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Speech is notoriously variable, but our understanding of this variability continues to

evolve. Variability has typically been taken as an indication of failure to reach a desired

target due to physical or neurological limits. However, it is likely that some variability

is beneficial, an effect that has been found in other domains. Part of the effort to

separate beneficial from destructive variability must be to understand the distribution

of values around a speech target. One aspect that is commonly measured is the

standard deviation of some objective aspect of speech. The standard deviation is most

meaningful for normal distributions, and the assumption in speech research has been that

values are indeed normally distributed. This has not been rigorously tested, however,

as the test of normality requires a large number of samples (some studies suggest a

minimum of 200) to determine whether the data is normally distributed or not. Speech

research (and, indeed, most research with humans) seldom reaches such numbers for

a consistent environment. Here, an initial estimate for 300 repetitions of English words

by a single speaker are presented. The words were pseudo-randomized with an equal

number of filler items, so that immediate repetitions (and the neural and physical fatigue

repetition can cause) were avoided. One hundred trials were collected on each of 3 days.

Words were chosen to have very little coarticulatory influence (“heed,” “ode”/“owed”)

or sizable coarticulatory influence (“geek,” “dote”). Measurements of vowel formants at

acoustic midpoints indicated that the distributions were indeed normal. This was true

even of the high coarticulatory environment, which some theories would predict would

be skewed by the vowel’s reaching the edge of an acceptable region. The current

results indicate that vowel targets are consistent for different environments. Further,

the range of the distributions was quite similar across the two types of environment,

being, for example, about 100Hz for F1. The amount of variability is fairly substantial

but can be presumed to be beneficial, as all items were heard correctly. The normality

of the distribution nonetheless indicates a control structure that accommodates the

coarticulatory environment at the level of planning.
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INTRODUCTION

Variability is a well-known feature of speech, as it is with other
biological systems. Although excessive variability can signify lack
of motor control, lack of variability can itself be pathological
(e.g., Dinstein et al., 2015). Variability in input has been shown
to be helpful in learning (e.g., Bradlow et al., 1997; Preston et al.,
2018), and variability in production can give a range of options
for adapting to novel situations (e.g., Ossmy et al., 2018).

A typical assumption is that variability is normally distributed;
indeed, it is typical to the point that most studies do not explicitly
state that assumption. The successful analysis of results in those
studies suggests that the assumption is justified to a great extent.
Although many statistical tests provide replicable results even
when their requirements are violated (Lix et al., 1996), there
are indications that other results can be greatly affected (Cain
et al., 2017). Concerns over the effects of skew and kurtosis have
motivated the move to linear mixed effects models (Baayen et al.,
2008; Pouplier et al., 2017), but the meaning of the distributions
themselves is not addressed by such analyses.

Non-normal distributions of data can indicate that more than
one process is affecting the distribution [A normal distribution
can arise from multiple sources if the samples are independent
and identically distributed (central limit theorem)]. If the
distribution is bimodal, then the single measurement under
consideration may be treating two effects as if they were one. If
there is skew in the distribution, there may be influences at work
that need to be addressed. For statistical purposes, skew may
invalidate some tests, such as ANOVA (e.g., Harwell et al., 1992).
The more interesting effect is that it may indicate an influence on
the behavior under study. The most common of these, of course,
is a boundary effect, when the mean of a distribution is close to a
physical limit, that is, when the standard deviation simply cannot
extend as far as it would without the constraint. Both of these
effects can be informative rather than a hindrance to analysis
if they are examined on their own. That is one purpose of the
present experiment.

In this study, we examined the pattern of articulatory
variability in vowel targets for English. Although direct
articulatory measurements are more readily obtained now than
in previous years, they are still demanding in data collection
and analysis, making them challenging for large-scale studies
[though see discussion below of a physiological study in Tilsen
(2017)]. Here, we needed many repetitions in order to examine
the distributional characteristics of the productions, and so we,
like many others, relied on the acoustic output to index the
articulatory activity. Not only is the acoustic output reliably
shaped by the articulation (Fant, 1960; Iskarous, 2010), there is
also evidence that variability in the acoustic domain is highly
related to the variability in the articulatory domain (Whalen et al.,
2018). The use of acoustics therefore is a reasonable first step in
analyzing production variability.

The focus here is on random variability, not structured
variability, so we needed to focus on single targets. There is
a great deal of structured variability due to vocal tract length,
coarticulation, emotion, etc. (e.g., Best, 2015), and such variation
is of great importance for understanding the entirety of the

phonetic system. If it were possible to code all of those structured
effects on formant values, we might be able to assess distributions
from large speech corpora; the residual after removing the
structured effects would be the unstructured variability. However,
no corpora are annotated to that extent, and it may be that none
ever will be. The number of systematic sources of variability is
sizable and generally expanding as more studies are completed.
Relying on our accurate account of those factors is not possible
at present, given, for example, the relatively inaccurate methods
for vocal tract normalization (e.g., Flynn, 2011). Thus, we
relied on multiple repetitions of non-contextualized words by a
single speaker.

The level of variability due to motor noise and other intrinsic
factors must be examined with productions that lack, to the
extent possible, structured variability. “Intrinsic” factors are here
conceptualized as distinct from structured ones, and they would
include such variables as arousal state, location in the breath
cycle, and changes in the motor program (either “intentional”
or not). The boundary between intrinsic and systematic is
not firm, however, and they may not really affect variability
differently. We nonetheless wanted to avoid as many factors
unrelated to the motor program as we could. To that end, we
elicited multiple repetitions of target words so that, ideally, only
variability in motor planning and execution remained. Fatigue
of motor systems in sustained repetition is well-attested even if
the underlying cause (central nervous system, the neuromuscular
junction, or metabolic changes in the muscle fiber) is difficult
to ascertain (e.g., Bigland-Ritchie, 1981). Thus, the paradigm of
having a speaker produce many repetitions of a word [such as
the 1,000 sequential repetitions of the word “bucket” in Kello
et al. (2008)] can be expected to induce variability based on sheer
physical and neural fatigue that are not relevant to understanding
what speakers do when they are producing their ideal version of
a word. We therefore collected our target words in lists which
contained an equal number of filler items, allowing the neurons
and muscles to reset between productions.

Direct instructions to eliminate variability do not appear
to be successful and may even be counterproductive. In a
study of multiple repetitions of target items, Tilsen (2017)
provided feedback about consistency in an attempt to eliminate
variability. It failed: Speakers continued to have variability, and
the variability was structured across independent motor systems.
For our purposes, the results indicated that providing feedback
about individual productions was not effective in eliminating
variability and therefore increased the cognitive load on the
speaker without necessarily modifying the speaker’s behavior.We
therefore strove for consistency simply by asking the speaker to
be consistent.

Formant measurements are known to be influenced by
fundamental frequency (F0), but large datasets require automatic
measurements that currently include such influences. Vowels
are well-described by the formants (Fant, 1960), but it is really
the resonances that are the true object of interest (Titze et al.,
2015). Acoustic formant analysis tends to follow the most intense
harmonic near a resonance (F0-effect) (Klatt, 1986; Shadle et al.,
2016), but listeners respond to the true resonances, not the
measured formants (Klatt, 1986). In the present study, we found
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that F0 effects were minimal due to the great consistency of F0
by our speaker, so that automatic measurements of formants
were usable.

Many tokens are required to analyze the distribution of
variability, but studies of speech seldom obtain the required
amount. If 20 tokens are collected, we can obtain a fairly
defensible estimate of the central tendency (mean) of the
distribution, but a sample of only 20 tokens will almost always
appear to be normally distributed, even if the true distribution is
not normal. Mardia (1970) found that there was more than twice
as much evidence for either atypical skewness or kurtosis when
the sample size exceeded 106 (46 vs. 94%), indicating that large
samples are needed for these measures. In a simulation of models
with many parameters, Lerche et al. (2017) found that 200 trials
provided good estimations for three- and four-parameter models
(p. 522). These are not exact matches to the current experiment,
but they give an indication of how many trials can be expected
to give solid results. Thus, a sample size of 200 should provide
good evidence of distributional properties; we oversampled by
obtaining 300 repetitions.

Two environments were studied, allowing us to study intrinsic
variability in two extrinsic changes in coarticulation. The first
was an /(h)Vd/ environment, which has been shown to have
small if any effects on vowel midpoint formant measures in
comparison to isolated vowels (Stevens and House, 1963; Ohde
and Sharf, 1975). The second was an environment of consonants
that differed maximally from the vowel’s position, that is [g_k]
for [ij] (“geek”) and [d_t] for [ow] (“dote”).

Our first analysis contrasts two hypotheses about the effect
of coarticulation on the distribution of formant values. The
first hypothesis, based on the “window” model of coarticulation
(Keating, 1990) is that a neutral environment would have
small skewness values while a coarticulated one would have
larger skewness. The alternative model, labeled more generically
as the non-window model, predicts non-skewed distributions
for both environments. The rationale for this can be seen in
Figure 1. The window model hypothesizes that the planning
stage contains no central target for a segment, only a range
(the window) of variability. The implementation is then the
result of an interpolation process that finds an optimal path
through connected windows with minimum articulatory effort.
A window is defined as a pair of minimum and maximum
values in a physical dimension that the observed productions
are bounded by Keating (1990, pp. 455–456). Thus, a boundary
effect on the skewness of distribution should occur if the path
from one window to another is most easily accomplished by
moving close to an edge. The predictions of Guenther’s (1995)
“convex region theory” would seem to be the same as the window
model’s, because the region is meant to be sufficient for the
production of a target. His regions are multidimensional and
include somatosensory space, so the acoustic predictions are
not straightforward. Nonetheless, because the theory is meant
to account for such features as vowel reduction (undershoot)
(Lindblom, 1963, 1983), it would seem that it would make the
same prediction as the window model in this case: Vowels must
enter the convex region to be successful, so there should be
few productions outside the convex region. Productions that

enter the region more deeply will also be successful, but less
common. Formant values would therefore be expected to show
a skewed distribution. A further complication is that segments
have somatosensory targets as well as acoustic ones, resulting in
separate error calculations for each (e.g., Terband et al., 2009).
Whether this later interaction would affect the distribution has
not been tested.

Figure 1 shows, schematically for F2 alone, the executed path
of F2 (red solid lines) for /owd/ and /dowt/, necessarily the same
in both the windowmodel and the opposing non-windowmodel.
Hypothetical resultant F2 trajectories are shown from the onset
of the syllable to the end of the first component of the vowel
(omitting the offglide /w/ and the stop coda). The difference
in the models is the control parameters, shown by the black
dotted lines (the range of target). For the window model, this
range defines planning parameters that are the same regardless
of context. For the non-window model, this range represents a
confidence interval of a normal distribution generated by, for
example, a non-linear dynamical system (Saltzman andMunhall,
1989). For /owd/ (Figure 1A), both the window and non-window
models predict that the F2 trajectory will concentrate in the
middle of the target range without skewness. For /dowt/, the
window model predicts that the F2 trajectory in the onset will
accommodate the desired minimum effort by being toward the
lower boundary of the target range, resulting in positive skew.
In the middle of /o/, the skewness will be negative as the path
enters the upper part of the range (Figure 1B). The non-window
model predicts that the F2 distributions for /dowt/ should be
normal throughout the whole trajectory (Figure 1C). Note that
the two predictions have the same central tendency of the output
trajectory but different predicted patterns of skewness. This is
because the target range for a segment in the window model
is always the same in all contexts, while in the non-window
model the target range can be variable in different contexts as the
result of gestural interactions. We chose /o/, despite its known
diphthongal offglide (Pike, 1947), because the mid vowels have
less chance of abutting a physiological limit, as we expect for /i/.

The second hypothesis is that /i/ should exhibit formant
distributions that are somewhat skewed (i.e., positive skew in F1),
given that the constriction for /i/ is limited as it approaches the
hard palate.

Formants for vowels are rarely stable throughout the vocalic
segment, whether the vowel is perceived as diphthongal or not
(Hillenbrand and Nearey, 1999). Our analysis examines both the
midpoint of the vocalic segment, often seen at the target of the
vowel, and the trajectories as well.

EXPERIMENT

Many repetitions of linguistic utterances are needed to address
the issue of the normality of the distributions of vowel formants.
This need dictated that the target words be produced in isolation
so that the recording sessions would be short enough to be
tolerable by the speaker. Filler items were needed to avoid
excessive repetition and its concomitant shift in neural and
muscular response.
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FIGURE 1 | Predictions of skewness in the F2 distributions. Red solid lines are the predicted central tendency of F2 trajectories. Black dotted lines are the

hypothesized target ranges. (A) Prediction by both the window model and non-window hypothesis for /owd/. (B) Prediction by the window model for /dowt/.

(C) Prediction by non-window hypothesis for /dowt/ from the onset to the end of /o/. The offglide /w/ and the stop coda parts are omitted.

Method
Speaker
The speaker was a native speaker of American English. He is a
trained phonetician as well as an instructor for the singing voice.
He provided written informed consent as approved by the CUNY
University Integrated IRB (City University of New York).

Materials
The target words were “heed,” “geek,” “owed”/“ode,” and “dote.”
The homophones “owed” and “ode” were used as a condition
for the experiment that was addressed by the filler items (not
discussed here). Results for those items will be presented both
separately and combined. Filler words were 25 homophones such
as “air”/“ere” and “plain”/“plane.”

Procedure
Recordings were made in a sound-attenuated booth at the
Graduate Center of the City University of New York (CUNY).
A free-field microphone (PCB Piezotronics 482C16) with built-
in pre-amp (PCB Piezotronics 378B02) was used. An AD
Instruments Power Lab (8/35-1008) data acquisition device with
a Dell Optiplex 9010 computer processed signals, which were
sampled at a rate of 44.1 kHz.

Recordings were made on 3 separate days, separated by 4
months in the first case and 18 months in the second. Each
target word (or two words, in the case of “ode”/“owed”) occurred
100 times in the randomized list for each day. Each group of 8
items contained one example of each target word (with “ode” and
“owed” randomly assigned) along with 4 filler items. The 50 filler
items were randomized twice, once for the first half of the session
and another time for the second half.

Words were presented in standard orthography, one at a
time, on a computer screen controlled by the Presentation
program (https://www.neurobs.com/).

Measurements
The recorded audio files were downsampled to 16 kHz and
forced-aligned via FAVE-align tool (Rosenfelder et al., 2014),

then manually corrected when necessary. Formant frequencies
were measured by the Burg method of linear predictive coding
(LPC) (window size = 45ms; step size = 2ms, number of poles
= 14, pre-emphasis from 50Hz; Nyquist frequency = 5,000Hz)
with Viterbi tracking using Praat (Boersma and Weenink, 2019).
The tracked formant frequencies were time-normalized into 11
points, representing measurements from 0 to 100% in steps
of 10%.

Statistics
We carried out univariate normality tests on static formant
values, separately for each word produced in each day. We ran
the Shapiro et al. (1968) tests of skewness and kurtosis using the
“normtest” package in R, taking F1 and F2 as separate dependent
variables. To control for the inflation of Type I error due to
multiple hypothesis testing, p-values of normality tests were
adjusted by Benjamini and Hochberg’s (1995) approach of “False
Discovery Rate” (FDR). To predict the dynamic formant patterns
from the data, we fit a Smoothing Spline ANOVA (SSANOVA)
(Gu, 2002) model by adding “Context” and “Time” factors and
their interaction, with a random effect of “Day,” separately for
each vowel and each formant.

RESULTS

Vowel Midpoint
In order to make the initial analysis tractable, a single time
point was used: 50% of the duration of the vocalic segment.
Table 1 summarizes the formant values along with their standard
deviations (SDs). Results are shown for the 3 recording days
separately as well as for the four forms (/hid/, /gik/, /owd/, and
/dowt/) across days. Values for “ode” and “owed” are combined in
the form /owd/.

Distributions and Normality Tests
Normality of the formant distributions was tested statistically,
but it can also be visually represented by the kernel density
estimation (KDE). Figure 2 presents the distributions of F1 (left
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TABLE 1 | Means and SDs of F1 and F2 measured at the vowel midpoint.

F1 (Hz) F2 (Hz)

Form Day Mean SD Mean SD

/hid/ Day1 309 18 2,238 52

Day2 315 15 2,279 56

Day3 296 15 2,270 43

All 307 18 2,262 53

/gik/ Day1 311 19 2,251 55

Day2 309 16 2,319 53

Day3 295 11 2,312 52

All 305 17 2,294 62

/owd/ Day1 430 19 1,018 45

Day2 445 19 1,020 29

Day3 429 17 1,000 27

All 435 20 1,012 36

/dowt/ Day1 470 16 1,159 52

Day2 499 18 1,131 37

Day3 472 15 1,108 30

All 480 21 1,133 45

column) and F2 (right column) for the four forms (in each row)
separately for each day (Day 1: blue solid lines; Day 2: red dotted
lines; Day 3: green dashed lines). As can be seen in Figure 2, the
distributions were quite regular for each day (i.e., 100 repetitions
of each target form), but each day was somewhat different. From
Figure 2, we can observe skewness on F2 distribution for /gik/
and /owd/ produced in Day 1 and for /hid/ in Day 2, as well as
on F1 distribution for /gik/ in Day 3. Table 2 summarizes the
statistics of the moment coefficient of skewness and the excess
kurtosis based on the distributions of F1 and F2 values measured
at the vowel midpoint (Figure 2). Excess kurtosis is calculated
as kurtosis (the fourth moment) minus three. The expected
values for both skewness and excess kurtosis are zero for a
normal distribution. Positive values of skewness indicate that the
distribution was higher than the mean more often than expected
(longer tail in higher frequency). An absolute value of skewness
>1 is considered as highly skewed, and an absolute value in
between 0.5 and 1 indicates moderately skewed. Positive excess
kurtosis indicates the distribution is “skinnier” than a normal
distribution with “fatter” tail presumably due to outliers, while
negative excess kurtosis indicates the opposite. The indications
of significance symbols were based on the p-values adjusted by
Benjamini and Hochberg’s (1995) FDR method for each block.
For example, in the top-left block (F1 for /hid/) of Table 1, the
six p-values (not shown) for the tests of both skewness and
kurtosis in the 3 days were entered into FDR-adjustment; the
(family-wise) null hypothesis is that none of the six statistics
came from a normal distribution; any one FDR-adjusted p-value
in a block that meets the significance level suggests rejection
of such null hypothesis. The statistics in Table 2 showed that
the distribution of F1 for /gik/ produced in Day 1 and those
of F2 for /gik/ and /owd/ produced in Day 1 are significantly
skewed, which conformed to the shapes of distributions observed
in Figure 2.

The dynamic pattern of skewness makes the evidence for an
effect on the distributions even less likely. In Figure 3, skewness
is calculated for each of the 11 time points of the time-normalized
data. Solid circles indicate significant skewness while empty
circles non-significant. Significance was based on FDR-adjusted
p-values across 11 points of skewness separately for each day
and for each formant, with a family-wise null hypothesis as none
of the measured values of skewness in the 11 points conforms
to normal distribution. Because the consonant(s) at the syllable
boundary should have windows of their own, the skew could
be expected to change over the course of the syllable, perhaps
with a midpoint differing from both ends. Such a pattern is seen
for F2 of /owd/ on day 1. However, two aspects of that pattern
are inconsistent with our predictions: The onset of /owd/ should
not be skewed, given that the target can be achieved from the
beginning of the utterance. Even if there were an explanation for
the presence of the skew, there is no obvious reason that the skew
would not be present throughout the vocalic segment (up until
the transitions for the final stop). Days 2 and 3, as can be seen,
had radically different patterns; there is no clear interpretation
for the differences. In short, whatever was skewing some of the
formant distributions on some days was not systematic enough to
be explained by either the window model or by the non-window
model (see Figure 1).

Figure 4 further visualizes the distributions of formant
frequencies for all time points. Each gray-scaled contour
represents the KDE-estimated probability density function (as
those distributions displayed in Figure 2) at each time point;
darker color indicates higher probability. Red crosses track the
means of the distributions along the time course, and blue circles
themode (estimated bymeasuring the peak of probability density
function) of distributions. The difference between mean and
mode is known as the nominator of Pearson’s mode skewness
[(mean–mode)/SD]: If the mean is higher than the mode, it
indicates positive skewness, which is a conservative visualization
of the direction of skewness. Note that mode skewness may
not be perfectly consistent with moment coefficient of skewness
(as in Table 2). Figure 4 is largely consistent with Figure 3

and provides more information of probability distributions of
formant values at each time point.

Dynamic Formant Patterns
The changes in formant location for the words across all 3
days were examined. The time-normalized values were used. A
smoothing spline ANOVA (SSANOVA) was computed separately
for F1 and F2 for /hid/ vs. /gik/ (Figure 5) and for /owd/ vs.
/dowt/ (Figure 6). In such displays, the 95% Bayesian confidence
intervals (shown in color around the mean formant values) are
assumed to be statistically different when they do not overlap.
The amount of divergence that is needed before the result is
“significant” is debatable, but the existence of a visually distinct
region suggests that the trajectories do differ in some ways.
As can be seen in Figures 5, 6, the first two formants were
constantly changing, leaving no portion that was truly “steady-
state.” Indeed, inclusion of such minor variability has been
shown to improve identification of synthetic versions of the
target vowels (Hillenbrand and Nearey, 1999). Other predictable
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FIGURE 2 | F1 and F2 distributions for the four words (measured at the vowel midpoint) separately for each day.

TABLE 2 | Moment coefficients of skewness and excess kurtosis (the fourth

moment minus 3) for F1 and F2 measured at the vowel midpoint.

F1 F2

Form Day Skewness Excess kurtosis Skewness Excess kurtosis

/hid/ Day1 0.35 0.45 0.25 −0.21

Day2 0.26 −0.37 0.40 −0.51

Day3 0.29 1.08 0.10 −0.87

/gik/ Day1 0.63 * 1.54 * –0.59 * −0.16

Day2 −0.14 −0.47 0.01 −0.29

Day3 0.56
†

0.14 −0.15 0.02

/owd/ Day1 −0.21 −0.18 –1.21 *** 1.76 **

Day2 0.25 0.19 −0.40 1.05 *

Day3 −0.57
†

0.22 −0.29 −0.35

/dowt/ Day1 −0.30 0.13 0.49 0.69

Day2 0.26 1.61 * 0.37 −0.61

Day3 0.53 0.86 −0.01 −0.08

Positive skewness indicates longer tail in higher frequency. Positive excess kurtosis

indicates fatter tail and “skinnier” distribution, and negative value the opposite. P-values

were adjusted by FDR for each block (***p < 0.001; **p < 0.01; *p < 0.05;
†
p < 0.1).

Bold face indicates the FDR-adjusted p-value is less than 0.05.

aspects appeared. A separate SSANOVA (not presented here)
comparing the homonyms “ode” and “owed” showed that they
were, indeed, virtually identical. The formants for the shared
alveolar stop at the end of the /ow/ words converged (Figure 6).

The formants for the distinct places of articulation of the final
stops for the /i/ words diverged (Figure 5). F2 was distinguished
at the final portion of the trajectory in Figure 5 and the first
half of the trajectory in Figure 6. What was perhaps somewhat
surprising was the overall dissimilarity of F1 for the two contexts
for the /ow/ words but not for the /i/ words. Still, the differences
were small (45Hz for /ow/ words, and 2Hz for /i/ words at
the midpoint).

Although “geek” was intended to have velar productions on
either side of the vowel, the low F2 values at onset indicate that
this speaker used a very fronted place of articulation for the initial
stop. Thus, the F2 pattern was quite linear, while the F2 of “dote”
(Figure 6) behaved as intended. The vowel of “ode”/“owed” was,
as expected, rather diphthongal, with F1 changing by about 65Hz
from time points 4 to 8 (the likely limits of coarticulatory effects
of the stop). The vowel of “heed,” by contrast, changed by about
10Hz over those same time points.

DISCUSSION

Multiple repetitions of English words in a fairly isolated state
were found to have formants that were only slightly different
from normality. Having a sizable number of tokens is necessary
for such an analysis, but the biological constraints on speakers
make collection challenging. Here, we reduced the constraints as
much as possible by interleaving the tokens with filler items, but
that limited us to collecting 100 repetitions in any one session.
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FIGURE 3 | Skew values for each time point, separately by day (1 = blue, 2 = red, 3 = green). Solid circles indicate significant skewness (significance level set at 0.05).

FIGURE 4 | Probability distributions of F1 and F2 measured at all the time points for the four words separately for each day. Each gray-scaled contour represents the

probability density function estimated at one time point; darker color indicates higher probability. Red crosses track the means of distributions and blue circles track

the modes (peak). Difference between mean and mode indicates the direction of skewness. (A) /hid/. (B) /gik/. (C) /owd/. (D) /dowt/.

As can be seen in Figures 2, 3, the formants obtained were
quite consistent within those sessions; the small differences across
sessions were smaller than the likely measurement error of the
LPC analysis. Although changes in articulation across different
days or even time of day (Heald and Nusbaum, 2015) have been
reported before, the differences here are negligible.

The windowmodel hypothesis that coarticulation would skew
the distributions was not supported, while the non-window
model was consistent with the lack of skewness. The trajectories

were normally distributed not only near the midpoint of the
vocalic segment, but throughout the production (Figures 3, 4).
Such a result is inconsistent with the “window” model in which
the motor plan contains only target regions and not trajectories;
in execution, segments reach the edge of one target region before
moving on to the next (Keating, 1990). It is consistent with non-
window model in which a motor plan takes the entire context
into account from the beginning; overlapping activations for the
gestures or segments then unfold in execution in such a way that
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FIGURE 5 | Plots SSANOVA for /hid/ (blue) vs. /gik/ (pink).

FIGURE 6 | Plots of SSANOVA for /owd/ (blue) vs. /dowt/ (pink).

variability is structured by the interactions of the overlapping
control parameters of gestures or segments.

The second hypothesis, that the /i/ formants would have
skewed distributions because of the boundary effect of the
hard palate, was not supported. Not only were there very
few individual time points with significant skew, there was no
discernable pattern to the skew either. For this speaker, at least,
the constraints on articulation of the high front vowel were
well-accommodated, so that the distributions of formants were
unaffected by the physiological limits. Standard deviations were
small but non-negligible (at midpoint, for /i/, 5.8% for F1, 2.3%
for F2; for / ow/, 4.6% for F1, 3.8% for F2). It would seem that
there is enough variability for a skewed distribution to be evident,
if it were present. Instead, the formant distributions appear to be
normal through the duration of the syllable.

Future studies are desirable to explore these issues further.
Only one speaker was analyzed here, and he was chosen in
part for his many years of practice and instruction in broadcast
speaking. The resulting consistency was useful for having
manageable amounts of variability, but less skilled speakers may
show different patterns. Indeed, the kinds of variability that result
may differ by such factors as speech sound disorder or speaking in
a second language. Other acoustic or articulatory measures could
be made, although the strongest predictions in the field have been
about formant values. Measuring variability across the vowel

system rather than for just two vowels would be useful (Whalen
et al., 2018), although the number of tokens required becomes
rather large. Finding word tokens that maintain the voicing of
the final consonant would also be desirable. Other statistical
approaches, such as Generalized Additive Mixed Models, may
provide further insight.

Overall, the results for this speaker support the use of statistics
that rely on normal distributions for analyzing formant values.
As such, the results also support the use of Gaussian priors
in Bayesian linear mixed models (Vasishth et al., 2018). Using
the results of a single speaker has intrinsic drawbacks, so the
current results can only be preliminary. Further, the formant
values themselves are subject to manymeasurement errors (Klatt,
1986; Shadle et al., 2016), but, within those limits, estimation
of the central tendencies for formants are relatively good, at
least for F0s <200Hz (Chen et al., 2019). The present data did
not support models that assume target regions; instead, entire
trajectories were normally distributed throughout the vocalic
segment. Variable productions, therefore, appear to be variable
in their global shape, not just in their relationship to local targets.
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