the CPT data

reported here were collected.

All participants had normal or corrected-to-normal vision,

had no history of stroke, traumatic brain injury, or psychiatric

illness (except for diagnosed ADHD), and were not taking

psychotropic medication, except for 8 children who were taking

stable doses of ADHD medication during their participation in

the study. Additionally, older adult participants were screened

for severe cognitive impairment using a Montreal Cognitive

Assessment (MOCA) cutoff score of 18 (Trzepacz et al., 2015)

and a composite score from a battery of neuropsychological

tests (see Supplementary material for more information). All

participants and their parents and/or legal guardians (for all

children under the age of 16) gave informed consent to

participate in the study according to procedures approved by the

Committee for Human Research at the University of California San

Francisco. The methods employed in this study were performed in

accordance with the relevant guidelines specified in the Declaration

of Helsinki.

2.2. Paradigm and stimuli

Participants from all age groups completed the same visual

CPT in the same research lab at the UCSF Neuroscape Center

(Figure 1A), except for 16 children who completed the same CPT

using identical equipment at Cortica Healthcare’s labs in Marin

County. The CPT was modeled after the Test of Variables of

Attention (TOVA) (Leark et al., 2007) and has been used in

several previously published studies from our group (Anguera et al.,

2013, 2017a,b; Ziegler et al., 2019). The CPT was programmed

in Presentation (http://neurobs.com) and the stimuli consisted of

light gray squares that appeared on a black background at either

the top or bottom half of the computer screen (see Figure 1A).

Participants were instructed to respond to target stimuli (squares

at the top half of the screen) with the spacebar and to withhold

responses to non-target stimuli (squares at the bottom half of the

screen). Each stimulus remained on the screen for 100milliseconds,

with a 1,400 millisecond inter-trial-interval. The CPT consisted of

two conditions: The first condition had infrequent target stimuli

(a 1:4 target to non-target ratio), while the second condition had

frequent target stimuli (a 4:1 target to non-target ratio). For our
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analyses here, we only analyzed the condition with frequent targets

to maximize the number of trials with correct (target) RT values,

which are required for a precise A-span measurement. In this CPT

condition, participants completed 2 blocks that each contained 125

total trials (100 targets and 25 non-targets) per block. The blocks

were separated by a brief break in the task. The break was included

to maintain consistency with the TOVA. Across the entire CPT

condition, there were a total of 200 targets and 50 non-targets and

took 6min and 15 seconds to complete.

2.3. Computing traditional attention
metrics

We computed traditional SA metrics, average RT and RTV (the

standard deviation of RTs), for all correct responses to target stimuli

across the entire CPT. RTs that were faster than 150 msec were

excluded from the traditional metric computations, as this is often

considered too fast for accurate perceptual discrimination and thus

likely reflects a more error-prone state (Leark et al., 2007). We also

computed RT and RTV in each of the 2 blocks separately to examine

vigilance decrements (defined as the percent change in RT and RTV

from the first to the second block).

2.4. Computing A-span

We computed the novel A-span metric using customMATLAB

code that built upon an approach commonly used in the

literature to quantify moment-to-moment fluctuations of attention

(Esterman et al., 2013, 2014; Kucyi et al., 2017). This approach

characterizes when a participant is “in the zone” or “out of the zone”

(defined below) using trial wise accuracy and RT (Figure 1B). Here,

we extended this approach to characterize an individual’s A-span

by computing the maximum amount of time that a participant was

able to maintain an “in the zone” state without deviating to an “out

of the zone” state.

To quantify A-span, we first z-scored the correct RTs at the

single participant level. Any correct RT that fluctuated around the

average RT and was faster than 1 z-score above an individual’s

average RT was characterized as an “in the zone” trial. RTs that

were slower than 1 z-score were characterized as “out of the zone”

trials. Trials when the participant made an error were characterized

as “error trials”. RTs that were faster than 150 msec were also

characterized as “error trials”, since this is considered to be too

fast for accurate perceptual decision making (Leark et al., 2007).

All “error trials” were categorized as contributing to the participant

being not “in the zone”, as incorrect responses in CPTs reflect

a drift of attention away from the task (Robertson et al., 1997;

Smallwood and Schooler, 2006; Esterman et al., 2013). Additionally,

if a stretch of “in the zone” trials was punctuated by the break

between blocks, we considered that as the end of the “in the zone”

segment because the absence of task demands during the break

meant that they were no longer in an optimal task-engaged state.

We next computed the maximum amount of time (in seconds)

that a participant was able to maintain an “in the zone” optimal

attentional state (spanning at least 2 consecutive trials). We refer

to this duration of time throughout this manuscript as “A-span”.

Though it was not examined in the present study, the average

amount of time that a participant can stay “in the zone” (i.e., average

A-span) may also be a meaningful approach of measuring A-span

(see Supplementary material for more information). As with th

traditional attention metrics, we computed these A-span metrics

across the entire CPT. We also examined vigilance decrements in

A-span (percent A-span change between the first and second task

blocks). Additional details regarding the A-span calculations can be

found in Supplementary material. We then examined whether this

new metric was distinct from traditional SA metrics (e.g., RT and

RTV). Further, we asked how these A-span metrics differed across

age groups and how they were related to symptoms of inattention

in children.

2.5. Characterizing inattention symptoms
in children

For 44 of the 68 children, we also collected parent ratings

of inattention in the real world using the Vanderbilt ADHD

Diagnostic Rating Scale (VADRS-IA). ADHD symptoms were

assessed using 18 questions that probed the frequency that the

child displays various ADHD symptoms, with questions 1–9

assessing inattentive symptoms and questions 10–18 assessing

hyperactive/impulsive symptoms. Parents rated each symptom on

a scale of 0 (“Never”) to 3 (“Very Often”). Given our interest in SA,

we focused on relating the inattentive symptoms (questions 1–9) to

A-span performance metrics. Therefore, we correlated our A-span

metrics with the number of positive responses (a 2 “Often” or 3

“Very Often”) on the 9 questions that probe inattention symptoms

(Wolraich et al., 2003). Of the 8 children in this study who were

taking ADHD medication at the time of data collection, only 1 of

them provided VADRS-IA data. Therefore, we did not control for

medication status during this analysis.

2.6. Statistical analysis

All statistical analyses were conducted in IBM’s SPSS Statistics

20 software. First, we examined A-span metrics within each age

group independently. We assessed whether there were significant

A-span decrements across the CPT (i.e., if the percent change scores

significantly differed from 0) using Wilcoxon signed rank tests. We

chose to use this non-parametric approach to reduce the influence

from potential extreme values. Since the Wilcoxon signed rank

test compares our sample median against a hypothetical median,

we highlighted the median percent change scores when reporting

A-span decrements in each age group.

We then evaluated relationships between traditional and

A-span metrics by conducting Spearman correlations between

these metrics in young adults only. We chose to use Spearman

correlations to reduce the influence that potential extreme

values had on the correlations (Akoglu, 2018). Additionally,

Bayesian non-parametric correlations were conducted to test the

independence between A-span and traditional metrics.
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FIGURE 1

(A) Stimuli and protocol for the CPT. There were a total of 250 trials, with 80% targets and 20% randomly occurring non-targets. (B) Z-scored RTs

from an example participant. Each RT was z-scored and plotted over time. RTs that are faster than 1 z-score above the mean are plotted in dark gray

and are labeled as “in the zone” trials. RTs slower than 1 z-score above the mean are plotted in light gray and are labeled as “out of the zone” trials.

Trials in which there was an error were plotted in red and were labeled as “error trials”. The dashed vertical line represents the break between the first

and second CPT blocks. The dotted box highlights the longest period during the CPT when this participant was able to maintain an “in the zone”

state (i.e., their A-span).

To examine age group differences on A-span and traditional

metrics, we conducted one-way ANOVAs on each metric with a

between-subjects factor of age group (children, young adults, and

older adults). We followed these analyses with an interrogation of

pairwise differences between age groups with independent samples

t-tests (see Supplementary material).

Finally, to evaluate the clinical utility of A-span metrics in

children, we examined the relationship between these metrics

and clinically-used inattention symptoms, as indexed by the

number of positive responses to the VADRS-IA that these children

displayed, using Spearman correlations. To determine if the

relationships between attention span metrics and inattention

symptoms were stronger than the relationships between traditional

metrics and inattention symptoms, we converted Spearman

correlation coefficients to Pearson correlation coefficients (Myers

and Sirois, 2004), and then formally compared the correlation

coefficients (Pearson and Filon, 1898; Diedenhofen and Musch,

2015). For each set of analyses where we ran multiple statistical

tests (e.g., correlations between inattentive symptoms and both A-

span metrics), we corrected p-values using an FDR correction for

multiple comparisons and used a two-tailed significance threshold

of p < 0.05.

3. Results

3.1. Characterizing A-span across the
lifespan

We began by calculating and characterizing the new A-

span metrics in each age group separately (Table 1). We found

that children had an A-span of 29.61 seconds, which declined

significantly (−27.41%) over the course of the CPT (Z = 687.00,

p = 0.003). Young adults had an A-span of 76.24 seconds, which

did not decline significantly (−2.54%) over the course of the CPT

(Z = 2,193.00, p = 0.328). Finally, the older adults had an A-span

of 67.01 seconds, which also did not decline significantly (−8.40%)

over the course of the CPT (Z = 2,672.00, p = 0.606). Although

the median A-span percent change was negative in each of the age

groups, there were several participants who experienced very large

increases in A-span (>100%) throughout the CPT. Most of these

Frontiers inCognition 04 frontiersin.org

https://doi.org/10.3389/fcogn.2023.1207428
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Simon et al. 10.3389/fcogn.2023.1207428

TABLE 1 Descriptive statistics of A-span and A-span percent change for

each age group.

Children Young
adults

Older
adults

Mean 29.61 sec 76.24 sec 67.01 sec

A-span

Median 27.37 sec 72.17 sec 59.31 sec

Stdev 13.86 sec 30.55 sec 28.28 sec

Range 8.88–77.92 sec 27.12–189.74

sec

25.95–186.98

sec

A-span %

change

Mean −12.55% 20.02% 4.88%

Median –27.41% –2.54% –8.40%

Stdev 46.73% 78.09% 61.62%

Range −68.45–

160.25%

−76.21–

346.08%

−67.20–

299.38%

p-value 0.003∗∗ 0.328 0.606

The row indicating “p value” reflects results from the Wilcoxon signed rank tests assessing if

A-span percent change significantly differed from 0. ∗∗p < 0.01.

participants were young adults (n= 15 out of 88), while fewer were

older adults (n= 7 out of 106), and the fewest were children (n= 2

out of 68).

3.2. Determining the uniqueness of A-span
and A-span decrements in young adults

We then assessed the relationships between A-span and

traditional SAmetrics in a population of young adults to determine

the uniqueness of the new A-span metrics. We found that A-span

was not correlated with RT or RTV [Figure 2A; RT: rho(88) =

−0.13, pFDR = 0.711, BF01 = 3.46; Figure 2B; RTV: rho(88) = 0.06,

pFDR = 0.711, BF01 = 6.39]. Similarly, A-span percent change was

not correlated with either RT or RTV percent change [Figure 2C;

RT percent change: rho(88) = 0.06, pFDR = 0.711, BF01 = 6.32;

Figure 2D; RTV percent change: rho(88) = 0.04, pFDR = 0.711, BF01
= 6.96]. Together, these findings suggest that A-span and A-span

decrement metrics may be distinct from traditional metrics and

their vigilance decrements.

3.3. Age group e�ects on A-span metrics

We then examined changes in A-Span across the three age

groups to assess whether A-span metrics follow similar patterns

of SA change across the lifespan as reported elsewhere (McAvinue

et al., 2012; Staub et al., 2013; Fortenbaugh et al., 2015). We

specifically examined age group effects for all CPT metrics, as well

as for vigilance decrements in each metric from the first to second

block of the task.

3.3.1. A-span
First, we examined whether there were age group differences

in A-span. A one-way ANOVA revealed a significant age group

effect for A-span [Figure 3A; F(2,259) = 66.32, p< 0.001, η2 = 0.34],

such that young adults had longer A-spans than children and older

adults. See Table 2 for details on pairwise comparisons between

age groups. The age group effect on A-span was nearly identical

when excluding children who were taking ADHD medication at

the time of data collection [F(2,251) = 66.23, p < 0.001, η2 = 0.34].

Additionally, the age group effect onA-spanwas similar when using

an ANCOVA that used a type III sum of squares to control for

differences in sample size between age groups while also setting

the study in which the data were originally collected as a covariate

[F(2,262) = 33.96, p < 0.001, η2 = 0.21].

3.3.2. Traditional metrics
Next, we confirmed that the traditional metrics (RT and

RTV) also showed this expected pattern of changes across the

lifespan (McAvinue et al., 2012; Staub et al., 2013; Fortenbaugh

et al., 2015). One-way ANOVAs with a between-subjects

factor of age group (children, young adults, and older adults)

showed that there was a significant age group effect for RT

[Supplementary Figure 3a; F(2,259) = 110.30, p < 0.001, η2 = 0.46]

and RTV [Supplementary Figure 3b; F(2,259) = 264.03, p < 0.001,

η
2 = 0.67]. Similar to A-span, young adults had lower RT and

RTV than children and older adults. See Supplementary material

for statistics on pairwise comparisons between age groups. The

similarities between the way that A-span and traditional metrics

differ across age groups suggest that they may reflect distinct

attentional processes that similarly fluctuate during development

and aging.

3.3.3. Decrements in A-span
We then examined whether A-span decrements followed this

pattern of age group differences. A one-way ANOVA revealed a

significant age group effect for A-span decrements, as indexed by

A-span percent change [Figure 3B; F(2,259) = 4.91, p = 0.008, η2 =

0.04]. Young adults experienced smaller A-span decrements than

children but had similar A-span decrements as older adults. See

Table 2 for details on pairwise comparisons between age groups.

The age group effect on A-span percent change was similar when

excluding children who were taking ADHD medication at the

time of data collection [F(2,251) = 6.27, p = 0.002, η
2 = 0.05].

Additionally, the age group effect on A-span percent change was

similar when using an ANCOVA that used a type III sum of squares

to control for differences in sample size between age groups while

also setting the study in which the data were originally collected as

a covariate [F(2,262) = 3.79, p= 0.024, η2 = 0.03].

3.3.4. Decrements in traditional metrics
Next, we confirmed that vigilance decrements over time in

traditional metrics followed the pattern of expected changes

across the lifespan as previously reported (Parasuraman et al.,

1989; Langner and Eickhoff, 2013). One-way ANOVAs with a

between-subjects factor of age group (children, young adults,

and older adults) showed that there was a significant age group

effect for RT percent change from first to second block of the

task [Supplementary Figure 3c; F(2,259) = 9.38, p < 0.001, η
2 =
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FIGURE 2

Scatterplots showing that, in young adults, (A) A-span was unrelated to RT and (B) RTV, and that A-span percent change was unrelated to (C) RT

percent change and (D) RTV percent change.

0.07]. Young adults had smaller RT percent changes (i.e., more

stable performance throughout the entire CPT) than children but

had similar RT percent changes as older adults. Unexpectedly,

however, there was no effect of age for RTV percent change

[Supplementary Figure 3d; F(2,259) = 1.37, p = 0.257, η
2 = 0.01].

See Supplementary material for statistics on pairwise comparisons

between age groups. Like the metrics computed across the entire

task, the similarities between the way that decrements in A-span

and traditional metrics differ across age groups suggest that they

may reflect distinct attentional processes that similarly fluctuate

during development and aging.

3.4. Relationship between inattention
symptoms and A-span decrements in
children

We then assessed the potential clinical utility of A-span

measurements by examining whether A-span metrics were

related to real-world symptoms of inattention in children. We

subsequently followed these analyses by testing for similar

relationships between traditional metrics and inattention

symptoms, to determine if the children included here exhibit

similar SA deficits as reported elsewhere (Huang-Pollock et al.,

2006, 2012).

3.4.1. A-span metrics
We interrogated the relationships between each A-span metric

and the number of inattention symptoms reported on the VADRS

questionnaire. We found that the vigilance decrement in A-

span was negatively related to ADHD-inattentive symptoms in

children (i.e., a more negative A-span percent change was related

to having more inattention symptoms) (Wolraich et al., 2003)

[Figure 4B; rho(44) = −0.34, pFDR = 0.044]. However, there was

no relationship between A-span (i.e., across the entire task) and

inattention symptoms [Figure 4A; rho(44) = 0.15, pFDR = 0.317].

3.4.2. Traditional metrics
Next, we sought to confirm that the traditional metrics

showed similar relationships with inattention symptoms as

documented elsewhere (McAvinue et al., 2012; Staub et al., 2013;

Fortenbaugh et al., 2015). Interestingly, there was no relationship

between any of the traditional metrics and inattention symptoms

[Supplementary Figure 4a; RT: rho(44) = 0.19, pFDR = 0.603;

Supplementary Figure 4b; RTV: rho(44) = 0.05, pFDR = 0.766;
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FIGURE 3

Age group e�ects on A-span metrics. (A) Age e�ects on A-span were driven by children and older adults having shorter A-spans than young adults.

(B) Age e�ects on A-span percent change were driven by children having greater A-span decrements (i.e., a more negative A-span percent change)

than young adults. Box and whisker plots represent the bounds of each quartile. Dashed lines represent the group average. White dots represent the

group median. Blue significance bars indicate significant interactions revealed from the ANOVAs and black significance bars indicate significant t-test

results. *p < 0.05, **p < 0.01.

TABLE 2 Pairwise comparisons of A-span measures comparing young

adults to children and older adults separately.

Young adults
vs. children

Young adults
vs. older
adults

t-statistic t(127.77) =−12.72 t(192) = 2.18

A-span Cohen’s d d =−1.89 d = 0.32

p-value p < 0.001∗∗ p < 0.030∗

A-span %

Change

t-statistic t(145.69) =−3.23 t(163.92) = 1.48

Cohen’s d d = −0.49 d = 0.22

p-value p= 0.002∗∗ p= 0.142

∗p < 0.05, ∗∗p < 0.01.

Supplementary Figure 4c; RT percent change: rho(44) = 0.12, pFDR
= 0.603; Supplementary Figure 4d; RTV percent change: rho(44) =

0.15, pFDR = 0.603].

3.5. Inattention symptoms are more closely
related to A-span percent change than
traditional metrics

In an exploratory analysis, we sought to determine if the

relationship between A-span percent change and inattention

symptoms was significantly stronger than the relationships between

traditional metrics and inattention symptoms. We found that

the correlation between A-span percent change and inattention

symptoms was significantly stronger than that for each of the

traditional metrics and inattention symptoms (RT: z = −2.77, p =

0.006; RTV: z = −1.98, p = 0.047; RT % change: z = −2.11, p =

0.035; RTV % change: z =−2.43, p= 0.015).

4. Discussion

Here, we report a method of quantifying attention span by

calculating the maximum amount of time that a participant was

able to maintain an “in the zone” high performance state while

performing a CPT. Our approach revealed that children had

an A-span of 29.61 seconds, young adults had an A-span of

76.24 seconds, and older adults had an A-span of 67.01 seconds.

Furthermore, A-span decrements were most pronounced in

children, who experienced an A-span decline of −27.41% over the

course of the CPT, while young and older adults experienced non-

significant A-span decrements (−2.54 and −8.40%, respectively).

A-span decrements were also sensitive to detecting inattention

symptoms in children. The results we report here suggest that our

approach of quantifying A-span is a unique andmeaningfulmethod

of assessing SA abilities in separate age groups across the lifespan

and in clinical populations.

4.1. A-span fluctuations across the lifespan

Although A-span performance followed previously seen

patterns of change across the lifespan as the traditional metrics, A-

span metrics were uncorrelated with traditional metrics in young

adults. Bayesian analysis also provided evidence that A-span was

independent from traditional metrics, suggesting that they may

reflect distinct attentional processes. These findings are likely the

result of two possible scenarios. First, A-span and traditional

metrics may reflect different aspects of a common,more general, set

of SA processes that change with development and aging. Second,

these metrics may reflect distinct, unrelated cognitive processes

that both happen to increase during development and decline

during aging. Future work is warranted to address this question

by identifying the neural activity profiles that facilitate A-span
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FIGURE 4

Relationships between A-span measures and inattention in children. (A) There was no significant relationship between the VADRS-IA score and

A-span. (B) There was a significant relationship between the VADRS-IA score and the A-span % change. *p < 0.05.

maintenance, as this type of interrogation would identify the

similarities and differences between the neural correlates of A-span

and traditional SA metrics, thereby enhancing our understanding

of these cognitive processes.

Unexpectedly, we did not see any effects of age group on RTV

vigilance decrements. Although many studies have shown that SA

and vigilance decrements change across the lifespan (Parasuraman

et al., 1989; McAvinue et al., 2012; Langner and Eickhoff, 2013;

Staub et al., 2013; Fortenbaugh et al., 2015), there have been studies

that have reported no SA changes with aging (Carriere et al., 2010).

Thus, our results suggest that A-span might be more sensitive to

detecting age-related vigilance decrements than RTV.

4.2. Clinical relevance of A-span

Importantly, we also observed that A-span percent change

was related to inattentive symptoms in children, while traditional

metrics were not. Further, the relationship with A-span percent

change was significantly stronger than the correlations with

traditional metrics. While declines in traditional metrics are

well documented in individuals with ADHD (Huang-Pollock

et al., 2006, 2012), null reports of SA deficits in ADHD

populations do exist (Corkum and Siegel, 1993; Tucha et al.,

2009). This inconsistency in the literature could be influenced by

the heterogeneity of cognitive deficits in ADHD. Alternatively,

traditional metrics may be too coarse to reveal group differences in

a population with known elevated levels of performance variability

(Huang-Pollock et al., 2012). It has been suggested that more

granular approaches, such as vigilance decrements (Huang-Pollock

et al., 2012), for assessing attention deficits in ADHD populations

may be useful for better understanding how SA is impacted in

ADHD. This new approach of A-span assessment may be a useful

approach for assessing SA in ADHD given that it reflects how long

an individual can hold their attention in an optimal state, and

how this changes with time on task. However, these results should

be interpreted with an abundance of caution. Future work should

rigorously examine the reliability of using A-span measurements to

detect inattention symptoms (Hedge et al., 2020).

Although we saw effects of age on A-span decrements, only

children displayed significant A-span decrements over the course

of the CPT (see Table 1). This finding highlights how children

are poorer at maintaining stable attention over time relative to

adults, and is even more intriguing when considering that A-span

decrements in this age group are associated with symptoms of

inattention. Together, these results suggest that A-span stability is

sensitive to development, and impairments in an individual’s ability

tomaintain a stable A-span over time could be an importantmarker

of attention impairments.

4.3. A-span as a new approach for assessing
attention over time

Although traditional metrics that assess CPT performance are

useful for detecting overall SA abilities, they do not directly quantify

the ability to maintain uninterrupted attention over a sustained

period of performance (Huang-Pollock et al., 2012). An individual’s

average RT during a CPT could be fast because their psychomotor

speed was fast while they were in an attentive state, but they could

have had frequent lapses in attention that were not detected when

computing an average RT across the whole CPT. Our finding that

RT was uncorrelated with A-span in young adults supports this

notion. Contrasting the neural correlates of A-span with what is

known about the neural processes that underlie SA could further

highlight how A-span differs from traditional metrics (Rosenberg

et al., 2016; Helfrich et al., 2018). Many researchers have leveraged

vigilance decrements to assess the extent of attentional decline over

time (Parasuraman et al., 1989; Tucha et al., 2009; Langner and

Eickhoff, 2013; Rosenberg et al., 2013; Wang et al., 2014). While

this work has illuminated how performance in traditional metrics

change over the course of a task, it has not helped researchers

understand how the amount of time that an individual is able to

maintain a stable optimal attentional state is relevant. Our new
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A-span metric achieves this while also providing an approach to

quantify an ability that is seemingly intuitively understood amongst

the general public.

When considering A-span as a measure of interest, researchers

should consider the type of tasks that are aligned with its use. In

general, CPTs, such as the SART, TOVA, and gradCPT (Leark et al.,

2007; Carriere et al., 2010; Esterman et al., 2013, 2014), which have

been used to assess metrics of SA, are likely to yield meaningful

A-span measurements. These types of paradigms that sample

a participant’s focus frequently (i.e., ones that require frequent

responses) are more likely to capture brief fluctuations in attention,

and thus will yield more precise A-span metrics. However, these

tasks may index SA differently. Further research is necessary

for determining which SA tasks are best suited for measuring

A-span. Investigators should use caution when calculating A-

span from more complex cognitive tasks (e.g., working memory,

decision making, and interference resolution tasks). Longer RTs

and errors in these types of tasks may not reflect attentional

lapses, but instead may stem from other difficulties in cognitive

processing, such as reaching working memory capacity limits

or when there is uncertainty during complex decision making.

Therefore, measuring A-span during a more challenging task might

not purely reflect how long an individual can stay in an optimal SA

state. Additionally, the task duration is an important factor to take

into consideration when computing A-span. The CPT employed

in this study was relatively short. A longer CPT may yield A-span

measurements that reflect SA abilities differently. Utilizing CPTs

that require less frequent responses may also provide meaningful,

and potentially distinct, A-span calculations. However, since these

types of CPTs have fewer trials, they will likely need to be longer

than the task used in this study to obtain a precise A-span.

4.4. Future directions

Interrogating the similarities and differences in the neural

processes underpinning A-span and traditional metrics is a

potentially exciting future avenue of research. Several fMRI studies

have implicated several widespread brain networks, including

the default mode, salience, and dorsal attention networks, in

maintaining “in the zone” attentional states (Esterman et al., 2013,

2014; Kucyi et al., 2017). Thus, these networks likely play a

role in A-span maintenance. Additionally, incorporating recently

developed neuroimaging analysis methods that are sensitive to

detecting neural dysfunctions related to inattention into A-

span studies can further illuminate how A-span is impacted

by inattention (Cai et al., 2021). Ultimately, reaching a better

understanding of how A-span decrements might be related

to inattention could lead to better characterization of ADHD

subtypes, and enhanced treatment personalization and efficacy

(Leikauf et al., 2017; Griffiths et al., 2021).

Understanding how different task parameters contribute to A-

span measurements is an important extension of this research.

As described previously, future research should seek to identify

whether longer tasks capture more meaningful A-span fluctuations

than the A-span % change reported in this study. Establishing

the minimum task length that can be used for calculating A-span

is also an important avenue of future work. Finally, identifying

the effects that taking a short break between blocks has on A-

span decrements may illuminate how vigilance decrements may be

mitigated or exacerbated.

4.5. Limitations

There are a few noteworthy limitations in this study. First,

although we showed that a relatively short CPT (only 6min and

15 sec in total) can yield meaningful A-span metrics, the optimal

length of a CPT for measuring A-span (and decrements) remains

to be determined. Computing A-span over longer periods in future

work will allow us to understand more precisely how the rate and

magnitude of A-span decrements might signify the presence of

attention impairments. It is possible that some individuals who

have short A-spans when measured on timescales of 5–10min

can maintain high task performance for several hours (or vice

versa). Interestingly, some individuals experienced an increase in

A-span with time on task. On the surface, this seems to contradict

theoretical models of SA, such as the resources depletion theory

(Esterman and Rothlein, 2019). A longer task might reveal that

the amount of time it takes for an individual to reach their

maximum A-span provides meaningful information regarding

sustained attention abilities. Furthermore, it might reveal that the

individuals who initially experienced large increases in A-span over

time eventually show A-span decrements, thus capturing a “warm-

up” period that has been reported in the SA literature (Kamza

et al., 2019). It could also explain the disproportional distribution of

these individuals across age groups that we observed here. Based on

the present findings, future work examining individual differences

in A-span dynamics over longer timescales is warranted to better

understanding the utility of this metric in different scenarios.

Ultimately, doing so could facilitate the use of A-span in real-world

settings. Closed-loop systems can interpret shortening A-spans as

an indication of a need to take a rest, or lengthening A-spans as a

sign that an individual has yet to reach their maximum A-span.

Although we found evidence that A-span is unique from

traditional measures, there are likely some individuals whose A-

spans are affected by their RTV. For instance, an individual with

frequent attentional lapses (i.e., slower responses) will likely have a

shorter A-span than an individual with infrequent, but large lapses

(i.e., several consecutive very slow responses), even though they

may have similar RTV values. Understanding how the temporal

distribution of variable responses impacts A-span measurements

is a topic that future studies should examine more thoroughly.

Moreover, the result that A-span is independent from traditional

metrics should be interpreted with caution and replicated before

concluding that A-span is truly measuring a unique aspect of SA

that is not captured by traditional metrics.

Additionally, althoughwe analyzed data from participants from

a wide age range, we did not have any participants between the ages

of 14–18 and 33–55. Therefore, it remains unknown how A-span

and A-span decrements change during adolescence and middle

adulthood. Finally, the present study did not examine the relative

contribution of state (i.e., mood, fatigue, and stress) to A-span

measurements. Future studies should seek to disentangle state vs.

trait impacts on A-span.
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5. Conclusion

Here, we demonstrated that A-span is a unique and meaningful

index of SA abilities that differs between age groups across

the lifespan, and that A-span decrements are related to clinical

inattention symptoms in children. Our work suggests that A-span

is a promising new approach for characterizing SA performance at

the behavioral level, and should be further utilized when examining

the effects of development and aging on SA abilities, and in clinical

conditions that impact cognition.
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