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The phonetic patterns of human spoken languages have been claimed to be in part

shaped by environmental conditions in the locales where they are spoken. This follows

predictions of the Acoustic Adaptation Hypothesis, previously mainly applied to the

study of bird song, which proposes that differential transmission conditions in different

environments explain some of the frequency and temporal variation between and within

species’ songs. Prior discussion of the relevance of the Acoustic Adaptation Hypothesis

to human language has related such characteristics as the total size of the consonant

inventory and the complexity of the permitted maximum syllable structure, rather than

patterns in continuous speech, to environmental variables. Thus the relative frequency

with which more complex structures occur is not taken into account. This study looks at

brief samples of spoken material from 100 languages, dividing the speech into sonorous

and obstruent time fractions. The percentage of sonorous material is the sonority

score. This score correlates quite strongly with mean annual temperature in the area

where the languages are spoken, with higher temperatures going together with higher

sonority scores. The role of tree cover and annual precipitation, found to be important

in earlier work, is not found to be significant in this data. This result may be explained if

absorption and scattering are more important than reflection. Atmospheric absorption

is greater at higher temperatures and peaks at higher frequencies with increasing

temperature. Small-scale local perturbations (eddies) in the atmosphere created by

high air temperatures also degrade the high-frequency spectral characteristics that are

critical to distinguishing between obstruent consonants, leading to reduction in contrasts

between them, and fewer clusters containing obstruent strings.

Keywords: acoustic adaptation hypothesis, language and environment, sonority, running speech, temperature

BACKGROUND

Any communication system using an acoustic channel is inevitably subject to filtering and masking
effects which modify the faithfulness of the transmission of a signal. Once any acoustic signal is
emitted from its source its characteristics will be modified by a wide variety of factors before it
reaches any recipient.When considering sounds transmitted through open air, the temperature and
density of the air, the nature of the ground surface below and the presence of obstacles and their
surface characteristics are among the various factors that impact both the spectral and temporal
characteristics of a signal (Harris, 1966, 1967; Aylor, 1972; Marten and Marler, 1977; Marten
et al., 1977; Piercy et al., 1977; Wiley and Richards, 1978; Richards and Wiley, 1980; Martens and
Michelsen, 1981; Bass et al., 1984; Martens, 1992; Attenborough et al., 1995, 2011; Embleton, 1996;
Sutherland and Daigle, 1998; Wilson et al., 1999; Salomons, 2001; Naguib, 2003; Albert, 2004).
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Moreover, the presence of any competing sounds in the
environment can affect a hearer’s perception of the properties
of a signal. Sound is generated by wind, rainfall, flowing
water, birds, insects and other creatures, among other sources.
Environmental sounds of this kind can selectively mask some
characteristics of an acoustic signal in natural settings (Winkler,
2001; Slabbekoorn, 2004a,b; Brumm and Slabbekoorn, 2005).

While a good deal of the research on outdoor sound
propagation has been directed to addressing practical issues
relevant to humans, such as the mitigation of vehicle or aircraft
noise (Salomons, 2001) or the calculation of the source of
weapons fire (Beck et al., 2011), a considerable amount of
work has also been devoted to the potential effects of both
filtering and masking on the design of biological acoustical
communication systems. Several basic principles have been put
forward (Bradbury andVehrencamp, 1988; Hauser, 1996; Römer,
2001; Ryan and Kime, 2002). The Acoustic Niche Hypothesis
(Krause, 1987, 1993; Farina et al., 2011) proposes that different
species tend to avoid competition for the same frequency
band and time window, which reduces the impact of masking.
Related to this proposition, several studies have shown that
song birds in urban areas seem to be raising the pitch of their
songs in response to the pervasive presence of lower-frequency
human-generated machine noise (Slabbekoorn and Peet, 2003;
Wood and Yezerinac, 2006) and Slabbekoorn and Smith (2002)
suggest that little greenbul (Andropadus virens) populations
adapt their songs to lessen interference from ambient noise.
The Acoustic Adaptation Hypothesis (AAH) proposes that the
acoustic communications of biological organisms are in part
shaped by the transmission characteristics of the environment in
which they are employed. There seems a broad consensus that
the evidence for this is particularly clear with respect to bird
song, the AAH having been particularly studied in this context
(e.g., Chappuis, 1971; Morton, 1975; Seddon, 2005; Boncoraglio
and Saino, 2007). This research has indicated that such factors
as the typical density of vegetation in a species’ habitat correlate
with both spectral and temporal properties of bird songs. In the
spectral domain, Boncoraglio and Saino’s (2007) meta-analysis
of multiple studies found that “Maximum, minimum, [and] peak
frequency and frequency range [are] found to be significantly lower
in closed compared with open habitats”. The temporal structure
of bird songs also correlates with habitat: for example, Badyaev
and Leaf (1997) found that among a group of warblers “species
occupying closed habitats avoided the use of rapidly modulated
signals and had song structures that minimized reverberation.” It
is not so apparent that mammals and anurans typically display
any such effect (Waser and Brown, 1986; Daniel and Blumstein,
1988; Ey and Fischer, 2009; Peters et al., 2009; Peters and Peters,
2010). This difference seems likely to be due to the fact that bird
song is often much more structured, sequentially complex and
varied in pitch than the calls of many mammals and anurans, and
so has more features that could be disrupted in poor transmission
conditions.

The overall thrust of the AAH is that in environments that
are generally hostile to the faithful transmission of acoustic
signals the nature of those signals will tend to become simpler
in form. Importantly, since many of the factors that modify
signals selectively impede transmission of higher frequencies

more than of lower ones, components of a signal that involve
higher frequencies are the most likely to be simplified (e.g.,
Dabelsteen et al., 1993; Nemeth et al., 2001). It has been suggested
that the AAH may also apply to human languages (Maddieson,
2012; Coupé, 2015; Maddieson and Coupé, 2015; Coupé and
Maddieson, 2016). Suggestions that non-linguistic factors have
relevance to language structure have a long history, but until
recently the importance of the environmental transmission
characteristics had not received much attention (but see Munroe
et al., 1996, 2009; Munroe and Silander, 1999; Fought et al.,
2004 on a connection between climate and language structure).
Maddieson and Coupé (2015) found that both the number of
consonants in a phonological inventory and the complexity of
syllable onsets and codas are significantly correlated with mean
annual temperature and precipitation as well as maximum tree
cover in the areas where the languages are spoken. These factors
are, naturally enough, correlated, as vegetation requires sun
and water to thrive. For this reason a principal components
analysis was performed to reduce the number of variables.
Consonant inventory size and syllable complexity were also
combined into a consonant-heaviness index. There is a highly
significant relationship (R2 = 0.196, p < 0.0001) between
Principal Component 1 and the consonant-heaviness scores in a
sample of 663 languages from the LAPSyD database (Maddieson
et al., 2013) used by Maddieson and Coupé. Higher levels of
consonant-heaviness broadly coincide with lower temperature,
precipitation and tree cover (as well as with higher altitude
and greater rugosity). This result is consistent with what is
known about the effects of the environmental factors mentioned
earlier. Consonants, especially obstruents, are more critically
dependent on high frequency spectral components for their
identification, and more complex syllable margins also lead to
more rapid alternations of amplitude and spectral pattern. Hence
it plausible that these properties would tend to be simplified
where faithfulness of transmission is reduced.

However, this result was based on looking at the overall
size of a consonant inventory and the maximal permitted
length of syllable onsets and codas. Languages might have large
inventories of obstruents and permit complex syllables but make
only extremely rare use of these possibilities in the stream of
speech. This paper presents a follow-up which examines if the
proportion of obstruency vs. sonority in the speech stream
in languages also correlates with environmental factors. Short
spoken texts are compared using a sample of 100 + languages.
The hypothesis under investigation is that in environments which
impede faithful transmission, especially of higher frequencies,
languages will favor a higher proportion of sonority. This will
over time tend to differentiate the lexical forms of the words
in languages spoken in environments which favor fidelity of
transmission from those spoken in areas that impede faithful
transmission of spectral and temporal complexity.

MATERIALS

The texts used in this study are drawn from the recordings
available from the Global Recordings Network (GRN), an
evangelical Christian organization that provides recordings of
didactic religious materials intended to be used to spread a
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particular sort of Christian faith via recordingsmade in the native
languages of the target audiences. These recordings provide a
very useful sample of a wide variety of languages in a relatively
standard format. Many of the texts are re-tellings of stories from
the Bible, both fromOld andNew Testament books. They usually
involve a single speaker speaking at a moderately rapid rate, but
some include more than one voice. More of the speakers are
male than female. At some points sound effects and music may
be also included, and some have accidental background noise
or are of low quality, but a great many of the recordings are
clear and have a very good signal to noise ratio. Most of the
recordings in this collection are available for download in mp3
format, which sacrifices some fidelity to the quality of the original
but is quite satisfactory for the present purposes, provided the
original recording was done under good conditions.

There are some drawbacks to using these recordings,
especially in that no details concerning the speakers are known.
Some inferences concerning age and gender can be made based
on the voices heard, but it is not known, for example, what other
languages a given speaker may speak in addition to the target
language, how much they use that language, or at what age they
learned it. It is also evident that some of the recordings have
been edited, particularly by truncating the signal at the onset and
end of utterances. The nature of the subject matter also leads
to a relatively high number of non-indigenous proper names of
persons and places being used, e.g., Noah, Jesus, Adam. However,
if there are “foreign accent” effects or other factors that make
the recording a less than ideal exemplar of the language, these
are considered as introducing statistical noise that would make it
harder to confirm the hypothesis.

Each recording sample was divided into essentially sonorant
and obstruent portions, as well as non-speech interludes.
Sonorant and obstruent classifications were based on an auditory
identification of the nature of the segments, coupled with close
inspection of shape and amplitude changes in the waveform
and of the spectral pattern. Files were examined using Praat
(Boersma and Weenink, 2017). Vowels, voiced nasals, voiced
central and lateral approximants and voiced rhotics were classed
as sonorant. All stops, fricatives, and affricates as well as voiceless
segments of other types are classed as obstruent. Bursts and any
aspiration or affrication following a stop release as well as any
preaspiration are included in the obstruent duration. The stop
portion of a prenasalized stop or nasal + stop sequence was
counted as obstruent, no matter how short, and the nasal portion
as sonorant. As in any exercise to divide a continuous speech
stream into discrete segments there are difficulties. The most
acute issues concern deliminating onset and offset of segments at
the margins of utterances. In most cases the articulatory onset of
an utterance-initial stop is not apparent in the acoustic record,
but since the hypothesis concerns the lexical shape of items
an imputed articulation onset is assigned about 70ms before a
visible acoustic signature such as a burst; less if pre-voicing is
apparent before the consonant release. At pre-pausal boundaries
there is often an extended duration in which speech fades off
into non-speech, often with devoicing, especially when the final
segment is vocalic, although glottal constrictionmay also occur in
such positions. Decisions as to the end of utterances were mainly

based on where the auditory impression of a specific segment
identity was lost. On occasion, it was difficult to decide if there
was final devoicing or glottalization of a vowel or the syllable
was closed by a final /h/ or /P/ segment. Again, if such decisions
are made in error, this is likely to weaken the probability of the
hypothesis being confirmed.

A short extract from the recording used for the Aleut language
is shown in Figure 1 to illustrate the procedure. The waveform
and spectrogram (0–7KHz) of a short (1.7 s) fragment are shown
with two annotation tiers. The second of these shows the division
into the obstruent (o), sonorant (s) and non-speech (n) intervals
used to calculate the sonority score. The first tier shows a
segmental transcription created for this exemplary figure based
on the auditory identification of the segments heard. Segmental
transcriptions were not regularly made; this annotation tier
was normally only used to mark such things as a change of
speaker or the presence of background noise or music. In this
example, two issues in particular might be noted. The nasal
in the sequence /ana/ in the middle of the sample appears to
be pre-stopped, although this is not at all auditorily apparent.
Since this is not a regular phenomenon in Aleut, unlike in, say,
Eastern Arrernte, the prestopping is not considered as creating
an obstruent interval. Secondly, the final /a/ is heavily glottalized
and its end is indeterminate, although the auditory presence of an
/a/ segment is indisputable. The end-point chosen for this vowel
is a compromise between minimal and maximal options.

For each of the language samples the durations of speech
fragments in obstruent and sonorant categories were summed,
and the percentage of the total speech duration that was sonorant
calculated. The speech samples are quite brief, consisting on
average of about 1min of actual speech (mean 66.12 s, s.d. 14.1).
The mean sonority score across the samples is 65.52% (s.d. 9.02),
although the range is wide, from 89.64 to 41.15%). Scores were
calculated for 103 languages, but note that three of the languages
whose data is included in Figure 2 below, Towa, Guarani and
Southern Qiang, are not included in subsequent analyses as they
could not be matched with reliable climatic and ecological data.

The sonority scores obtained for the language sample used
correlate quite well with the consonant heaviness index for the
same languages in Maddieson and Coupé (2015), as shown
in Figure 2. This correlation is highly significant (R2 = 0.232,
p < 0.0001), which indicates that the static measures of size
of consonant inventory and syllable complexity predict a good
part of the variance in sonority in continuous spoken language
samples.

The sample of languages analyzed in the present study was
selected to include a diverse range of representatives from
different geographical areas and language families, and to sample
the full range of values on Principal Component 1 from the
Maddieson and Coupé (2015) study. Languages spoken over
smaller geographical areas were preferred to ones spoken over
larger areas since climatic and environmental measures are
more uniform over smaller areas. Because a somewhat limited
number of the recordings targeted were of usable quality, a more
carefully structured sample could not be constructed. The list
of languages used is included in Appendix 1 in Supplementary
Material.
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FIGURE 1 | Short extract from Aleut GRN recording.

For each language an estimate of the area where it is
spoken was taken from the World Language Mapping System,
a collaboration between Global Mapping International (2016)
and SIL International which generates the language maps used
in The Ethnologue (Simons and Fennig, 2017). This procedure
requires forcing an alignment between languages as identified in
The Ethnologue and those recognized by the Global Recordings
Network. Inevitably, there are some discrepancies in this match,
as well as with languages as represented by the descriptions
included in LAPSyD. For each language area the mean values
were computed for Percent Tree Cover and Elevation from values
reported in 15-s bins by the Geospatial Information Authority
of Japan (http://www.gsi.go.jp/kankyochiri/gm_global_e.html).
Mean Temperature data in 5 s bins is from the Climate Research
Unit of the University of East Anglia (available at http://www.
ipcc-data.org/observ/clim/get_30yr_means.html, see New et al.,
1999 for methodology) and covers the period 1961–1990. Other
ecological and climatic data was obtained from the International
Steering Committee for Global Mapping (http://www.iscgm.org)
(disbanded in March 2017) and the UN Food and Agriculture
Organization’s Sustainable Development Department.

RESULTS

The salient result of this research is that the proportion of a
speech sample that is sonorant in a sample of 100 languages is
significantly correlated with mean annual temperature, but to a
small or negligible extent with the other factors that were found
to be related to consonant-heaviness in Maddieson and Coupé
(2015). The significance values of simple correlations with single
factors are shown in Table 1.

When these factors are entered together into a stepwise
multiple correlation analysis only temperature is retained as

FIGURE 2 | Plot of “consonant heaviness” vs. sonority score for 103

languages.

making a significant contribution (R2 = 0.242, p < 0.0001, after
elimination of the other variables). In other words, although
rugosity and elevation considered individually appear as
significantly correlated with sonority in Table 1, this relationship
disappears when factors are considered jointly—no doubt
because of the well-known relationship between temperature and
elevation and the fact that elevation and rugosity (roughness of
terrain) are highly correlated with each other.

The linear relationship between sonority score and mean
annual temperature (shown on a normalized scale reflecting
deviations from global mean) for the 100 language sample is
plotted in Figure 3.
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TABLE 1 | Correlations between sonority score and climatic and environmental

factors.

Factor Significance

Temperature <0.0001

Rugosity 0.0186

Elevation 0.0488

Precipitation 0.1618

Tree cover 0.8253

FIGURE 3 | Plot of sonority score vs. temperature for 100 languages.

As seen in Figure 3 there are notable deviations from the
general trend, and the present data is probably best regarded
as still exploratory in nature. A set of speech samples of longer
duration from a larger sample of languages would represent
a better test of the robustness of this relationship, and more
nuanced temperature data might also be informative. However,
there is a strong suggestion that languages habitually spoken
in parts of the world that are hotter are more likely to have
a more sonorous structure than languages spoken in cooler
climates.

A standard objection to claims of any external influence on
language structure is that the differences said to be associated
with the external influence are simply inherited differences from
ancestor states. That is, they can be explained by membership in
different language families. In the present case, this is difficult
to refute. The 100 language sample used includes languages
from 49 different highest-level family classifications. When these
49 family affiliations are included as individual predictors of
sonority, it is not surprising that the overwhelming majority of
the variance can be associated with individual family affiliation
since there are so many parameters present in the statistical
model. However the effect of temperature remains significant
(p= 0.0203) when language family is included as a random effect
in a mixed-effects model. But related languages tend to be spoken
in contiguous areas, and are therefore more likely to be spoken
under somewhat similar environmental conditions. This can be

seen in Figure 4 which plots sonority and temperature for the
7 families from which 5 or more languages are included in the
sample. The left panel shows that languages from the same family
tend to have somewhat similar sonority scores, with, for example,
Altaic and Indo-European below the average and Australian,
Niger-Congo and Trans-New Guinea above. The right panel
plots the mean annual temperature for the same languages. A
similar pattern emerges, with Altaic and Indo-European below
the average and Australian, Niger-Congo and Trans-New Guinea
above. Austronesian and Sino-Tibetan straddle the means. In this
subset of data, sonority and temperature values are quite highly
correlated, R2 = 0.4097. While inherited aspects of the segment
inventories and syllabic structures undoubtedly account for some
of the similarity in sonority scores within families, it cannot be
argued that mean temperature is a heritable linguistic trait. Thus
perhaps the question should be to what extent might within-
family similarities themselves be accounted for (at least in part)
by environmental conditions.

DISCUSSION

Why would higher average temperature lead to the use of more
sonorous sounds? There are various factors at play. First is the
fact that atmospheric absorption increases at higher temperatures
and it peaks at higher frequencies as the temperature increases
(Harris, 1966). This will perturb the fidelity of transmission of
frequencies higher in the speech range more than those in a
lower range. In addition there is the impact of the turbulence
in the air that is associated with higher temperature. Under
some conditions heat-induced air turbulence can be seen by the
naked eye as a disturbance to the visualization of objects at a
distance (though bending of light rays also contributes to this
visual effect). Studying the effects of atmospheric turbulence is
problematical, since by its very nature turbulence is random,
and moreover these effects can never be isolated in practice
from other effects, such as ground reflectivity and atmospheric
absorption. However, Daigle et al. (1986, p. 622) do suggest
that under the experimental outdoor conditions they studied
“the dominant mechanism responsible for the measured sound-
pressure levels at high frequencies is scattering by atmospheric
turbulence” and that these higher frequencies could be attenuated
by as much as 20 dB from the source strength (cf Daigle
et al., 1983). Ingård (1953) also reported strong attenuation
of higher frequencies due to wind turbulence based on earlier
studies. Turbulence also disrupts the temporal pattern of acoustic
signals, particularly disrupting the integrity of rapidly changing
signals. Selective effects of absorption and turbulence on higher
frequencies naturally cause more problems for the faithful
identification of speech components whose recognition depends
on these higher frequencies, perhaps most especially for the
burst spectra of consonants and the noise of sibilant fricatives.
Sonorants on the other hand are more typically identifiable
from lower-frequency elements, and have more slowly-changing
temporal structure, and hence are less distorted by these factors.

In addition to these effects refraction due to temperature
gradients may also play a role. Under normal daytime conditions,
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FIGURE 4 | Sonority scores (Left) and normalized mean annual temperature (relative to global mean), (Right) for languages in families with 5 or more languages in

the sample.

there is a negative temperature gradient in the atmosphere—air
nearer the ground is warmer than that higher up (e.g., Fowells,
1948). This causes an upward refraction of sound waves since
the speed of sound is higher in warmer air (e.g., Lamancusa,
2010). Further, in general the temperature gradient (“lapse rate”)
is greater when ground temperature is higher, for example closer
to the tropics (Mokhov and Aperov, 2006). The consequence of
this is that overall sound energy is decreased more with distance.
The normal daytime temperature gradient therefore generally
diminishes the strength of a close-to-ground signal and degrades
its perceptibility, but the more so the higher the temperature is,
rendering accurate signal recognition more difficult.

As for the process by which such environmental effects shape
the structure of languages, this is probably best regarded as
a case where the role of the listener is paramount (Ohala,
1981, 2012). If the transmission conditions make it difficult to
distinguish between different consonants, and different clusters
of consonants, then the templates for given lexical items will
likely converge on fewer distinct forms, because with sufficient
exposure to tokens degraded during transmission a listener
no longer considers them distinct. Over time, this will tend
to restructure the phonological shape of words toward having
smaller consonant inventories and simpler syllable structures.
Naturally, this process is more likely to shape linguistic structure
where speakers spend significant time outdoors. The period of
human history during which a settled agricultural lifestyle was
the predominant economic model—well after the “Neolithic
Revolution” (Childe, 1936; Diamond and Bellwood, 2003) but
before the Industrial Revolution had run its course—seems
the most favorable time-frame within which the process would
have impacted the shape of languages. In many cases a simple
agricultural economy involves long hours of outdoor labor,
tending crops and animals. In 1996 Munroe et al. (Munroe

et al., 1996; cf Ember and Ember, 1999) had suggested that more
outdoor time was linked to simpler syllable structure, but did not
link this in an explanatory way to environmental conditions. This
paper presents a reasoned argument to support their speculation.

This paper also argues that acoustic adaptation occurs
between different groups of the same species, in this case speakers
of different human languages, whereas the majority of work on
the AAH has examined between-species differences. However
within-species effects are not unique. A number of studies
of bird species that live in varied habitats have reported that
their song patterns vary according to their environment in a
similar way to that found across species. Hunter and Krebs
(1979) examined songs of great tit (parus major) populations
in widely dispersed sites from Morocco and Iran to Spain,
Norway and the U. K. and found that birds inhabiting denser
forest environments had songs with a lowermaximum frequency,
narrower frequency range and fewer notes per phrase than
birds inhabiting more open woodland or hedgerows. Nicholls
and Goldizen (2006) studied satin bowerbird (Ptilonorhynchus
violaceus) populations along the east coast of Queensland,
Australia, and found significant effects of variation in local
habitat on song structure: “Lower frequencies and less frequency
modulation were utilized in denser habitats such as rainforest,
and higher frequencies and more frequency modulation were
used in the more open eucalypt dominated habitats.” Within-
species effects have also been reported, inter alia, by Wasserman
(1979), Anderson and Connor (1985), and Tubaro and Segura
(1994). These studies, like most studies addressing the AAH,
have emphasized the physical characteristics of the environment,
such as the vegetation, rather than looking at climatic factors. It
would be interesting to see if adding analysis of factors such as
temperature and precipitation would add to the insights derived
by looking primarily at the characteristics of local vegetation
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types in accounting for these differences. Note that global relative
mean temperature patterns are likely to be more stable over
recent time than tree cover, which is strongly affected by human
activity as well as climatic change.

The finding that the design of acoustic communication
systems within species appears to be shaped by environmental
factors indicates that these influences operate over at least a
shorter time-span than the interval between “speciation events”
(Mayr, 1942), but this is, of course, a highly variable and
imprecise datum. On the other hand, the phonological structure
of human languages is highly malleable and individual languages
can change their systems in the span of a single generation (e.g.,
Jacewicz et al., 2011). So environmental transmission factors
affecting language structures, like other triggers of language
change, probably do not require a long time span to operate.
However, once entrenched, the consequences of such effects may
persist for a long time.
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