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Due to the typological diversity of their inflectional processes, some languages

are intuitively more difficult than other languages. Yet, finding a single measure to

quantitatively assess the comparative complexity of an inflectional system proves an

exceedingly difficult endeavor. In this paper we propose to investigate the issue from

a processing-oriented standpoint, using data processed by a type of recurrent neural

network to quantitatively model the dynamic of word processing and learning in different

input conditions. We evaluate the relative complexity of a set of typologically different

inflectional systems (Greek, Italian, Spanish, German, English and Standard Modern

Arabic) by training a Temporal Self-Organizing Map (TSOM), a recurrent variant of

Kohonen’s Self-Organizing Maps, on a fixed set of verb forms from top-frequency verb

paradigms, with no information about themorphosemantic andmorphosyntactic content

conveyed by the forms. After training, the behavior of each language-specific TSOM is

assessed on different tasks, looking at self-organizing patterns of temporal connectivity

and functional responses. Our simulations show that word processing is facilitated by

maximally contrastive inflectional systems, where verb forms exhibit the earliest possible

point of lexical discrimination. Conversely, word learning is favored by a maximally

generalizable system, where forms are inferred from the smallest possible number of

their paradigm companions. Based on evidence from the literature and our own data,

we conjecture that the resulting balance is the outcome of the interaction between form

frequency and morphological regularity. Big families of stem-sharing, regularly inflected

forms are the productive core of an inflectional system. Such a core is easier to learn

but slower to discriminate. In contrast, less predictable verb forms, based on alternating

and possibly suppletive stems, are easier to process but are learned by rote. Inflection

systems thus strike a balance between these conflicting processing and communicative

requirements, while staying within tight learnability bounds, in line with Ackermann and

Malouf’s Low Conditional Entropy Conjecture. Our quantitative investigation supports a

discriminative view of morphological inflection as a collective, emergent system, whose

global self-organization rests on a surprisingly small handful of language-independent

principles of word coactivation and competition.

Keywords: morphological complexity, discriminative learning, recurrent neural networks, self-organization,

emergence, processing uncertainty, stem-family size
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1. INTRODUCTION

Assessment of the complexity of the inflection system of a
language and its comparison with a functionally-equivalent
system of another language are hot topics in contemporary
linguistic inquiry (Bearman et al., 2015). Their goals may vary
from a typological interest in classifying different morphologies,
to a search for the most compact formal description of an
inflection system, to an investigation of the nature of word
knowledge and its connection with processing and learning issues
(Juola, 1998; Goldsmith, 2001; Moscoso del Prado Martín et al.,
2004; Bane, 2008; Ackerman and Malouf, 2013).

From a cross-linguistic perspective, the way morphosyntactic

features are contextually realized through processes of word

inflection probably represents the widest dimension of
grammatical variation across languages, in a somewhat striking

contrast with universal invariances along other dimensions
(Evans and Levinson, 2009). This has encouraged linguists to
focus on differences in morphological marking. Inflectional
complexity is thus approached as a problem of feature counting,
through comprehensive catalogs of the morphological markers
and patterns in a given language or language type. In contrast
with such “enumerative” approaches (Ackerman and Malouf,
2013), information-theoretic models have addressed the issue
in terms of either algorithmic complexity (Kolmogorov, 1968),
measuring the length of the most compact formal description
of an inflection system, or in terms of information entropy
(Shannon, 1948), which measures the amount of uncertainty
in inferring a particular inflected form from another form, or,
alternatively, from a set of paradigmatically related forms.

An altogether different approach, more conducive to
addressing fundamental psycholinguistic and cognitive issues, is
to conceive of complexity as related to the problem of learning
how to process an inflection system. This step has far reaching
consequences for the way we look at word knowledge, shifting
our focus from what speakers know when they know inflection
(mainly representations), to how speakers develop knowledge of
inflection by processing input data (learning). According to this
perspective, redundant patterns are predominantly statistical,
and even irregularities appear to be motivated by their frequency
distribution in the system and by the speaker’s processing bias.
All these issues are very different in character from the formal
constraints on units, representations or rule systems proposed
within theoretical and computational models, and make room
for an empirical validation grounded in learning theory.

In this paper, we show the potential of such a learning-based,
processing-oriented view of inflection complexity through a
quantitative analysis of the behavior of Temporal Self-Organizing
Maps (or TSOMs, Ferro et al., 2011; Marzi et al., 2012; Pirrelli
et al., 2015), a recurrent variant of classical Self-Organizing
Maps (Kohonen, 2002), independently trained on the inflectional
systems of Standard Modern Arabic, English, German, Greek,
Italian and Spanish.

The choice of TSOMs as neuro-biologically inspired
computational learning models is motivated here by practical
and theoretical reasons. First, their role is instrumental, as we
use them to illustrate the dynamic approach to complexity

we intend to advocate. Hence, some of the points made here
will also hold, with some qualifications, for other existing
computational models (Althaus and Mareschal, 2013; Baayen
et al., 2019; Li et al., 2007; Mayor and Plunkett, 2010, among
others). Secondly, TSOMs are based on discriminative principles
of selective synchronization of processing nodes, supporting a
Word-and-Paradigm view of the mental lexicon1. Accordingly,
words are dynamically represented as emergent, superpositional
patterns of short-term node activation, reflecting gradient levels
of lexical specificity: from holistic to decompositional lexical
representations. Thirdly, for each input word, TSOMs make
it possible to inspect levels of node activation during online
processing with a fixed sampling rate. This allows us to monitor
patterns of node activation changing non-linearly with time
as more symbols of the input word are presented, and check
how levels of uncertainty in processing correlate with structural
transitions in the input word (e.g., from a stem to its inflectional
ending). Finally, we can correlate the TSOM temporal patterns
with multiple defining features of typologically different
inflectional systems, including: (i) the number of realization
patterns of formal contrast (ranging from suppletion to extensive
syncretism, through a whole range of intermediate cases); (ii)
the type of such formal patterns (continuous, discontinuous or
mixed); (iii) the amount of formal transparency they exhibit
(ranging from a more fusional to a more agglutinative pattern);
(iv) the frequency distribution of inflectionally marked forms
within the same paradigm, and their relative dominance; (v) the
frequency distribution of markers in their inflectional classes,
and (vi) the amount of interpredictability among patterns (e.g.,
how easy it is for a speaker to predict an unknown inflected form
from an already known inflected form of the same paradigm) as
a function of their transparency and systematic nature.

As we shall see, data from our simulations makes room
for an insightful analysis of time-bound patterns of structural
organization of the network and its processing responses,
accounting for the correlation between the complexity of
inflectional data and processing aspects like speed of recognition,
learnability and ease of production. Variation in complexity may
have multiple, and in some cases opposite effects on all these
issues, depending on the factors involved. For example, while
regularly inflected forms are easier to learn because they take part
of larger paradigm families, irregularly inflected forms are easier
to discriminate because they are more isolated and ultimately
less confusable. Based on non-linear analyses of simulation data

1Word-and-Paradigm Morphology (Matthews, 1991; Blevins, 2016) explicitly

avoids the central problem of segmenting an inflected form like walked into

meaningful sublexical parts (or “morphemes,” e.g., walk-ed), and expressing the

morpho-lexical content of the whole as a function of the morpho-lexical content

of its parts. Rather, inflected words are themselves parts of two parallel networks

of formal and semantic relations between members of the same paradigm.

Crucially, Word and Paradigm Morphology says nothing about the ways the

two networks are mutually related, thus avoiding problems of morphemes

with no meanings (empty morphemes), meanings with no morphemes (zero

morphemes), bracketing paradoxes etc. This strikes us as the most typologically-

neutral approach to an assessment of inflectional complexity, as it eschews any

attempt to put a morphemic straitjacket to non agglutinative languages. As TSOMs

are trained on inflected forms with no morphosemantic and morphosyntactic

content, only redundant formal relations are learned.
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reported in this paper and other linear analyses from our previous
work (Marzi et al., 2018), we suggest that inflection is better
understood as a dynamic, potentially unstable system, whose
complexity results from a balancing act between competing
processing and communicative requirements, finely tuned during
language acquisition.

2. INFLECTIONAL COMPLEXITY

Inflection lies at the intersection of two independent
but interacting issues: (i) what syntactic contexts require
morphosyntactic and/or morphosemantic word marking, and
for what lexical and grammatical units; (ii) how morphosyntactic
and morphosemantic information is overtly realized on lexical
and grammatical units. In this paper, our attention will be
devoted to the second issue, by simulating and evaluating
the learning dynamics of differently graded morphological
(ir-)regularities. To investigate the issue of how degrees of
inflectional complexity affect word processing strategies,
we selected 6 languages that are differently positioned in a
typological continuum ranging from a more isolating type
to a more fusional inflecting one:2 namely English, German,
Spanish, Italian, Greek, and, to broaden our typological coverage,
Standard Modern Arabic.

We will focus on systemic aspects of lexical organization
that are common to most (if not all) inflection systems, and
in particular we will examine the possibility of discovering
morphological organization in the implicative network of
relations between words, in order to understand the impact of
this organization on word processing and learning issues. All
inflection systems share the property that they have families of
related word forms exhibiting collective properties that cannot
be deduced from any one of these forms individually. This is the
hallmark of inflectional paradigms, i.e., clusters of fully inflected
forms which are associated with an individual lexical exponent
(e.g., English walk, walks, walking and walked) and mutually
related through inflectional classes (i.e., classes of inflectional
markers in complementary distribution).

2.1. Paradigm Complexity
Over the last decades, investigation of the formal properties
of inflectional paradigms has played a prominent role in
changing the research agenda in inflectional morphology,
marking a tendency to move away from part-whole relations
within complex words, toward descriptive relations between
inflected forms (Matthews, 1991; Blevins, 2016). Accordingly,
the complexity of a paradigm resides in two basic dimensions.
The first dimension defines the amount of full formal
contrast realized within the paradigm, i.e., how many different
markers are uniquely associated with distinct combinations

2According to Dressler and colleagues (Bittner et al., 2003), European languages

can be arranged along an inflectional complexity continuum, ranging from a more

inflecting/fusional type (left) to a more isolating type (right):

Lithuanian→Greek→Russian→Croatian→Italian→

Spanish→German→Dutch→French→English.

of morphosyntactic features (or paradigm cells, e.g., present
indicative 1st singular), and how structurally different these
markers are. The second dimension describes the number of
interpredictability patterns between words in the same paradigm,
i.e., how easy it is for a speaker to infer an unknown paradigmatic
form from other familiar forms within the same paradigm.

Both dimensions of complexity are functionally relevant.
Patterns of formal contrast serve to distinguish paradigmatically-
related forms, and associate them with specific cells to
communicate meaning or function within an inflectional system.
We refer to this dimension as the level of “discriminative
complexity” of the system. At the same time, variation in
patterns of formal contrast is not scattered randomly across
paradigm cells. Formal patterns tend to be interdependent, to
the extent that knowing the inflection in one paradigm cell
allows speakers to predict the inflection in another cell. This type
of interdependency defines the “inferential complexity” of an
inflectional system: paradigms where many forms are predicted
upon exposure to one or few forms only, are less complex than
paradigms where fewer forms are predicted from other forms.

From a cross-linguistic perspective, the discriminative
complexity of an inflectional system is typically measured by
enumerating the number of category values instantiated in
the system (e.g., person, number or tense features) and the
range of available markers for their realization. Accordingly,
the larger the number of paradigm cells and their markers, the
more difficult the resulting system (McWorther, 2001; Bickel
and Nichols, 2005; Shosted, 2006). This notion of “Enumerative
Complexity,” however, has been criticized on several grounds
(Bane, 2008; Sagot and Walther, 2011; Ackerman and Malouf,
2013; Sagot, 2018). It soon gets difficult, if not impossible, to
compare inflectional systems whose feature-value inventories
differ dramatically. For instance, according to the World Atlas
of Language Structures (Haspelmath et al., 2005), there are more
than 10 different cases in Hungarian and none in Swahili, and
more than 5 gender values in Swahili as opposed to none in
Hungarian. In cases like this, we have no principled basis for
arguing that either system is more or less complex than the other.
In addition, even in the most favorable case of two hypothetical
systems whose feature-value inventories match perfectly, simple
counting can be misleading. Suppose we are comparing two
systems, each with only two categories (say, singular and plural)
and three different endings for each category: A, B, C for singular,
and D, E, and F for plural. In the first system, paradigms are
found to present three possible pairs of endings only: <A, D>,
<B, E>, <C, F>, which can be described as corresponding to
three different inflection classes. In the second system, any
combination is attested. Clearly, the latter system would be more
difficult to learn than the former, as it makes it harder to infer
the plural form of a word from its singular form (or the singular
from the plural for that matter). Nonetheless, both systems
present the same degree of Enumerative complexity.

Recently, information theoretic approaches have been
proposed as a way to circumvent the limitations of pure feature
counting methods. Following Kolmogorov (Kolmogorov, 1968),
the complexity of a dataset of inflected forms can be measured
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by the shortest possible grammar needed to describe them,
or their algorithmic complexity, in line with the Minimum
Description Length (MDL) principle (Rissanen, 2007). For
example, following Goldsmith (2001), we can model the task of
morphological induction as a data compression problem: find the
collection of markers forming the shortest grammar that fits the
empirical evidence best. To illustrate, English conjugation can
be modeled as consisting of sets of endings in complementary
distribution (somewhat reminiscent of “inflectional classes,”
referred to by Goldsmith as “signatures”), and a set of stems.
For example, the list <NULL, -er, -ing, -s> is a signature for
the verb stems count, walk and mail, but not for love or notice,
which require the stems lov- and notic-, and the signature <e,
-ed, -ing, -es>. Licensing an irregular verb like drink in this
grammar formalism is even more verbose, as it requires three
stems, drink, drank and drunk, and two signatures: <NULL,
-ing, -s> for drink, and <NULL> for both drank and drunk.
Goldsmith’s algorithm, however, models paradigm learning as
a top-down optimization problem, boiling down to a grammar
evaluation procedure. The segmentation of forms into sublexical
constituents is based on heuristic criteria and makes no contact
with the problem of finding the minimally redundant set of
paradigms. Ultimately, we are left with no clues about how
word processing (segmentation) interacts with the paradigmatic
organization of the morphological lexicon.

An alternative information-theoretic approach to complexity
is based on Shannon’s entropy (Shannon, 1948), or informational
complexity of a set of paradigms. Information complexity rests
on the intuition that a more complex system of inflected forms
presents fewer interpredictability patterns between existing forms
than a less complex system does. Ackerman et al. (2009) and
Ackerman andMalouf (2013) use Shannon’s information entropy
to quantify prediction of an inflected form as a paradigm-
based change in the speaker’s uncertainty. They conjecture that
inflectional systems tend to minimize the average conditional
entropy of predicting each form in a paradigm on the basis of any
other form of the same paradigm (the Low Conditional Entropy
Conjecture, or LCEC). This is measured by looking at the
distribution of inflectional markers across inflection classes in the
morphological system of a language. More recently, Bonami and
Beniamine (2016) propose to generalize affix-to-affix inference to
inference of intraparadigmatic form-to-form alternation patterns
(Pirrelli and Yvon, 1999; Albright, 2002). This approach offers
several advantages. It avoids the need for the theoretically-loaded
segmentation of inflected forms into stems and affixes in the
first place. Secondly, it models implicative relations between
stem allomorphs (or stem-stem predictability), thereby providing
a principled way to discover so-called “principal parts,” i.e., a
minimal set of selected forms in a paradigm from which all other
paradigm members can be deduced with certainty (Finkel and
Stump, 2007). Finally, it emphasizes the role of joint prediction,
i.e., the use of sets of forms to predict one missing form of the
same paradigm, as a convenient strategy to reduce the speaker’s
uncertainty in addressing the cell filling problem.

In spite of their differences, however, both Kolmogorov’s and
Shannon’s approaches are biased by a few a priori assumptions.
Results obtained from the use of algorithmic complexity strongly

depend on the formalism adopted for grammatical description
(Sagot, 2018): for example, surface representations of verbs
are typically segmented into stem-ending patterns. Information
entropy dispenses with segmentation, but it rests crucially on the
types of formal relations used to identify predictability patterns in
inflectionally related forms. In either case, the algorithm does not
adapt itself to the specific structural requirements of the systems
it analyzes. Instead, it presupposes considerable knowledge of
the morphology of the target language, in order to assess how
effectively that knowledge can describe the language.

A more principled approach to measuring morphological
complexity is to investigate the impact of incremental learning
and online processing principles on paradigm organization,
based on observation of the behavior of an unsupervised
algorithm acquiring an inflection system from fully-inflected
forms. The approach is central to establishing a connection
between human language behavior, word distributions in
input data, learning mechanisms and the taxonomy of units
and combinatorial principles of linguistic theories. Careful
quantitative analysis of the way a computational learning system
can bootstrap structural information from typologically different
training sets is not too far from what is done in experimental
psycholinguistics, where the role of multiple factors on human
processing is investigated by controlling factor interaction in the
execution of a specific processing task. In the end, this allows us
to frame the problem of inflectional (and paradigm) complexity
into the larger context of word processing complexity, to which
we turn in the following section.

2.2. Processing-Oriented Complexity
The discriminative and inferential dimensions of paradigm
complexity illustrated in section 2.1 meet potentially competing
communicative requirements. Amaximally contrastive inflection
system is one where inflected forms, both within and across
paradigms, present the earliest possible point of recognition3,
i.e., the position where they are uniquely distinguished from
their paradigm companions. From this perspective, extensive
suppletion (e.g., with English be/am/are/is/was/were) reflects a
recognition-driven tendency for a maximally efficient contrast.

A maximally contrastive system, however, may require
extensive storage of its forms, insofar as relatively few items
can be inferred from its paradigm companions. Hence, any such
system is not only slow to learn, but also fairly demanding and
inefficient to use. Due to the Zipfian distribution of the forms in
use within a speech community, almost half of the word forms
of a language occur only once in a corpus, irrespective of corpus
size (Blevins et al., 2017). This means that even high-frequency
paradigms will tend to be partially attested, and speakers must be
able to generalize available knowledge to rare events if they want
to interpret or produce novel forms.

Issues of morphological regularity also have a bearing on
the relationship between morphological complexity and word
processing.We already noted that intra-paradigmatic suppletion,

3Starting from Marlsen-Wilson’s classical definition of “uniqueness point”

(Marslen-Wilson, 1984), we will make use of more recent refinements of this

notion (Balling and Baayen, 2008, 2012).
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arguably the most radical break with systematic and predictable
inflection, is functional in maximizing contrast, but may
represent a hurdle for word learning. Conversely, syncretic
realization of many paradigm cells with identical forms (as in the
English present indicative sub-paradigm) and, more generally,
paradigm ambiguity, can slow down acquisition of overtly
marked forms (e.g., the third singular present indicative s-forms
in English). Researchers from diverse theoretical perspectives
observe that rich inflection in fact facilitates early morphological
production. In competition-based (Bates and MacWhinney,
1987), as well as functional (Slobin, 1982, 1985) and cue-response
discriminative perspectives (Baayen et al., 2011), non-syncretic
morphological paradigms such as those of Italian conjugation are
argued to provide better syntactic cues to sentence interpretation,
as compared, for example, to the impoverished inflectional
system of English verb agreement. Biunique form-meaning
relationships make inflectional markers more transparent, more
compositional and in the end more easily acquired than the one-
to-many mappings of morphological forms to syntactic features
that are found in English, Swedish and Dutch (Phillips, 1996,
2010). Some researchers (Crago and Allen, 2001; Blom, 2007;
Legate and Yang, 2007; Xanthos et al., 2011) have focused on the
amount of finite verbs that children receive from the adult input,
to observe that the high percentage of overtly inflected forms
correlates with the early production of finite forms by children. In
the framework of Natural Morphology, Dressler and colleagues
(Bittner et al., 2003) claimed that a richer inflectional system
makes children more aware of morphological structure, so that
they begin to develop intra-paradigmatic relations sooner than
children who are confronted by simpler systems do (Xanthos
et al., 2011).

The literature reports a number of effects that family size and
the frequency of family members have on a variety of processing
tasks. A large family size supports visual word recognition, with
printed words with many neighbors being recognized more
quickly than words with fewer neighbors (Andrews, 1997).
However, when neighbors are considerably more frequent than
the target word, recognition of the target is inhibited. A similar
reversal from facilitation to inhibition is reported in spoken
word recognition and related tasks (Luce and Pisoni, 1998;
Magnuson et al., 2007), where many neighbors are found to
delay recognition of the target word. The effect has recently been
interpreted as due to serial (as opposed to parallel) processing
(Chen and Mirman, 2012): a word supported by a dense
neighborhood is produced and read faster. But when the same
word is presented serially (e.g., in spoken word recognition),
high-frequency neighbors engage in competition and inhibit
processing. Such a modality-driven subdivision of processing
strategies is however not clear cut.

Balling and Baayen (2012) provide evidence for the combined
processing effects of two uniqueness points in both auditory
and visual processing. The first is the word’s initial Uniqueness
Point (UP1), where an input word is distinguished from
its morphologically-unrelated competitors (e.g., carrier and
carpenter). The second is the later Complex Uniqueness
Point (CUP), where an input word is distinguished from its
morphologically-related competitors (e.g., writes and writing).

They report that lateUP1 and CUP are inhibitory in auditory and
visual lexical decision, both independently and in interaction. In
line with this evidence, more regular paradigms are predicted
to favor entrenchment of shared stems and quicker acquisition
of full forms, but they may cause larger effects of processing
uncertainty at the stem-ending boundary than more irregular
paradigms do, due to the larger range of possible following
inflectional endings in regulars, as compared to irregulars.

The human exquisite sensitivity to word frequency
distributions appears to be at the root of entropy-based
processing effects. Milin et al. (2009a,b) report that speakers
engaged in a lexical decision task are sensitive to the divergence
between the word frequency distribution within a single
paradigm, and the cumulative word frequency distribution in
the inflection class to which the paradigm belongs. In particular,
if an inflected form occurs in its paradigm less frequently than
one would expect from the frequency of its ending, the visual
recognition of that form gets more difficult. This finding has
been confirmed in follow-up studies (Kuperman et al., 2010;
Baayen et al., 2011; Milin et al., 2017).

Ferro et al. (2018) replicate these effects with TSOMs trained
on inflectional paradigms with frequency distributions of varying
entropy. The quantitative analysis of computer simulations is
amenable to an interesting interpretation of entropic effects in
terms of competition between family members. On average, word
recognition is facilitated when words belonging to the same
paradigm compete on a par, i.e., when their distribution is highly
correlated with the distribution of their inflectional endings.
When this is not the case, the entropy of the family decreases,
increasing the risk that a low-frequency form is inhibited by a
high-frequency member of the same family.

Marzi et al. (2018) add a cross-linguistic perspective on
this evidence, by measuring the processing costs incurred by
TSOMs trained on the inflectional systems of 6 languages.
They observe that the averaged word processing costs for each
language oscillate linearly within a small range (in keeping with
Ackermann andMalouf ’s LCEC), whose upper and lower bounds
are marked by Modern Greek conjugation (harder) and English
conjugation (easier) respectively. All other inflectional systems
present no statistically significant differences in the processing
“overheads” they require, in spite of their typological diversity
and their varying levels of morphological transparency. The
analysis supports an interpretation of the LCEC as resulting
from a balancing act between word processing and word
learning. Word processing puts a premium on a system where
word forms are maximally distinct and accessed early. Word
learning, however, somewhat counteracts such a processing
bias. Acquiring new forms is in fact necessary for speakers
to communicate and discriminate in an ever changing social
environment. The need to keep the system open thus increases
processing uncertainty, as it inevitably increases the number of
elements in the system.

Our present investigation is intended to go beyond these
preliminary results. In the following sections, we investigate
the competitive dynamic between word processing and word
learning in more detail, focusing on the role that paradigm
contrast plays in a variety of training conditions. Based on the
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data of Marzi et al. (2018), we model non-linear patterns of
node activation in the online processing of inflected forms, in
order to check how levels of processing uncertainty correlate
with structural transitions in regularly and irregularly inflected
forms within a single inflectional system, and across different
inflectional systems. In addition, we model the impact of these
effects on word learning, and we investigate the role that
developing patterns of morphomic redundancy play during
learning. As non-linear modeling can fit observed data patterns
without a priori assumptions on the shape of the regression lines,
this analysis is intended to lend further support to the dynamic
view of inflectional complexity advocated here. In particular,
we gain a better understanding of the basic language-invariant
principles accounting for the discriminative and inferential
dimensions of paradigm organization.

3. MATERIALS AND METHODS

In this section and in section 4, we provide data-driven evidence
of the interaction between morphological complexity and word
processing in six languages. The evidence is gathered through
repeated computer simulations of the acquisition of the verb
inflection system in each of the input languages. For this purpose,
we use Temporal Self-Organizing Maps (TSOMs), a recurrent
variant of Kohonen’s Self-OrganizingMaps (Kohonen, 2002) that
offers a neurally-inspired computational model of discriminative
learning of time-series of symbolic units (Ferro et al., 2011; Marzi
et al., 2014; Pirrelli et al., 2015)4. TSOMs can learn all training sets
accurately (Table 1), while showing, at the same time, differential
effects in paradigm self-organization, learning pace, and word
processing. We start this section with a short description of their
architecture and learning principles. A more technical, detailed
description is found in the Appendix to this paper.

3.1. Recurrent Topological Networks for
Word Learning
In TSOMs, word learning proceeds by developing maximally
discriminative Markov-like chains of topologically arranged
memory nodes, derived from exposure to fully inflected input
forms with no morphological annotation. Nonetheless, node
chains can mirror effects of gradient morphological structure
and emergent paradigm organization. By developing specialized
patterns of map nodes through recurrent connections,
TSOMs encode input symbols auto-associatively, exploiting
the formal redundancy of symbolic temporal series. Node
specialization is modeled through discriminative learning
equations (Ramscar and Yarlett, 2007; Baayen et al., 2011),
which offer a powerful strategy for scaffolding the input stream
into internalized structured representations that are efficient
for word recognition and production. We provide here an
informal, functional description of TSOMs. The interested
reader is again referred to the Appendix for all mathematical
and algorithmic details.

4A running version of the TSOM package can be downloaded at

http://www.comphyslab.it/redirect/?id=frontiers2019.

A lexical TSOM consists of a bank of input nodes encoding
input letters, and a bank of processing nodes making up the
lexical map proper (Figure 1). Each processing node is connected
to the input layer through one-way input connections, and to
other processing nodes (including itself) through one-time delay
re-entrant temporal connections. At each time tick t, activation
flows from the input layer to the map nodes through input
connections. Re-entrant temporal connections update each map
node with the state of activation of all nodes at the previous
time tick (see the unfolded view of Figure 1). As with classical
Recurrent Neural Networks (Elman, 1990), a word is input to a
TSOM one symbol S at a time. Activation spreads through both
input and temporal connections to yield an overall activation
state, or Map Activation Pattern for S at time t: MAPt(S). The
node with the highest activation level in MAPt(S) is called the
Best Matching Unit for S at time t, or BMUt(S). A time series of
sequentially activated BMUs will be referred to as a BMU chain
below. It represents the map’s cumulative memory trace for an
input time series.

Weights on temporal connections encode how strongly the
current BMUt is predicted by BMUt−1, over a continuous range
from 0 to 1. Temporal connection weights are trained on input
data according to the following principles of discriminative
learning, strongly reminiscent of Rescorla and Wagner (1972)
equations (see Appendix). When the bigram ‘AX’ is input, a
TSOM goes through two learning steps:

1. the temporal connection between BMUt−1(A) and BMUt(X)
is strengthened (entrenchment);

2. all other temporal connections to BMUt(X) are weakened
(competition).

Step 1. and 2. incrementally enforce node specialization. Over the
course of training, the map tends to allocate maximally distinct
processing nodes, as a function of the form overlap and form
frequency of input strings in the training set.

To illustrate the effects of node specialization, Figure 2A
sketches two possible end-states in the allocation of BMU
chains responding to 9 form types of German geben ‘give’:
geben (infinitive, 1p and 3p, present indicative), gibst (2s,
present indicative), gibt (3s, present indicative), gebe (1s, present
indicative), gab (1s, 2s and 3s, preterite), gaben (1p and 3p,
preterite), gabt (2p, preterite) and gebend (present participle). In
the left panel, BMUs are arranged in a word tree. Any node N
keeps track of all nodes that were activated in order to arrive
at N. The right panel of Figure 2A, on the other hand, offers
a compressed representation for the 9 form types, with shared
letters activating identical BMUs. As a result, when the shared
node ‘b’ is activated, one loses information encoding which node
was activated at the previous time tick. Let us briefly consider
the implications of the two structures for word processing.
In the word-tree (left), gibt, gabt, and gebt are mapped onto
distinct node chains, bifurcating at the earliest branching point
in the hierarchy (after the “g” node). From that point onward,
the three forms activate distinct node paths. Clearly, when a
node has only one outgoing connection, the TSOM has no
uncertainty about what step to take next, and can anticipate the
upcoming input symbol with certainty. In the word-graph on the
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TABLE 1 | Statistics for the 6 datasets.

Min/max Regular/irregular Form types/ Recoding Recall sd

Language form length Paradigms Training size % % %

Arabic 4/11 18/28 560/601 100 99.93 0.16

English 2/11 20/30 208/750 100 99.62 0.86

German 3/11 16/34 504/750 100 99.76 0.18

Greek 2/13 37/13 744/750 100 99.84 0.06

Italian 2/12 23/27 748/750 100 99.79 0.15

Spanish 2/15 23/27 715/750 100 99.94 0.13

Form length is given by number of input symbols (with the exclusion of # and $), with orthographically marked stress being encoded as a distinct symbol. Differences between cardinality

of form types and cardinality of the training set are due to syncretism. Percentage values of correctly recoded and recalled word types (and for the latter standard deviations) are given

for each language, averaged over 5 map instances.

FIGURE 1 | Architecture and unfolded view of a TSOM. Orange nodes represent Best Matching Units activated at successive time ticks.

right, on the other hand, branching paths converge to the same
node as soon as input forms share an identical symbol. Having
more branches that converge to a common node increases
processing uncertainty. The node encapsulates information of
many preceding contexts, and its possible continuation paths are
multiplied accordingly.

In Figure 2B, a word tree of the German verb glauben
(“believe”) is given for the 9 form types filling the same 14
paradigm cells selected for geben (Figure 1A). It is instructive
to compare these structures. Of particular interest is the base
stem glaub-, which is systematically shared by all its verb
forms, and followed by a longer stretch of inflectional markers
(conveying features of tense, person and number) than the base
stems of geben (namely, geb-, gib- and gab-) are. Accordingly,
the left-to-right processing of regularly inflected forms of
glauben requires the traversal of more branching structures
(and thus more indecision points). This marks an important
structural difference between regular and irregular paradigms in
all languages considered here, with a significant impact on the
processing behavior of TSOMs, as we shall see later in more detail
(section 5.1.1).

3.2. The Data
The TSOM architecture of Figure 1 was used to simulate the
acquisition of the verb inflection system of six languages:

Standard Modern Arabic, English, German, Modern Greek,
Italian and Spanish. For all languages, we selected 15 forms (14
forms for Arabic) for each of the 50 top frequency paradigms
sampled from a reference corpus5. For each language, forms
were chosen from a fixed set of paradigm cells. To the greatest
extent possible, the set of cells was kept comparable across
languages6. Each input form was transliterated into an ASCII-
based sequence of possibly complex symbols preceded by the
start-of-word symbol (“#”), and followed by the end-of-word
symbol (“$”). For Modern Standard Arabic forms we used the
Buckwalter transliteration rules7.

5Our data sources are: CELEX (Baayen et al., 1995), for German and English; the

Italian Paisà Corpus (Lyding et al., 2014); the European Spanish Subcorpus of

the Spanish TenTen Corpus (www.sketchengine.co.uk); the SUBTLEX-GR corpus

(Dimitropoulou et al., 2010) for Modern Greek, and the Penn Arabic Treebank

(Maamouri et al., 2004). The full set of word forms, for each language, is available

at http://www.comphyslab.it/redirect/?id=lrec2018_data.
6For English, German, Modern Greek, Italian and Spanish, the list includes

all present and past indicative cells. English, German, Italian and Spanish also

include the infinitive, past participle and gerund/present participle cells, which

are replaced by the three singular cells of the simple future in Modern Greek. For

StandardModern Arabic, we selected the first, second and thirdmasculine singular

and plural cells, and the third feminine singular cell for both the imperfective

and perfective.
7www.qamus.org/transliteration.htm.
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FIGURE 2 | Graph-based representations for a few German verb forms of geben “give” (A) and glauben “believe” (B). Double-circled nodes represent word-final

states, i.e., letters ending a word form; shaded nodes represent (possibly allomorphic) stems, according to the segmentation criteria of section 3.2. In (A), we provide

a word-tree (left) and a word-graph (right) for the same set of 9 form types of geben.

Although forms are input to the map with no information
about their internal structure, the dataset was annotated
manually, to allow us to correlate variation in the map response
after training with variation in the (morphological) structure
of training forms. First, for each form, we marked up two
uniqueness points: UP1 and CUP. UP1 was marked at the
position in the verb form where the stem is uniquely identified,
both relative to paradigmatically-unrelated onset-aligned forms
in the dataset, and with respect to other possible stem allomorphs
within the same paradigm. For example, the stem drunk is
distinguished from the unrelated doubt at “r” in second position,
but it is distinguished from drink or drank only when “u” is
reached in third position8. The marking of CUP followed Balling

8In fact, Ballling and Baayen’s definition of UP1 is intended to index competition

from morphologically unrelated words only (Balling and Baayen, 2008, 2012).

However, this is justified by the fact that their database only includes regularly

inflected forms, i.e., inflected forms showing no stem allomorphy: in this

case, identification of the stem automatically entails identification of the entire

and Baayen in marking the point at which the whole verb form is
distinguished from other forms of the same paradigm.

In addition, we based morphological segmentation on a
uniform (PREFIX) + STEM + (SUFFIX) template, where the
notion of verb stem has the Aronovian, morphomic status of an
unpredictable allomorph of the base stem, conveying systematic,
but possibly non homogeneous clusters of morpho-lexical
features (Aronoff, 1994). Accordingly, formally predictable stems
derived from their base stem through a systematic process of stem
formation (e.g., English past(walk) → walked) are segmented
into a base and a suffix (walk-ed). Inflected forms containing
unpredictable stems (e.g., English past_part(drink) → drunk,
German past_1S(geben)→ gab, German pres_2S(geben)→ gibst)
are segmented into a stem and a suffix (whenever overtly realized)
(e.g., drunk-, gab-, gib-st).

paradigm. Our operational definition of UP1 represents a natural extension of

Balling and Baayen’s criteria to a dataset containing irregularly inflected forms.
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Paradigms that undergo unpredictable stem formation
processes are classified as irregular. Paradigms whose stems
are formed transparently and systematically9 are annotated as
regular. In Standard Modern Arabic, where verbs appear to
cluster into different inflectional classes depending on the vocalic
patterns intercalated with the roots, irregular (or weak) verb
paradigms have stems that undergo a reduction in the number
of root consonants (traditionally referred to as first, second,
third weak and doubled roots, depending on the position and
number of the radical consonants being dropped) (Marzi et al.,
2017). Our segmentation template thus cuts across the traditional
regular vs. irregular classification, yielding ya-ktub-u “he writes”
and katab-a “he wrote” (as an example of a regular paradigm),
together with ya-qūl-u “he says” and qāl-a “he said” (as an
example of an irregular paradigm). Finally, for those languages
(like Modern Greek and Italian) where regular paradigms exhibit
unpredictable stem vowel selection (Ralli, 2005, 2006), stem
identity/regularity was based on the form obtained by dropping
the thematic vowel from the stem (Pirrelli, 2000; Pirrelli and
Battista, 2000; Bompolas et al., 2017).

To annotate graded regularity in our data, we define, for
each paradigm, the stem-family of a target form as the set of
its formally distinct stem-sharing members. For instance, in our
English training set, the forms drink, drinks and drinking are each
associated with a stem-family of size 2, whereas drank and drunk
have each an empty family. Likewise, the Italian verb forms veng-
o “I come” and veng-ono “they come” have each a stem-family
of size 1, as do vien-i “you come” (2s) and vien-e “(s)he comes.”
In contrast, ven-ire “to come,” ven-iamo “we come,” ven-ite “you
come” (2p), ven-isti “you came” (2s), ven-immo “we came,” and
ven-iste “you came” (2p) have a stem-family of size 5. Finally,
for each paradigm, we calculate its average stem-family size, and
then normalize it by dividing it by the maximum number of
possible stem-sharing members in the paradigm. Accordingly,
the paradigm regularity for drink is 2+2+2+0+0

5 ·
1
4 =

3
10 . The

score, which we will refer to in section 4 as gradient paradigm
regularity, ranges between 0 (minimum value obtained when
each paradigm member is formed on a distinct stem) and 1
(maximum value, obtained when a paradigm is fully regular, i.e.,
when the stem-family of each paradigm member includes all
other members of the same paradigm).

We used the same setting of free learning parameters for
training TSOMs on all languages. However, to minimize the
impact on the map topology of cross-linguistic differences in the
training data (for instance, in terms of form length and number
of form types: see Table 1)10, the number of nodes for each

9In stem formation, transparency and systematicity do not necessarily correlate

with predictability. Modern Greek provides a good example of transparent and

systematic stem formation processes which however are not predictable, as they

require a thematic vowel whose selection is based on lexical information (Ralli,

2014; Bompolas et al., 2017).
10Table 1 shows that English and (to a lesser extent) German conjugations exhibit

identical verb forms (morphological syncretism) in a sizable subset of the 15

paradigm cells we selected. It can be objected that we are imposing the paradigm

structure of inflectionally richer languages on inflectionally more impoverished

ones, with the effect of spuriously inflating the token distribution of our dataset

in languages such as English, where the base form is presented to the TSOM

five times as many as −s forms are. However, we contend that our training sets

language-specific map was made to vary so as to keep constant
the ratio between the map size and the number of nodes required
to represent its training set with a word tree. Accordingly,
a language-specific map size ranges between 35 × 35 nodes
(English) and 42× 42 nodes (Greek). Due to the combined effect
of keeping this ratio constant across languages and preventing the
temporal neighborhood radius (see Appendix) from decreasing
to zero, maps tend to develop overlapping node chains for word
forms sharing the same ending. Ultimately, these constraints on
the topological organization of the map avoid data overfitting,
as the map cannot possibly build up a dedicated memory traces
for each form in the training set, i.e., it cannot memorize the
original input data in its entirety (Marzi et al., 2014). For all
languages, we stopped training at epoch 100, when all learning
parameters reachminimumplasticity (seeAppendix). To control
for random variability in the map response, for each language we
trained and tested themap 5 times on the same data, and averaged
the results across all iterations.

4. RESULTS

To analyze the results of our simulations, we focused on the way
TSOMs process input words, and adjust their processing strategies
while learning different inflectional systems.

Word processing describes the map’s short-term response to
an input word. The response consists in a distributed pattern of
node activation and includes three sub-processes: input recoding,
when a specific winning node (a BMU) is activated by an
indvidual stimulus (a letter); prediction, i.e., the map’s on-line
expectation for an upcoming input letter, after a time series of
input letters is presented on the input layer; and recall, which
consists in retrieving a series of letters from the map’s response
to the series (the corresponding activation pattern). In turn,word
learning consists in associating systematic, long-term patterns
of node activation with input sequences of letters, so that each
sequence can be discriminated from other sequences (i.e., it elicits
a distinct response from the map), and letters can be retrieved
from the pattern in their appropriate order for word recall.
Accordingly, we can define the time of acquisition of a word as

are indeed comparable cross-linguistically, and can mirror realistic developmental

conditions. The paradigmatic space of a language is not defined by the amount

of morphological contrast conveyed by its inflected forms, but by the set of

morphosyntactic relations (e.g., subject-verb agreement) holding between word

forms in context. Children acquire inflected forms by binding them to larger

contexts (e.g., she’s walking, it rains, etc., Wilson, 2003; Pine et al., 2008), and

by abstracting away from recurrent combinations of number, person, gender,

case, tense and aspect features in context. If a specific inflected form is seen

in different such combinations (e.g., I walk, you walk, we walk, they walk), the

child is repeatedly exposed to an invariant form, whose token frequency will

correspondingly increase relative to other paradigmatically-related forms (e.g.,

walks and walking). This is confirmed by developmental evidence showing that

extensive syncretism has perceivable effects on the child’s intake of the amount and

distribution of morphological contrast exhibited by a language inflection (Legate

and Yang, 2007; Pine et al., 2008; Xanthos et al., 2011; Krajewski et al., 2012).

Thus, although we are deliberately partialing out token frequency effects (which

appear to show complex a interaction with word category, lexico-semantic class,

modality and age of acquisition: see Bornstein et al., 2004; Goodman et al., 2008),

our data enable us to focus on non trivial type-driven aspects of dynamic paradigm

self-organization.
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the learning epoch when the map is able to consistently recall
the word correctly from its activation pattern, while making no
mistakes at later epochs. It should be emphasized that, from
this perspective, learning simply consists in developing long-
term processing patters from repeated, short-term successful
processing responses. We will return to this mutual implication
between short-term processing and long-term learning in the
concluding section of this paper.

Accuracy of recoding measures the ability of a TSOM to
correctly map an input word form onto a chain of BMUs. When
presenting a TSOM with a time-series of symbols making up
an input word, the word form is recoded correctly if all BMUs
are associated with the correct input symbols in the appropriate
order (see Equation 1 in Appendix). Accuracy of recallmeasures
the ability of a TSOM to correctly retrieve a word form from its
memory trace (or Integrated Activation Pattern, see Appendix).
This is done by iteratively spreading node activation from the
start-of-word node (“#”) through the nodes making up the
temporal chain of an input word. At each time step, the TSOM
outputs the symbol associated with the currently most highly-
activated node. The step is repeated until the node associated with
the end-of-word symbol (“$”) is output (see Equations 19–21
in Appendix).

By measuring the map’s prediction rate, we assess the ability
of a trained map to predict an incrementally presented input
word. Prediction scores across input words are calculated by
symbol position. The prediction score of a correctly predicted
symbol is obtained by increasing the prediction score of its
immediately preceding symbol by 1-point. Wrongly predicted
symbols are given a 0-point score (see Equation 18 inAppendix).
For each input word, the more symbols are predicted, the higher
the prediction score assigned to the word. High prediction
scores thus reflect strong expectations over upcoming input
symbols, and measure the relation between successful serial word
processing and accurate positional encoding of symbols in a
time series.

Accuracy scores for recoding and recall are given in Table 1.
The performance of each language-specific map is evaluated by
averaging scores across five iterations of the learning experiment
for each inflection system. Performance is consistently good
for all the languages in our experiments, especially when we
focus on the accuracy of recall, considering the difficulty of
the task. This shows that the algorithm is adaptive enough
to be able to fine tune its time-sensitive representations to
the orthotactic and morphotactic redundancies of each system,
irrespective of the specific position a system takes along the
isolating-inflecting continuum.

Some interesting differences are observed when we consider
the learning pace of the maps for the different languages.
Figure 3A shows the boxplot distribution of per-word learning
epochs for the 6 languages. In particular, Arabic per-word
learning epochs are significantly later than those of all other
languages (p < 0.001), with English per-word learning epochs
being significantly earlier (p < 0.01). In Figure 3B we plotted, for
each language, its paradigm learning span. The span measures
the number of epochs taken by a map to learn an entire
paradigm after the first member of the paradigm is learned.

The span thus quantifies the average inferential ability of a map
learning an inflection system, and, indirectly, the learnability
of the system. The ranking order of the learning span for
the languages of our experiments nicely mirrors the relative
complexity of the inflectional processes in the six languages,
according to Bittner et al. (2003). On the one hand, the learning
span for the English verb set is significantly smaller than the
learning span of all other languages (p < 0.01 compared with
German, and p < 0.001 compared with all other languages).
On the other hand, the learning span for the Greek verb
set is comparatively larger than the span of the remaining
languages (p < 0.001), followed by the Italian set (which
is not significantly different from the Greek one), and the
Spanish one. In fact, Greek, Italian and Spanish present, unlike
English and German, a verb system with more conjugation
classes. The inferential process of filling empty cells from one
attested form of the same paradigm thus requires preliminary
identification of the appropriate conjugation class, with its set
of inflectional endings11. Nonetheless, the comparatively small
range of variation (between 3 and 8 for median values) that
these languages exhibit in their learning span lends support
to Ackerman and Malouf ’s conjecture (Ackerman and Malouf,
2013) that the inferential complexity of inflectional system must
oscillate within tight entropic bounds.

Based on the results reported in this section, it appears
that TSOMs are capable of learning the underlying syntagmatic
structure of inflection (consisting of serialized sublexical units
like prefixes, stems and suffixes), and the inferential patterns
necessary for generalizing this structure. Nonetheless, this is
only partially satisfactory for our present concerns. We would
like to know not only that a particular inflection system can be
learned, but also how it can be learned, what is actually being
learned, and how hard it is for a TSOM to learn the inflection
system of a language compared with that of another language.
To reach this level of understanding, in the following sections
we report statistical analyses of the performance of TSOMs in
the prediction task and investigate their learning dynamic by
using the R software (R Core Team, 2014). Our statistical models
will provide a careful, quantitative interpretation of what the
map does, and will enable us to suggest a non impressionistic
categorization of the time-bound representations hidden in
the map’s topological self-organization, and match up these
categories with familiar linguistic notions.

5. DATA ANALYSIS AND INTERPRETATION

The internal structure of aTSOM is not easy to examine, but there
are ways to correlate the structure and distribution of the training
data with the functional behavior of the map (e.g., its ability to
predict what is coming next at a certain point in time in the
input based on what was input until that point). In this section,
we first consider categorical features of the training data: namely
the language being input and its inflectional syntagmatics, by

11This is not needed in Standard Modern Arabic, whose learning span is smaller

than in Greek, Italian and Spanish (but larger than in English and German), as

Arabic class information is, in most cases, already conveyed by the verb stem.
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FIGURE 3 | For each language dataset, boxplot distributions of (A) per-word learning epoch and (B) per-paradigm learning span.

looking at the way sublexical constituents are annotated, and
inflected forms are classified as regular or irregular (section
5.1). The idea is to explore the language-specific sensitivity
that the map develops while being trained on a given language
and its set of inflectional processes. Secondly, we move on to
take a Word-and-Paradigm perspective on the same material,
with a view to matching up the behavior of the map with a
more graded classification of morphological regularity, and with
more fundamental, cognitive effects of family size on the map’s
behavior (section 5.2.1). From both perspectives, we examine
processing effects as well as learning effects.

5.1. Cross-Linguistic and Regularity Effects
5.1.1. Processing Effects

The leftmost panel of Figure 4 plots the linear rate of letter-by-
letter prediction when a trained TSOM is processing regularly
(cyan line) or irregularly inflected forms (red line), as a function
of letter position (distance) to the Morpheme Boundary (MB)
between stem and suffix, where MB = 0 corresponds to the
first element of the suffix. The prediction rate counts how
many consecutive letters are predicted by the map during word
processing. The plot is a linear regression model of the letter
prediction rate, using as predictors the letter position and the
dichotomous regular vs. irregular classification (see section 3.2).
Verb forms from the 6 languages are considered cumulatively in
the model.

Positive slopes indicate, unsurprisingly, that the map gets
more and more accurate in anticipating an upcoming symbol
as more of the word input is consumed. As has already been
shown (see Marzi et al., 2018 for preliminary results on the same
set of the 6 languages), TSOMs appear to be significantly more
accurate in predicting forms belonging to regular paradigms
than to irregular ones, but no apparent interaction is observed
between regularity and distance to the stem-suffix boundary. To a
first approximation, the evidence seems to show that inflectional
regularity consistently facilitates word processing, independently

of how inflection is marked cross-linguistically. In fact, the center
panel of Figure 4 shows that the 6 languages of our sample
present slightly different prediction slopes. Arabic and English
exhibit a steeper prediction slope compared with the slope of
German, Greek, Italian, and Spanish.

A more interesting picture12 emerges when we move from a
linear regression model to a non-linear regression model of the
same data. The rightmost panel of Figure 4 shows how prediction
rates vary across languages when the time course of word
prediction is modeled by a Generalized Additive Model (GAM).
GAMs, and related plots (obtained with the ggplot function),
eliminate spurious linear leveling, and allow changes over serial
processing to be modeled in a fine-grained way13. The ascending
path for increasing values of distance to MB basically confirms
the linear trend observed in the center panel of Figure 4. But the
non-linear interpolation highlights an important discontinuity
at the stem-suffix boundary (for distance to MB=0). In English,
Greek, Italian and Spanish, the stem-suffix boundary marks a
sharp drop in prediction rate, supporting the intuition that when
the final letter of a stem is recognized, the map has to revise
its expectations for an upcoming symbol. We interpret this as
an effect of structural discontinuity between the stem and the
following suffix, which is deeper in regularly inflected forms
than it is in irregularly inflected forms for all languages in our
sample (Figure 5A).

The same mechanism accounts for the fact that Greek, Italian
and Spanish show a deeper prediction drop at the stem-suffix
boundary than English does (Figure 5A). Greek, Italian and
Spanish inflection markers are, in fact, more numerous and
formally more contrastive than inflection markers are in English.

12The non-linear model is statistically more robust, as confirmed by an ANOVA

Chi-squared test: p-value < 0.001.
13It should be noted that all word forms are centered on the 0-value, i.e., at the

stem-suffix boundary. This makes the interval representing the onset of words less

confident, due the possible presence of an inflectional prefix and to differences in

length between the stems.
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FIGURE 4 | Regression plots of TSOM prediction rates in word recoding by letter position to the word stem-suffix boundary (distance to MB=0): (possibly prefixed)

stems are associated with x-values <0, and endings with x-values ≥0. (Left panel) linear interaction with the categorical regular (cyan) vs. irregular (red) classification

of verb paradigms in all languages. (Center panel) linear interaction with sample languages as categorical fixed effects. (Right panel) non-linear interaction with

sample languages as categorical fixed effects. All plots are obtained by using the R ggplot2 package; related models are respectively calculated with lm function and

gam function (gamm4 package). Shaded areas indicate 95% confidence intervals.

FIGURE 5 | Regression plots (ggplot2) of interaction effects (A) between regularly (cyan lines) and irregularly (red lines) inflected forms and the distance to stem-suffix

boundary (distance to MB), and (B) between sample languages and the distance to the Complex Uniqueness Point (distance to CUP=0), in non-linear models (GAMs)

fitting the processing prediction rate. Shaded areas indicate 95% confidence intervals.

The steeper ascending trend in the prediction of English forms
has to do with the comparative simplicity of the English system,
and the narrower range of possible continuations of the verb stem
in regularly as well as irregularly inflected forms. The ascending
prediction trend of the Arabic verb is more linear, particularly
in irregular inflection (Figure 5A). In fact, the Arabic plot shows
a less prominent drop at the stem-suffix boundary (for distance
to MB=0), which disappears altogether in irregulars, suggesting
a greater structural continuity between the stem and the suffix.
This is the combined effect of two factors: stem allomorphy in
the perfective forms of irregular verbs, and prefixation of person
and number features in the imperfective forms, both concur
to reduce processing uncertainty at the stem-suffix boundary14.

14In Arabic imperfective forms (both regular and irregular), second and third

person values are conveyed by the prefixes ta- and ya- respectively, and number

is marked by the suffixes -u for the singular, and -uwna for the plural. In the

first person, person and number are syncretically realized by two different prefixes

followed by an identical suffix (-u). Hence, the amount of residual processing

Conversely, German exhibits only descending slopes after the
stem-suffix boundary (for distance to MB=0). This is an effect
of the full formal nesting of shorter endings within longer,
onset aligned endings (for instance e-, -en, -end: see Figure 2

above), which makes it hard to predict upcoming symbols when
contextual and frequency information is missing. As a result,
prediction increases only at the point where the form is fully
discriminated from all other forms (i.e., for distance to CUP=0),
as shown by the ascending slope for CUP>0 in Figure 5B.

All in all, closer inspection of prediction curves for each
language confirms that regular stems are structurally easier

uncertainty at the stem-suffix boundary is drastically reduced to a binary choice

between -u and -uwna for the second person and the third person only. In

perfective forms, regular verbs select one stem followed by different endings for

different combinations of number, person and gender features, and irregular verbs

select a specific stem allormorph for different combinations of gender and number

values with the 3rd person. This further reduces processing uncertainty in the

perfective forms of irregular verbs.
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to process than irregular stems. Nonetheless, the processing
advantage accumulated across regular stems is offset by suffix
selection, which requires more effort in adjusting probabilistic
expectations for regular forms than for irregular ones. This
general, cross-linguistic effect can be interpreted in terms of
“surprisal” as a source of processing difficulty (Levy, 2008),
caused by the incremental reallocation of the map’s expectation
for upcoming symbols. In irregular paradigms, the initial
processing disadvantage is counterbalanced by a smaller effort
(i.e., a smaller decrease in certainty) in processing the transition
from a stem to the following suffix. As we will see in more
detail in section 5.2.1, this processing facilitation is a consequence
of the fact that irregular stems exhibit a formal contrast that
regularly inflected forms typically realize with suffixal material.
Ultimately, this early contrast provides an early point of
lexical discrimination.

5.1.2. Learning Effects

The TSOM learning algorithm has a bias to developing
specialized chains of processing nodes (BMUs), which get more
and more sensitive to structural discontinuity in the input
data. We can monitor chain specialization by observing how
prediction accuracy of online word processing evolves through
learning. As training progresses, we expect prediction trends to
increasingly reflect the underlying morphological structure of
inflected forms. Due to chain specialization, a TSOM becomes
more and more familiar with recurrent stems and endings. Its
ability to predict upcoming symbols increases accordingly, and
prediction rates become higher across input words as the map
learns to assign maximally entrenched node chains to shared
input sub-strings.

Figure 6A plots variation of word prediction rates at different
learning epochs (going from epoch 5 to epoch 50 with a 5-epoch
step), averaged across all languages in our sample. The prediction
rate of inflectional endings starts increasing at epoch 10 (growing
slope for x-values ≥0), when the TSOM is not yet able to
accurately predict stems (x-values <0). This is the combined effect

that input frequency and length have on memory. Endings are,
on average, more frequent and shorter than stems, and are thus
learned more quickly. Processing sensitivity to stems becomes
more discriminative only at later epochs, as shown by the local
maximum at distance to MB = −1 at epoch 15. Finally, when
stems are predicted accurately (starting from learning epoch 20),
the TSOM learns that some specific endings follow only some
stems, and can adjust its prediction bias accordingly. This makes
prediction values for endings (i.e., for x-values ≥0) increasingly
higher at later epochs.

Figure 6B shows the linear growth of processing prediction
for each language at different epochs (from epoch 5 to epoch
50). The trend shown by our sample of languages is consistent
with the intuition that processing prediction and processing ease
increase with learning as a function of memory entrenchment of
word representations: the more entrenched word representations
are, the more easily they are predicted during processing. This
is illustrated by the word-graph in Figure 2A (right), which
represents the node chains activated by a few forms of German
geben “give” at an early learning epoch. At this stage, partially
overlapping stem allomorphs (gib-, geb-, and gab-) activate
superpositional node chains. This indicates that the Markovian
order of the map cannot discriminate between b preceded by the
letter a, and the same b preceded by the letter i or the letter e.
During training, discriminative specialization results in the word
graph being transformed into the tree-like structure of nodes
on the left hand side of Figure 2A. Note that a word tree has
fewer branching points than the corresponding word graph. This
means that when the map arrives at a node with fewer branching
paths, uncertainty about the upcoming symbol decreases, and
processing prediction increases.

Learning, like prediction, is dependent on word length.
However, whereas short words are comparatively more difficult
to predict, they are learned more easily. Epochs of word learning
as a function of word length are compared for each language
in Figure 7A. Unsurprisingly, short words are learned at early
epochs and longer words are learned at later epochs irrespective

FIGURE 6 | Word structure learning: (A) overall prediction trends and (B) their language-specific linear correlates through 5-to-50 learning epochs, for different letter

positions to the stem-suffix boundary (distance to MB). Prediction scores exhibit an increasing fit to training data, weighing up the map’s expectations across stems

(x-values <0), and endings (x-values ≥0).
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FIGURE 7 | Regression plots of time of lexical acquisition by word length, in linear interaction with (A) sample languages and (B) regular vs. irregular classification of

paradigms plotted for each language.

of language. Nonetheless, the time lag can vary depending on
the specific inflection system. For example, English is shown to
exhibit a steeper learning slope, i.e., a greater difficulty in learning
inflected forms of increasing length, and Arabic shows both a
steeper slope and a higher intercept.

When we look at each language in more detail, we observe
an interesting interaction between the impact of word length
on learning epochs and inflectional regularity. Figure 7B plots
word learning epochs as a function of word length and the
regular vs. irregular dichotomous classification for each language.
With the only exception of Spanish (where differences do not
reach statistical significance, p > 0.1), all languages exhibit
different learning paces for regulars vs. irregulars, with the
former enjoying advantages over the latter. The pace of learning
interacts with word length in Arabic, Greek and English, where
long regulars tend to be learned progressively earlier than long
irregulars. This contrasts with German, where the trend is
reversed, and Italian, which shows no significantly different
interaction with increasing length. Note, finally, that whenArabic
and Greek irregular forms happen to be significantly shorter than
regular forms, the former are learned a few epochs earlier than the
latter, reversing the advantage enjoyed by regulars when length
is controlled.

5.2. Stem-Family Effects
5.2.1. Processing Effects

The evidence reported in section 5.1 throws into sharp relief
a theoretically interesting connection between the structural
notions of morphological regularity and transparency, on the
one hand, and word processing (un)certainty, on the other hand.
Word-and-Paradigm approaches to inflection have questioned
the primacy of sublexical constituent structure as a key to
understanding speaker’s word knowledge. In contrast, they
support a view of inflectional competence grounded in a complex
network of fully-inflected forms organized in word families of
lexically-related members (paradigms) and inflectionally-related
members (conjugation classes). Accordingly, morphological
regularity is the expression of the formal and lexical support that
each inflected form receives from its family members: regularly

inflected forms tend to get the largest possible amount of
formal support from their paradigmatic companions in terms of
redundant stem forms (e.g., walk-s, walk-ed, walk-ing), and from
their conjugation members in terms of redundant inflectional
markers (e.g., walk-ing, see-ing, speak-ing). In this section, we
move away from a dichotomous notion of paradigm regularity to
a graded one, based on statistical patterns of lexical co-activation
and competition. These patterns are better understood, in line
with psycholinguistic evidence of human processing behavior, as
word family effects.

In section 3.2, we introduced two ways of assessing paradigm
regularity as a gradient: one is based on forms, and the
other is based on paradigms. Given a target form, we can
calculate the number of stem-sharing members of the form’s
paradigm, or stem-family size. For each verb paradigm, the
(normalized) average stem-family size of the paradigm gives a
graded score of paradigm regularity. The two notions are clearly
correlated (in our data, r = 0.79, p < 0.001). In a fully regular
paradigm, all forms have the same stem-family size. Conversely,
suppletive forms in irregular paradigms tend to be isolated.
Nonetheless, the two measures account for different effects on
word processing. Intuitively, our paradigm regularity score is
the same for all members of a paradigm, irrespective of how
stem-families are distributed within the paradigm. However, a
form supported by a larger stem-family has a different processing
cost from a form with an empty stem-family in the same
paradigm. Thus, while paradigm regularity can account for
different processing costs between different paradigms, the stem-
family size explains the variation, in processing costs, between
paradigmatically-related forms.

In our simulations, paradigm regularity has a facilitative effect
on stem processing. An identical stem, transparently shared
by all paradigmatically-related forms, represents a perceptually
salient, deeply entrenched formal core of the paradigm. This
core is highly familiar, and is accordingly processed more
easily. Conversely, degrees of alternation in stem formation for
irregular paradigms tend to slow down the processing of the
corresponding stems. The more stem allomorphs a paradigm
presents, the larger the effort taken to process them, as more
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FIGURE 8 | Effects of (graded) paradigm regularity interacting with stem-family size, distance to stem-suffix boundary (MB) and (word, stem and suffix) length in

GAMs modeling TSOM prediction rates in: (A) word processing, (B) stem processing, and (C) suffix processing. The specified predictors are taken in interaction with

paradigm regularity as summed effects (itsadug package, plot_smooth function).
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points of processing uncertainty are encountered along the way.
This is again shown pictorially in Figure 2A, where the shaded
nodes of the irregular verb geben, corresponding to its stem
allomorphs, are arranged through branching paths, in contrast
with the non-branching path associated with the regular base
stem of glauben (Figure 2B).

Arabic inflection provides a somewhat exemplary illustration
of this dynamic. In Arabic, all verb forms present vowel
alternating stems, irrespective of their belonging to regular
or irregular paradigms. Nonetheless, irregulars are predicted
less easily than regulars (Figure 5), due to the greater formal
diversity that irregular stem allomorphs exhibit. Compare,
for example, the regular forms katab-tu/katab-ta/katab-a “I
wrote”/“you (singular masculine) wrote”/“he wrote” with the
second weak forms qul-tu/qul-ta/qāl-a “I said”/“you (singular
masculine) said”/“he said”).

The facilitation in processing stems of regularly inflected
forms is however counterbalanced by the processing uncertainty
incurred at the stem-suffix boundary. In fact, the processing
advantage that more regularly inflected forms enjoy across stems
is offset by a deeper drop in the prediction rate for an upcoming
suffix (Figure 5). This is confirmed when we partial out the
interacting influence of paradigm regularity, stem-family size,
word length and distance to stem-suffix boundary (MB) in a
generalized additive model of prediction rates (Figure 8). Despite
the strong positive correlation of paradigm regularity and stem-
family size, when these predictors interact, the contributions
that they make to the processing of full words go in different
directions. When we model the interacting effect of each
predictor for stem and ending independently, the facilitation
effect of family size on stem processing (Figure 8B, second panel
from the left) is reversed into a negative effect on endings
(Figure 8C, second panel from the left).

The interaction of paradigm regularity and stem-family size
on word processing is illustrated inmore detail through the use of

the perspective or contour plots of Figure 9, showing the additive
interacting effects of paradigm regularity and stem-family size
as predictors for processing prediction of full-forms, stems and
suffixes. In the plots, contour lines represent prediction values:
brown-yellow shades mark areas where items are processed more
easily, and blue shades mark areas where items are processed less
easily. Figure 9A shows that forms in more irregular paradigms
are always processed with greater difficulty. However, starting
from level 0.4 of paradigm regularity, forms are processed with
increasing difficulty if they have large stem-families. Conversely,
Figure 9B shows that stems appear to be favored by increasing
stem-family size, with a mild reversal of this effect only for items
in fully regular paradigms (level > 0.8 of paradigm regularity).
We can explain these effects by observing that more regular
stems are typically followed by a wider range of inflectional
endings than highly irregular stems are, and that the number of
different endings is proportional to the size of the stem-family.
Hence, the larger the stem-family, the higher the processing
“surprisal” for upcoming endings (Ferro et al., 2018), as shown
in Figure 9C.

The consequences of these pervasive stem-family size effects
on the perception of morphological structure during word
processing are modeled in Figure 10A, where non-linear
prediction rates are plotted as a function of distance to MB
for classes of inflected forms with increasing stem-family size
(ranging from empty to large). Here, processing curves are
aligned on the structural joint between stem and suffix (distance
to MB = 0), confirming that stem predictability increases with
the stem-family size, together with the perception of a structural
discontinuity at the stem-suffix boundary. In contrast, forms
with little or no support from stem-sharing items show lower
prediction rates for stems, and higher prediction rates for suffixes.
Finally, smaller or no prediction drops at distance to MB = 0
suggest that an inflected form with an empty-to-small stem-
family size is processed and perceived as mono-morphemic.

FIGURE 9 | Contour plots of additive interaction effects of stem-family size and paradigm regularity on word (A), stem (B), and ending (C) prediction (itsadug

package, fvisgam function). Grid points at a distance of ≥0.2 from the predictor variables are excluded (gray areas).
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FIGURE 10 | Regression plots of interaction effects between zero, small, small-medium, medium-large and large stem-family sizes and (A) distance to stem-suffix

boundary (MB), and (B) distance to CUP, in non-linear models (GAMs) fitting processing prediction rates.

Another processing effect worth emphasizing in this
connection is how easily an inflected form is discriminated
from its paradigm members. Discriminability is somewhat
related to the predictability of an input sequence. However,
whereas predictability is related to the entrenchment of a
recurrent sequence in our mental lexicon, discriminability is
a function of how confusable an input sequence is with other
similar sequences. In fact, full form discrimination requires
identification of the form’s Complex Uniqueness Point (or CUP).
Intuitively, the earlier the CUP of an inflected form, the more
quickly the form is singled out and accessed in serial recognition.
Consider two forms like thought and walked. Unlike walked,
whose paradigmatic CUP is positioned at the beginning of the
inflectional ending -ed, thought is discriminated from all other
forms of THINK when -o is input. Thus, thought is discriminated
at an earlier point in time than walked is, because of the shorter
distance between the form onset and its CUP (2 letters, vs.
4 letters for walked) and the longer tail of predicted symbols
after CUP (4 letters, vs. only 1 letter predicted for walked). This
tendency is confirmed by our analysis of TSOM data. Irregulars
are, on average, easier to discriminate than regularly inflected
items. In Figure 10B, we plot non-linear prediction rates as a
function of distance to CUP, for the same five classes of stem-
family size used in Figure 10A. For all forms, prediction lines
are centered on CUP (i.e., for distance to CUP=0). Forms with
empty stem families show a shorter time lag between their onset
and their CUP. In addition, they have a longer tail of predicted
symbols after CUP. As we move from isolated forms to forms
with increasing stem-family size, the time interval between onset
and CUP increases, and the tail of symbols after CUP shortens.
Family size is a significant predictor of this trend, even when the
length of inflected forms is added in interaction to the GAM.

To sum up, stem-family size appears to influence the
rate at which TSOMs process verb forms, confirming that
paradigm regularity facilitates processing. The stems of inflected
forms with a large stem-family size are easier to predict, but
this facilitation is compensated at the stem-suffix boundary,
where a significant reduction in processing prediction can be

interpreted as a functional correlate of structural discontinuity.
Conversely, the stems of inflected items with empty-to-small
stem-family size are more difficult to predict, and take more
processing effort, but show a considerably smaller drop in
prediction at MB, which suggests that they are processed
more holistically. In addition, irregulars are discriminated
more quickly from their paradigmatic companions than
regularly inflected forms are. It is noteworthy that this
effect is not an artifact of irregulars being, on average,
shorter than regulars, but reflects a genuine morphological
pattern: irregulars tend to mark, through stem allomorphy,
information that regularly inflected forms mark with their
suffixes. Ultimately, irregularly inflected forms are easier to
discriminate because they are part of a more contrastive network
of formal oppositions.

5.2.2. Learning Effects

From a learning perspective, being part of a larger stem-family
is an advantage. Intuitively, the size of a stem-family defines
the number of distinct affixes the stem can combine with:
the larger the stem-family size, the greater the potential of
the stem for filling in more paradigm cells. Hence, a stem-
family defines the analogical space where a verb establishes its
connections with other paradigms. Other things being equal
(e.g., length, cumulative frequency, and wordlikeness), a verb
form with a large stem-family is learned more easily than an
isolated form, as shown in Figure 11A, where we plot a largely
predominant facilitation effect of stem-family size on word
learning across the entire length range. A regular paradigm
is a classical example of such a stem-family, where all family
members share the same stem followed by a systematic pool
of inflectional endings (which are, in turn, shared by other
paradigms). Being associated with a large range of differently
inflected formsmakes it possible for aTSOM to consolidate intra-
paradigmatic formal redundancies, and infer missing formsmore
accurately. Conversely, more discriminated irregular forms are
acquired more slowly for exactly the same reason that they are
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FIGURE 11 | (A) Regression plot of time of lexical acquisition by size of stem-family in linear interaction with word length. Fixed effects are word length (as categorical

predictor), and stem-family size; (B) summed effects of paradigm regularity interacting with stem-family size, distance to stem-suffix boundary (MB) and word length in

a GAM modeling time of acquisition (learning epoch) for verb forms in all sample languages.

FIGURE 12 | Contour plots of additive interaction effects of stem-family size and paradigm regularity on word (A), stem (B), and ending (C) learning. Grid points at a

distance of ≥0.2 from the predictor variables are excluded (gray areas).

accessed more holistically and effectively: because they happen to
be isolated.

In Figure 11B, we assess the interacting influence of paradigm
regularity, stem-family size, word length and distance to MB in
a generalized additive model of the pace of word acquisition.
In this model, acquisition is jointly facilitated by both factors,
unlike what we observed for processing prediction (Figure 8A)
where paradigm regularity and stem-family size have contrasting
effects. The contour plots of Figure 12 show the interaction
of these factors in more detail. Stem-family is shown to
have a main facilitation effect on word learning, which is
stronger within weakly regular paradigms. This suggests that
even when a verb is associated with many unpredictable
stems, the distribution of these stems in their families affects

learning. Regular paradigms are facilitative too, but their
influence is comparatively less prominent. It is noteworthy
that this general word-level effect is differently apportioned
when we focus on the pace of stem learning: stems are
learned significantly more quickly within regular paradigms,
whereas the size of their stem-family has only a marginal
(positive) effect in the process. Finally, endings are learned
more quickly in regular paradigms, but the facilitative influence
of the size of the stem-family in this case is considerably
more significant.

Finally, to assess the independent impact of stem-family size
on word learning, we ran a generalized additive model including
stem-family size, word length and distance to stem-suffix
boundary as predictors for learning epoch (R2(adj) = 0.53), and
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TABLE 2 | GAM fitted to word learning epochs using stem-family size as the only paradigmatic predictor: learning epoch∼ stem-family size*distance to MB*word length

+ s(distance to MB) + s(word length).

Parametric coefficients Estimate Std. Error t value Pr(>t)

(Intercept) 0.1677863 0.0648875 2.586 0.00972

Distance to MB 4.7535561 0.1025123 46.371 < 2e-16

Stem-family size −0.1873784 0.0105171 −17.816 < 2e-16

Word length 1.9595085 0.0188123 104.161 < 2e-16

Distance to MB:stem-family size −0.0553514 0.0031115 −17.789 < 2e-16

Distance to MB:word length −0.1973904 0.0031048 −63.577 < 2e-16

Stem-family size:word length 0.0047230 0.0011342 4.164 3.13e-05

Distance to MB:stem-family size:word length 0.0060111 0.0003114 19.305 < 2e-16

Significance of smooth terms:

s(distance to MB) < 2e-16

s(word length) < 2e-16

R2(adj) = 0.53

compared it with a similar model where the paradigmatic
predictor is paradigm regularity (R2(adj) = 0.28). The robustness
of the stem-family model (see Table 2) provides solid support for
the hypothesis that family size is the driving paradigmatic force
in word learning15.

6. GENERAL DISCUSSION AND
CONCLUDING REMARKS

Inflectional complexity is inherently multidimensional. It lends
itself rather reluctantly to an assessment in terms of a single
factor or measure. Traditional approaches to complexity are
based on either an inventory of morphosyntactic features
and their markers, or on a full grammatical description
of an inflection system. Both strategies require considerable
preliminary knowledge about lexical/grammatical units as well
as rules/processes for their segmentation and recombination.
Ultimately, they appear to place more emphasis on the
descriptive adequacy of some system of formalized knowledge,
than on inflectional complexity per se.

More recently, information-theoretic approaches have tried
to eschew such a circular assessment of system complexity, by
looking at patterns of interpredictability in the distribution of
inflectional data. These patterns are not scattered randomly
across inflectional paradigms. On the contrary, they are
distributed in ways that reduce the amount of uncertainty in
mastering inflection. Such a structured system of implicative
relations addresses a few learnability issues by constraining
an otherwise very large hypothesis space. This is certainly a
step forward in understanding inflection and measuring its
complexity. However, there are a number of important issues that
it leaves unaddressed.

Form interpredictability requires preliminary identification of
patterns of morphological redundancy, such as those allowing

15In Table 2, predicted, standard error and p values are detailed for each of

the independent variables. The adjusted R-squared expresses the percentage of

explained deviance. The intercept value is referred to our dependent variable

(learning epoch) when all the independent predictors are 0.

the resolution of a simple analogical proportion like <walk ::
walked = talk :: ?>. However, the hypothesis space of formal
mapping may vary considerably from language to language, as
witnessed by proportions like <machen :: gemacht = lachen :: ?>
(German) and <kataba :: yaktubu = hadama :: ?> (Arabic). For
the idea of measuring the complexity of an inflectional system
in terms of information entropy to be empirically verifiable, we
have to be fairly specific about how speakers can acquire these
patterns in the first place, and what learning principles provide
the algorithmic basis for bootstrapping patterns with no a priori
knowledge about them. What cues allow the identification of
sublexical parts? Do these parts provide, in turn, functional
cues to lexical processing? Are all morphological systems equally
complex to process and learn? And if they are not, why?

To meet its communicative goals any inflection system
needs to be learnable in the first place. In addition, it
must also be functional from the standpoint of processing
requirements, and its inner organization must address
fundamental discriminative concerns about efficiency in
lexical access. In particular, inflected forms should not
simply be easy to generalize, but also easy to process and
amenable to accurate and efficient access. Issues of learnability,
processability and discriminability are not necessarily mutually
contradictory, but they may pull in different directions.
Examining their complex interaction requires much more than
just a way to gauge inferential entropy in a static repository
of inflected forms. In this paper, we suggested using basic
discriminative learning principles and a type of recurrent
artificial network to clarify the multidimensional nature of
inflectional complexity in the light of our understanding of
the interaction between learning principles and human word
processing behavior.

As a general point, the evidence offered in this paper shows
that the processing cost of typologically different inflectional
systems oscillates within a fairly narrow range (Figure 4,
center panel), and that this range is actually modulated by
morphological structure (Figure 4, right panel). It is noteworthy
that the steepest linear slopes of processing prediction in
the center panel of Figure 4 are associated with Arabic and
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English, while German, Greek, Italian and Spanish present less
steep word processing trends. It would be an unwarranted
oversimplification, however, to conclude that Arabic and English
have less complex inflection systems. In Arabic, the effect
is mainly due to the discontinuous structure of verb stem
allomorphs, which systematically anticipate the marking of a
few morphosyntactic features in both regulars and irregulars,
and make endings easier to predict. The result is a lower
rate of processing uncertainty at the stem-suffix boundary,
compared with other languages. A similar processing facilitation
is observed in English for a different reason: the small range
of endings marking inflectional contrast. Conversely, German,
Greek, Italian and Spanish show higher prediction rates for
stem processing, followed by a deeper drop in prediction at the
stem-suffix boundary, due to a richer set of (possibly nested)
inflectional suffixes. Languages typologically vary in the ways
they apportion morpho-syntactic information across inflected
words. This variation has a significant impact on word processing
strategies, because finding information at certain points in the
input word may reduce processing uncertainty at later points.
Nonetheless, when the amount of morpho-syntactic information
to convey through inflection is approximately constant across
languages16, cross-linguistic variation in processing uncertainty
can only oscillate within a narrow range.

This has also interesting repercussions on learning. Judging
from the distribution of per-word learning epochs (Figure 3A),
Arabic is arguably the most difficult language to learn in our
sample. In TSOMs, this is caused by the strong paradigmatic
competition between discontinuous roots intercalated by
different vowel patterns. Nonetheless, the system appears
to substantially benefit from interpredictability patterns,
as shown by the distribution of learning span values in
Figure 3B. This suggests that the higher cost of learning
discontinuous stems in Arabic is compensated by the
relatively shorter length of inflected forms (compared with
the length of inflected forms in other languages), and by
the fact that inflectional class information is conveyed by
the stem. In other languages like Greek, Italian and Spanish,
where class information is mostly conveyed after the stem,
selection of the appropriate inflectional ending is considerably
more uncertain (in line with Ackerman and Malouf ’s
LCEC, Ackerman and Malouf, 2013).

From a functional perspective, the simulation evidence
offered in this paper can be interpreted as the result of a
balancing act between two potentially competing communicative
requirements: (i) a recognition-driven tendency for a maximally
contrastive system, where all inflected forms, both within
and across paradigms, present the earliest possible (complex)

16We are not suggesting that such an invariance in the amount of inflectional

information holds for all languages. For example, Basque verb agreement marks

an inflected verb form with affixes for subject, direct object and indirect object

case (Austin, 2010, 2012). The system is agglutinative, and the number of possible

distinct affix combinations for ditransitive verbs soon gets very large (up to 102

different forms in the present indicative of the auxiliary). Thus the amount of

syntactic context that must be processed for a child to check case assignment on

the main verb form, is considerably larger than what is needed for languages like

German, Italian or Spanish.

uniqueness point of recognition; and (ii) a production-driven
bias for a maximally generalizable inflection system, where most
forms in a paradigm can be inferred from any other form
in the same paradigm. In an efficient communication system,
both requirements should be balanced. A poorly contrastive
system would be dysfunctional for practical communication
purposes, because the elements in the system are harder to
discriminate. A communication system, however, must also be
open and adaptive, because new elements must continuously
be added to be able to refer to an ever changing pragmatic
environment. Clearly, amaximally contrastive system of irregular
forms would take the least effort to process, but would
require full storage of unpredictable items, thus turning out
to be slow to learn. A maximally generalizable system, on
the other hand, would be comparatively easier to learn,
but rather inefficient to process, especially when it comes
to low-frequency items.

To conclude, there are a few implications of the present
work that are worth emphasizing here because of their impact
on our current understanding of word knowledge. First, from
observing discriminative learning principles in action, we
get a very concrete sense of the view that processing and
learning issues are strongly inter-related and mutually-implied
in language. Although they may pull in different directions,
they are, in fact, two sides of the same coin. More precisely,
they define two distinct temporal dynamics (a short-term one
for processing, and a long-term one for learning) of the same
unitary underlying process. Accordingly, representations of word
forms in our mental lexicon are only stored patterns of their
processing history: what we learn of language is basically how
we process it (Marzi and Pirrelli, 2015). Secondly, temporal
patterns of discontinuous redundant units in time-series are
known to be more difficult to process by humans (Hahn and
Bailey, 2005). Hence, it is expected that they should be more
difficult to learn and organize in our mental lexicon. This
point has interesting implications both for our categorization
of inflectional processes into regular and irregular, and in
cross-linguistic terms. Systems of formally alternating complex
units are easier to discriminate, since they provide shorter
CUPs and thus take, overall, a smaller processing surprisal
(Balling and Baayen, 2008, 2012). However, they are more
difficult to acquire, since they are more isolated from other
existing forms, and thus harder to infer from familiar, redundant
patterns. Less discriminative, highly syncretic systems are much
easier to generalize and learn, and, for the same reason, more
ambiguous (less informative) and more difficult to interpret
in their context of use. Such a complex dynamic of co-
existing and conflicting processing requirements has to find
a balance, both within the same language (as a function of
how regulars and irregular items are stored and co-organized
in the mental lexicon), and cross-linguistically (as a function
of typologically diverse processes of inflection marking). In
the end, each language (and arguably each individual learner)
is likely to strike a different balance, which nonetheless falls
within a reasonably tight range of variation, bounded by a few
learnability and processability requirements. This suggests that
full investigation of morphological systems will likely benefit
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from the use of basic concepts from the toolkit of complexity
theory in biological networks, such as emergence, non-linearity
and self-organization.

Over the past few decades, morphological paradigms have
acquired growing importance in our understanding of complex
inflectional systems. While our work provides novel evidence
supporting this trend, it also suggests that paradigms are
functionally specialized by-products of more general principles
of lexical self-organization, based on the more primitive notion
of word neighborhood. The morphological correlate of this
notion, namely the family of inflected types sharing the same
stem, or stem-family, turned out to be key to understanding
processing and learning issues. The size and distributional
entropy of stem-families can ultimately account for the effects of
ease of generalization, thus providing a more general, process-
oriented basis for understanding patterns of interpredictability
in morphology learning. This perspective lends strong support
to the view that the complexity of the inflectional system of
a language is a collective, emergent property that cannot be
deduced from its individual forms. In addition, it suggests
that a processing-oriented, discriminative view of inflection
systems is not incompatible with the idea that their systemic

self-organization rests on smaller “morphomic” patterns of
structural redundancy.
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