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The focus of this current research is 2-fold: (1) to understand how team interaction

in human-autonomy teams (HAT)s evolve in the Remotely Piloted Aircraft Systems

(RPAS) task context, and (2) to understand how HATs respond to three types of failures

(automation, autonomy, and cyber-attack) over time. We summarize the findings from

three of our recent experiments regarding the team interaction within HAT over time in

the dynamic context of RPAS. For the first and the second experiments, we summarize

general findings related to team member interaction of a three-member team over

time, by comparison of HATs with all-human teams. In the third experiment, which

extends beyond the first two experiments, we investigate HAT evolution when HATs are

faced with three types of failures during the task. For all three of these experiments,

measures focus on team interactions and temporal dynamics consistent with the theory

of interactive team cognition. We applied Joint Recurrence Quantification Analysis, to

communication flow in the three experiments. One of the most interesting and significant

findings from our experiments regarding team evolution is the idea of entrainment,

that one team member (the pilot in our study, either agent or human) can change the

communication behaviors of the other teammates over time, including coordination,

and affect team performance. In the first and second studies, behavioral passiveness

of the synthetic teams resulted in very stable and rigid coordination in comparison to the

all-human teams that were less stable. Experimenter teams demonstrated metastable

coordination (not rigid nor unstable) and performed better than rigid and unstable

teams during the dynamic task. In the third experiment, metastable behavior helped

teams overcome all three types of failures. These summarized findings address three

potential future needs for ensuring effective HAT: (1) training of autonomous agents on

the principles of teamwork, specifically understanding tasks and roles of teammates,

(2) human-centered machine learning design of the synthetic agent so the agents can

better understand human behavior and ultimately human needs, and (3) training of

human members to communicate and coordinate with agents due to current limitations

of Natural Language Processing of the agents.

Keywords: human-autonomy teaming, synthetic agent, team cognition, team dynamics, remotely piloted aircraft

systems, unmanned air vehicle, artificial intelligence, recurrence quantification analysis
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INTRODUCTION

In general, teamwork can be defined as the interaction of two or
more heterogeneous and interdependent teammembers working
on a common goal or task (Salas et al., 1992). When team
members interact dynamically with each other and with their
technological assets to complete a common goal, they act as a
dynamical system. Therefore, an essential part of a successful
team is the ability of its members to effectively coordinate their
behaviors over time. In the past, teamwork has been investigated
for all-human teams by considering team interactions (i.e.,
communication and coordination) to understand team cognition
(Cooke et al., 2013) and team situation awareness (Gorman et al.,
2005, 2006). Presently, advancements in machine learning in
the development of autonomous agents are allowing agents to
interact more effectively with humans (Dautenhahn, 2007), to
make intelligent decisions, and to adapt to their task context over
time (Cox, 2013). Therefore, autonomous agents are increasingly
considered team members, rather than tools or assets (Fiore and
Wiltshire, 2016; McNeese et al., 2018) and this has generated
research in team science on Human-Autonomy Teams (HAT)s.

In this paper, we summarize findings from three of our three
recent experiments regarding the team interaction within the
HAT over time in the dynamic context of a Remotely Piloted
Aircraft System (RPAS). In the first and the second experiments,
we summarize general findings related to the interaction of a
three-member team over time, by comparison of HATs with all-
human teams. In the third experiment, which extends beyond the
first two experiments, we investigate HAT evolution when HATs
are faced with a series of unexpected events (i.e., roadblocks)
during the task: automation and autonomy failures andmalicious
cyber-attacks. For all three of these experiments, measures focus
on team interactions (i.e., communication and coordination) and
temporal dynamics consistent with the theory of interactive team
cognition (Cooke et al., 2013). Therefore, the goal of the current
paper is to understand how team interaction in HATs develops
over time, across routine and novel conditions, and how this team
interaction relates to team effectiveness.

We begin by describing HATs as sociotechnical systems and
identify the challenges in capturing this dynamical complexity.
Next, we introduce the RPAS synthetic task environment, and
three RPAS studies conducted in this environment. Then, we
summarize the findings from HATs and compare this evolution
to that of all-human teams.

Teaming With Autonomous Agents
A HAT consists of a minimum of one person and
one autonomous agent “coordinating and collaborating
interdependently over time in order to successfully complete
a task” (McNeese et al., 2018). In this case, an autonomous
team member is considered to be capable of working alongside
human teammember(s) by interacting with other teammembers
(Schooley et al., 1993; Krogmann, 1999; Endsley, 2015), making
its own decision about its actions during the task, and carrying
out taskwork and teamwork (McNeese et al., 2018). In team
literature, it is clear that autonomous agents have grown more
common in different contexts, e.g., software (Ball et al., 2010)

and robotics (Cox, 2013; Goodrich and Yi, 2013; Chen and
Barnes, 2014; Bartlett and Cooke, 2015; Zhang et al., 2015; Demir
et al., 2018c). However, considering an autonomous agent as a
teammate is challenging (Klein et al., 2004) and requires effective
teamwork functions (McNeese et al., 2018): understanding its
own task, being aware of others’ tasks (Salas et al., 2005), and
effective interaction (namely communication and coordination)
with other teammates (Gorman et al., 2010; Cooke et al., 2013).
Especially in dynamic task environments, team interaction plays
an important role in teamwork and it requires some amount
of pushing and pulling of information in a timely manner.
However, the central issue to be addressed is more complex than
just pushing and pulling information; time is also a factor. This
behavioral complexity in dynamic task environments can be
better understood from a dynamical systems perspective (Haken,
2003; Thelen and Smith, 2007).

The Temporal Patterning of Team
Interaction
Robotics science (Bristol, 2008) posits that complex behavior
of an autonomous agent does not necessarily require complex
internal mechanisms in order to interact in the environment over
time (Barrett, 2015). That is, the behavioral flexibility of a simple
autonomous agent is contingent on the mechanics and wiring
of its sensors rather than its brain or other components (for an
example see Braitenberg and Arbib, 1984). However, in order
to produce complex behaviors, there are other elements than
hardware, specifically interaction with the environment which
it is subject to. The behavioral complexity of an autonomous
agent is actually more than parts appear to be individually. This
complexity is a real challenge for robotics and cognitive scientists
seeking to understand autonomous agents and their dynamic
interactions with both humans and the agent’s environment
(Klein et al., 2004; Fiore and Wiltshire, 2016). Humans have a
similar dynamical complexity, as summarized by Simon (1969),
who stated, “viewed as behaving systems, [humans] are quite
simple. The apparent complexity of our behavior over time is
largely a reflection of the complexity of the environment in which
we find ourselves” (p. 53).

In order to better understand the complexity of autonomous
agents and their interactions with humans in their task
environment, we can consider the interactions as happening
within a dynamical system where an agent synchronizes with
human team members in a dynamic task environment. In this
case, a dynamical system is a system which demonstrates a
continuous state-dependent change (i.e., hysteresis: future state
causally depends on the current state of the system). Thus,
interactions are considered a state of the systemwhole rather than
the individual components. A dynamical system can behave in
many and different ways over time which move around within
a multidimensional “state space.” Dynamical systems may favor
a particular region of the state space—i.e., move into a reliable
pattern of behavior—and, in such cases is considered to have
transitioned to an “attractor state.” When the system moves
beyond this state, it generally reverts to it in the future. The
system then becomes more resilient (i.e., the attractor states get
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stronger) to adapt to dynamic unexpected changes in the task
environment as it develops experience. However, if given a strong
enough perturbation from the environment’s external forces, the
system may move into new patterns of behavior (Kelso, 1997;
Demir et al., 2018a).

With that in mind, HAT is a sociotechnical system in
which behaviors emerge via interactions between interdependent
autonomous and human team members over time. These
emerging behaviors are an example of entrainment, the effect
of time on team behavioral processes, and in turn team
performance (McGrath, 1990). Replacing one human team role
with an autonomous agent can change the behavior of other
teammates and affect team performance over time. In the
sociotechnical system, human and autonomous team members
must synchronize and rhythmize their roles with the other team
members to achieve a team task over time. In order to do so,
it is necessary for the team to develop an emergent complexity
which is resilient, adaptable, and includes fault-tolerant systems-
level behavior in response to the dynamic task environment
(Amazeen, 2018; Demir et al., 2018a).

Adaptive complex behavior of a team (as sociotechnical
system) is considered within the realm of dynamical systems
(either linear or non-linear) and dynamical changes of the
sociotechnical systems behavior can be measured via Non-linear
Dynamical Systems (NDS) methods. One commonly used NDS
method in team research is Recurrence Plots (RPs) and its
extension Recurrence Quantification Analysis (RQA; Eckmann
et al., 1987). The bivariate extension of RQA is Cross RQA and
multivariate extension is Joint RQA (JRQA; Marwan et al., 2002;
Coco and Dale, 2014; Webber and Marwan, 2014). In general,
RPs visualize the behavior trajectories of dynamical systems in
phase space and RQA evaluates how many recurrences there are
which use a phase space trajectory within a dynamical system.
The experimental design of the RPAS team is conceptually in line
with JRQA and it is thus the method used for HAT research in
this exploratory paper.

RPAS SYNTHETIC TASK ENVIRONMENT

The synthetic teammate project (Ball et al., 2010) is a
longtitudinal project which aims to replace a ground station
team member with a fully-fledged autonomous agent. From a
methodological perspective, all three of the experiments were
conducted in the context of CERTT RPAS-STE (Cognitive
Engineering Research on Team Tasks RPAS—Synthetic Task
Environment; Cooke and Shope, 2004, 2005). CERTT RPAS-STE
has various features and provides new hardware infrastructure to
support this study: (1) text chat capability for communications
between the human and synthetic participants, and (2) new
hardware consoles for three team members and two consoles for
two experimenters who oversee the simulation, inject roadblocks,
make observations, and code the observations.

Task and Roles
The RPAS-STE task requires three different, interdependent
teammates working together to take good photos of the targets
(see Figure 1): (1) the navigator provides the flight plan to

the synthetic pilot (called Information) and navigates it to
each waypoint, (2) the pilot controls the Remotely Piloted
Aircraft (RPA) and adjusts altitude and airspeed based on
the photographer’s requests (called Negotiation), and (3) the
photographer photographs the target waypoints, adjusts the
camera settings, and also shares information relating to photo
quality—i.e., whether or not the photo was “good”—to the
other two team members (called Feedback). Taking good
photographs of designated target waypoints is the main goal for
all the teams, and it requires timely and effective information
sharing among teammates. The photographer determines if a
photo is good based on the photograph folder which shows
examples of good photographs (in regard to camera settings,
i.e., camera type, shutter speed, focus, aperture, and zoom). This
timely effective coordination sequence for this task is called
Information-Negotiation-Feedback (INF; Gorman et al., 2010). All
interactions occur within a text-based communications system
(Cooke et al., 2007).

In the simulated RPAS task environment, the target waypoints
were within areas referred to as Restricted Operating Zones (ROZ
boxes) which have entry and exit waypoints that teams must pass
through to access the target waypoints. All studies had missions
that could either be low workload (11–13 target waypoints
within five ROZ) or high workload (20 target waypoints within
seven ROZ). The number and length of missions varied as
follows: In the first and the second experiments, all teams went
through five 40min missions with 15min breaks in between
missions. Missions 1–4 were low workload, but Mission 5 was
high workload in order to determine the teams’ performance
strength. During the last study, teams went through ten 40min
missions which were divided into two sessions with 1 or 2 weeks
in between. However, while in the first and second studies, the
first four missions had identical workloads, in the third study, the
first nine missions had identical workloads and the 10th mission
was high workload.

Measures
In the RPAS STE, we collected performance and processmeasures
and then analyzed themwith statistical and non-linear dynamical
methods. In this way, we could first understand the nature of
all-human teams to prepare for the development of HATs. In
general, we collected the following measures for the following
three RPAS experiments (see Table 1; Cooke et al., 2007). Each
of these measures was designed during a series of experiments
which were part of the synthetic teammate project.

In RPAS studies, we considered team communication flow to
look at HAT patterns of interaction and their variation over
time by using Joint Recurrence Plots (JRPs). JRPs are instances
when two or more individual dynamical components show a
simultaneous recurrence (pointwise product of reperesentative
univariate RPs) and JRQA provides the quantity (and length) of
recurrences in a dynamical system using phase space trajectory
(Marwan et al., 2007). In this perspective, JRQA can be utilized
for the purpose of examining variations between multiple teams
in regard to how and why they, specifically how frequently team
members synchronize their activities while communicating by
text message. That is, JRQA basically evaluates synchronization
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FIGURE 1 | Simulated RPAS task environment for each role, and task coordination (information-negotiation-feedback). The dashed line separates ground control

station and simulated operational environment (from Demir et al., 2017; reprinted with permission).

TABLE 1 | The RPAS measures.

Measures Description

Team performance A weighted combined score of team-level mission parameters, including time spent in warning and alarm states, number of

missed targets, and rate of good target photographs per minute (which was weighted most heavily among the parameters).

Teams began each mission with a score of 1,000, and points were deducted based on the final values of the mission sub-scores

Target Processing Efficiency (TPE) TPE takes into account time spent inside a target waypoint to get a good photo. Each team started with a maximum of 1,000

points then deducted the number of seconds spent in the target radius and 200 penalty points (for bad or missed photos)

Team process rating The rating comprises: (1) coordination—interacting with the right team member about the appropriate information in the right

order; (2) timeliness—represents the ability of the team to sort through relevant data and interact expeditiously enough to

effectively deal with the target (to do this, interactions are evaluated in accordance to the relative position of the RPA to the target

at that moment); and (3) communication quality—related to the clarity and uniqueness of the interactions since those two

qualities are seen to minimize need for repetition

Team Situation Awareness (TSA) TSA is the degree to which the team members took action and overcame roadblocks (i.e., perturbation). If the team overcame

the roadblock, it was coded as “1,” otherwise it was “0.” This measure indicates how a team can adapt to dynamic unexpected

changes in the task environment as it develops experience

Team communication behaviors The behaviors are classified into two groups: pushing or pulling of information among the team members

Team communication flow It consists of each team member’s message sent time (by seconds)

Workload NASA Task Load Index (TLX; Hart and Staveland, 1988)

Post experiment question It includes a series of questions about the backgrounds of team members (e.g., age, sex, automated system experience) and

their impressions of the experiment

Cooke et al. (2007).

and influence by means of looking at system interactions (Demir
et al., 2018b).

In RPAS studies, the time stamp for each message (as seconds)
is used to evaluate the flow of communication between team
members, resulting in multivariate binary data. We chose an

ideal window size based on the following order: (1) Determinism
(DET) was estimated based on windows which increased by 1 s
for each mission, and (2) DET variance was evaluated for each
size of window and a 1min window that was chosen according
to the average period in which DET no longer increased was
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selected. This information was useful in order to visually and
quantitatively represent any repeating structural elements within
communication of the teams.

For all three experiments, we extracted seven measures from
JRQA: recurrence rate, percent determinism (DET), longest
diagonal line, entropy, laminarity, trapping time, and longest
vertical line. The measure which all three RPAS studies were
interested in was DET, represented by formula (1) (Marwan
et al., 2007), which we defined as the “ratio of recurrence points
forming diagonal lines to all recurrence points in the upper
triangle” (Marwan et al., 2007). Time periods during which the
system repeated a sequence of states were represented in the
RP by diagonal lines. DET is able to characterize the level of
organization present in the communications of a system by
examining the dispersion of repeating points on the RP; systems
which were highly deterministic repeated sequences of states
many times (i.e., many diagonal lines on the RP) while systems
that were mildly deterministic would only repeat a sequence of
states rarely (i.e., few diagonal lines). In Formula (1), l is the
length of the diagonal line when its value is lmin and P(l) is the
probability distribution of line lengths (Webber and Marwan,
2014). A 0%Determinism rate indicated that the time series never
repeated, whereas a 100% Determinism rate indicated a perfectly
repeating time series.

DET =

∑N
l=lmin

lP(l)
∑N

l=1 lP(l)
(1)

THE RPAS EXPERIMENTS

In the first experiment, human team members collaborate with a
“synthetic teammate” [a randomly selected human teammember,
Wizard of Oz Paradigm; WoZ (Riek, 2012)] that communicates
based on natural language. In the second experiment, a synthetic
agent with limited communication behavior, the Adaptive,
Control of Thought-Rationale (ACT-R; Anderson, 2007), worked
with human team members. In the last experiment, similar
to the first experiment, human team members communicated
and coordinated with a “synthetic teammate” (played this time
by a highly trained experimenter who mimicked a synthetic
agent with a limited vocabulary; WoZ) in order to overcome
automation and autonomy failures, and malicious cyber-attack.
Participants in all three experiments were undergraduate and
graduate students recruited from Arizona State University and
were compensated $10/hour. In order to participate, students
were required to have normal or corrected-to-normal vision
and be fluent in English. The following table indicates the
experimental design and situation awareness index for each
of the conditions (see Table 2). This study was carried out
in accordance with the recommendations of The Cognitive
Engineering Research Institute Institutional Review Board under
The Cognitive Engineering Research Institute (CERI, 2007). The
protocol was approved by The Cognitive Engineering Research
Institute Institutional Review Board. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.

TABLE 2 | Experimental design for three RPAS studies.

Experiment Condition x Mission Design

1 2 (condition) × 5(40min mission) Control: pilot was

randomly selected

participant

Synthetic: pilot was

randomly

selected participant

2 3 (condition) × 5(40min mission) Control: pilot was

randomly selected

participant

Synthetic: pilot was

ACT-R based model

Experimenter: pilot was

highly trained

confederate researcher

3 No condition with 10 (40min mission) Automation and

Autonomy Failures, and

Cyber Attack

RPAS I: Human-Autonomy Teaming When
the Synthetic Agent Had Natural Language
Capability
For the first experiment, the main question is whether the
manipulation of team members’ beliefs about their pilot can
be associated with team interactions and, ultimately, team
performance for overcoming the roadblocks (Demir and Cooke,
2014; Demir et al., 2018c). Thus, there are two conditions in
this experiment: synthetic and control, with 10 teams in each
condition (total 20 teams). Sixty randomly selected participants
completed the experiment (Mage = 23, SDage = 6.39). In the
synthetic condition, we simulated a “synthetic agent” using a
WoZ paradigm: one participant was chosen to be the pilot, and in
therefore automatically and unknowingly became the synthetic
agent. The other two team members were randomly assigned
to navigator and photographer roles and were informed that
there was a synthetic agent serving as the pilot. In this case, the
navigator and photographer could not see the pilot when entering
or leaving the room, nor during the breaks. Since the pilot in
the control condition was a randomly assigned participant and
the other two team members knew this (all three roles signed
the consent forms together, and they all saw each other during
that time), communication developed naturally among the team
members (again, the navigator and photographer roles were
randomly assigned).

In this study, we manipulated the beliefs of the navigator
and the photographer in that they were led to believe that
the third team member was not human, but a synthetic agent.
This was done in order to answer the question of whether the
manipulation of that belief could affect team interactions and
ultimately team effectiveness (Demir and Cooke, 2014; Cooke
et al., 2016; Demir et al., 2018c). The key aspects of two articles of
this study use several quantitative methods to understand team
interaction and its relationship with team effectiveness across the
conditions. In this specific experiment, the teams went through
five 40min missions (with a 15min break after each) and we
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FIGURE 2 | Example JRP for two high performing UAV teams’ interactions (length 40min): (A) control (Determinism: 46%) and (B) synthetic teams (Determinism:

77.6%) (from Demir et al., 2018c; reprinted with permission).

collected themeasures described inTable 1. We comprehensively
discussed the key findings in previous papers (Demir and Cooke,
2014; Demir et al., 2018c).

As a dynamical analysis, we applied JRQA to binary
communication flow time series data for 40min missions in
order to visually and quantitatively represent any repeating
structural elements within communication of the teams. In the
following figure, we give two example JRP (one control and
one synthetic team) for two RPAS teams’ interactions; these
consist of three binary sequences (one for each team member)
that are each 40min in length. The three binary sequences
were created based on whether navigator, pilot, or photographer
sent a message in any given minute. If a message was sent
or no message was sent, they was coded as “1” and “0,”
respectively. Based on the JRP and DET, the very short diagonals
indicated that the control teams showed less predictable team
communication (Determinism: 46%) while the longer diagonals
mean that the synthetic teams demonstrated more predictable
communication (Determinism: 77.6%; see Figure 2). Also, we
found that the predictability in synthetic teams had more
negative relationship with their performance on target processing
(TPE), whereas this relationship was less negative in the control
teams (Demir et al., 2018c).

Overall findings from this first experiment (see Table 3)
indicate that the teams which had been informed that their pilot
was actually a synthetic agent not only liked the pilot more, but
also perceived lower workload, and assisted the pilot by giving
it more suggestions (Demir and Cooke, 2014). Based on the
two goals of current paper, our findings indicate that (Demir
et al., 2018c) the control teams processed and coordinated
more effectively at the targets to get good photographs (i.e.,
target processing efficiency) than the synthetic teams and
displayed a higher level of interaction while planning the task.
Team interaction was related to improved team effectiveness,
suggesting that the synthetic teams did not demonstrate enough
of the adaptive complex behaviors that were present in control

teams, even though they could interact via natural language. The
implication here is that merely believing that the pilot was a
not human resulted in more difficult planning for the synthetic
teams, thus making it more difficult to effectively anticipate their
teammates’ needs.

RPAS II: Human-Autonomy Teaming When
Humans Collaborate With ACT-R Based
Synthetic Teammate
In the second experiment, the focal manipulation was of the
pilot position resulting in three conditions: synthetic, control,
and experimenter (10 teams for each condition). As indicated
by the name, the synthetic condition had a synthetic team
member in the role of, which had been developed using ACT-R
cognitive modeling architecture (Anderson, 2007); participants
in this condition had to communicate with the synthetic agent
in a manner void of ambiguous or cryptic elements due to its
limited language capability (Demir et al., 2015). In the control
condition, since the pilot was human, communication among
team members developed naturally. Finally, in the experimenter
condition, the pilot was limited to using a coordination script
specific to the role. Using the script, the experimenter pilot
interacted with the other roles by asking questions at appropriate
times in order to promote adaptive and timely sharing of
information regarding critical waypoints. In all three conditions,
the roles of navigator and photographer were randomly assigned.
Therefore, 70 randomly selected participants completed the
second experiment (Mage = 23.7, SDage = 3.3).

In the synthetic condition, the ACT-R based synthetic pilot
was designed based on interaction with team members and
interaction in the task environment, including adaptation of
various of English constructions, selection of apropos utterances,
discernment of whether or not communication was necessary,
and awareness of the current situation of the RPA, i.e., flying
the RPA between waypoints on the simulated task environment
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TABLE 3 | Key findings from three RPAS experiments.

Experiment Measures Results

RPAS I (WoZ based Synthetic) Target processing efficiency Synthetic teams had poorer target processing efficiency than the control teams

Team communication behaviors Control teams conducted more planning than the synthetic teams. Synthetic teams made

more suggestions than the control teams

Team communication flow Synthetic teams demonstrated more stable coordination dynamics

Workload Synthetic teams had less workload

RPAS II (ACT-R based Synthetic) Team performance Synthetic and control teams demonstrated same performance but were poorer than the

experimenter teams

Target processing efficiency Synthetic teams had poorer target processing efficiency than the control and experimenter

teams. Experimenter teams were more efficient than the control teams

Team situation awareness Synthetic and control teams performed equally to overcome the roadblocks, but poorer

than the experimenter teams

Team communication behaviors Synthetic teams pulled more information than they pushed, and pushing information was

not as effective for their performance as the all-human teams. control and the

experimenter teams did more pushing than pulling, and the pushing information which

was effective with their performance

Team communication flow Synthetic teams demonstrated stable coordination dynamics, while experimenter teams

were moderately stable and the control teams were unstable

RPAS III (WoZ based Synthetic) Team performance Team performance increased across the missions

Target processing efficiency Target processing efficiency increased across the missions

Team process rating Target process rating increased across the missions

Team situation awareness Teams demonstrated better performance on overcoming automation and autonomy

failures than the malicious attacks. Teams overcame an increasing number of automation

failures across the missions, but a decreasing number of autonomy failures. Teams poorly

performed to overcome malicious cyber-attacks

Team communication behaviors Pushing information increased across the missions, while pulling decreased

Team communication flow Teams demonstrated better performance when they become more flexible during the

failures

All results use the α = 0.05 significance level.

RPAS I: (Demir and Cooke, 2014; Demir et al., 2018c).

RPAS II: (Demir et al., 2016, 2017, 2018b; McNeese et al., 2018).

RPAS III: (Cooke et al., 2018; Grimm et al., 2018a,b).

(Ball et al., 2010). However, since the synthetic pilot still had
limited interaction capability, it was crucial that the navigator
and photographer made certain that their messages to the non-
human teammate were void of ambiguous or cryptic elements. If
not, their synthetic teammate was unable to understand and, in
some cases, malfunctioned (Demir et al., 2015).

In the second experiment, we explore and discuss team
interaction and effectiveness by comparing HATs with all-human
teams (i.e., control and experimenter teams). Here, we give
a conceptual summary of findings from previous papers that
compared human-autonomy and all-human teams on dynamics
(Demir et al., 2018a,b) and also their relationship with team
situation awareness and team performance, via interaction
(Demir et al., 2016, 2017; McNeese et al., 2018).

In Figure 3, three example JRPs from this study are depicted
for three teams’ communication for each condition (same
as in the first RPAS study: three 40min binary sequences)
along with their calculated DET: Figure 3A—synthetic (DET
= 52%), Figure 3B—control (DET = 34%), and Figure 3C—
experimenter (DET = 47%). Visible on the y-axis, instances of
any messages sent by any of the three roles (navigator, pilot,
or photographer) in any minute were coded as “1,” and if no

message was sent in any minute, it was coded as “0.” The
synthetic team in this example exhibited rigid communication
(higher determinism), whereas the control team demonstrated
an unstable communication pattern compared to the other two
teams. Taking into account the goals of this paper, in the synthetic
team, higher determinism tended to correspond to instances
when all three teammembers were silent (see Figure 3A between
30 and 35min). For control teams, such varied communication
patterns were not unanticipated since the pilot role was
randomly assigned. On the other hand, coordination behaviors
of control teams, experimenter teams, and synthetic teams were
unstable, metastable, and rigid, respectively, as indexed by the
percent DET from JRQA. Extreme team coordination dynamics
(overly flexible or overly rigid) in the control and synthetic
teams resulted in low team performance. Experimenter teams
performed better in the simulated RPAS task environment due
to metastability (Demir, 2017; Demir et al., 2018a,b). In addition
to the dynamic findings, overall findings for this study showed
positive correlations between pushing information and both
team situation awareness and team performance. Additionally,
the all-human teams had higher levels than the synthetic teams
in regard to both pushing and pulling. By means of this study, we
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FIGURE 3 | Example joint recurrence plots for three RPAS teams’ interactions in three conditions—length 40 min: (A) synthetic, (B) control, and (C) experimenter

teams (from Demir et al., 2018b; reprinted with permission).

saw that anticipation of other team members’ behaviors as well
as information requirements are important for effective Team
Situation Awareness (TSA) and team performance in HATs.
Developing mechanisms to enhance the pushing of information
with HATs is necessary in order to increase the efficacy of
teamwork in such teams.

RPAS III: Human-Autonomy Teaming When
a Human Collaborates With a Synthetic
Teammate Under Degraded Conditions
In the third experiment, the “synthetic” pilot position was
filled by a well-trained experimenter (in a separate room—WoZ
paradigm) who mimicked the communication and coordination
of a synthetic agent from the previous experiment (Demir et al.,
2015). In the third experiment, 40 randomly selected participants
(20 teams) completed the experiment (Mage = 23.3, SDage =

4.04). In order to facilitate their effective communication with
the synthetic pilot, both the navigator and the photographer
had a cheat sheet to use during the training and the task. The
main manipulation and consideration of this study was team
resilience, so at selected target waypoints teams faced one of three
kinds of roadblocks—automation failure, autonomy failure, or

malicious cyber-attack—and had to overcome it within a set time
limit. Automation failures were implemented as loss of displayed
information for one of the agents for a set period. Autonomy
failures were implemented as comprehension or anticipation
failures on the part of the synthetic pilot. The malicious cyber-
attack was implemented near the end of the final mission as an
attack on the synthetic pilot wherein it flew the RPA to a site
known to be a threat but claimed otherwise (Cooke et al., 2018;
Grimm et al., 2018a,b).

The teams encountered three types of automation failures
present on either the pilot’s shared information data display, or
the photographer’s, e.g., there was an error in the current and
next waypoint information or in the distance and time from
the current target waypoint. In order to overcome each failure,
team members were required to effectively communicate and
coordinate with each other. Each of the automation failures were
inserted individually at specific target waypoints from Missions
2 through 10 (Mission 1 was the baseline mission and didn’t
include any failures). Malicious cyber-attack was only applied on
Mission 10. Therefore, Mission 10 was the most challenging.

Within the concept of dynamical systems analysis, two
sample JRP are shown for the communication of high and
low performing RPAS teams, which were indicated based on
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their target processing efficiency (TPE) scores during Mission
10 (three 40min binary sequences). Additionally, the plots show
the calculated DET for both teams; the first one performed
well (DET = 48%) and the second performed poorly (DET
= 54%). Accordingly, as shown in Figure 4A, although the
percentages of the DET scores were not too far apart, the
communication of the high performing team was more rigid
than that of the low performing team. Interestingly each of the
teammembers in the high performing team communicated more
frequently during each one of the failures, than those of the other
teams, and they overcame all of the failures they encountered,
including the malicious cyber-attack. As for the low performing
team (see Figure 4B), the members communicated more during
the automation failure and they successfully overcame that
roadblock. Unfortunately, the same team did not communicate
to the same degree and with the same efficacy during the
remaining two roadblocks (autonomy failure and malicious
cyber-attack). In fact, the navigator did not even participate
during the autonomy failure, and the photographer either failed
to anticipate the needs of his teammates during the malicious
cyber-attack, the photographer was simply unaware of the failure.
This lack of team situation awareness resulted in poor TPE scores.

Based on the goals of current paper, when the HATs interact
effectively, they improve in their performance and process over
time and tend to push information or anticipate the information
needs of others more as they gain experience. In addition,
dynamics of HATs differ in how they respond to failures.
When the HAT teams demonstrated more flexible behavior, they
became more adaptive to the chaotic environment, and in turn
overcame more failures in the RPAS task environment.

CONCLUSION

The goal of this current paper is 2-fold: first, to understand
how team interaction in HATs evolves in the dynamic RPAS
task context and second, to observe how HATs respond to a
variety of failures (automation, autonomy, and malicious cyber-
attack) over time. One of the most significant findings from our
experiments regarding team evolution is the idea of entrainment,
that one team member (the pilot in our study, either synthetic or
human) can change the communication behaviors of the other
teammates over time, including coordination, and affect team
performance. In the communication context of this task, we
know that pushing information between the team members is
important and we know that, in general, the synthetic teammate
was capable of communication and knew its own needs, but it
did not know the needs of its counterparts in a timely manner,
especially during novel conditions. In the first experiment,
synthetic teams did not effectively plan during the task and,
in turn, did not anticipate each others’ needs. Similarly, in the
second experiment synthetic teams more often relied on pulling
information instead of anticipating each other’s needs in a timely
manner. Behavioral passiveness of the synthetic teams addresses
team coordination dynamics which is a fundamental concept of
the ITC theory. Therefore, we applied one of the NDS methods,
JRQA, on communication flow from the three experiments and

the findings from dynamical systems contributed more insights
to explain the dynamic complex behavior of HATs.

In the first and second studies, behavioral passiveness of the
synthetic teams resulted in very stable and rigid coordination in
comparison to the all-human teams, which were less stable. We
know that some degree of stability and instability is needed for
team effectiveness, but teams with too much of either performed
poorly. In the second experiment, this issue is clearly seen across
three conditions: synthetic, control, and experimenter teams.
Experimenter teams demonstrated metastable coordination (not
rigid nor unstable) and performed better, whereas the control and
synthetic teams demonstrated unstable and rigid coordination,
respectively, and performed worse. Metastable coordination
behavior of the experimenter teams may have helped them adapt
to the unexpected changes in the dynamic task environment. In
addition to metastable coordination behavior, the experimenter
teams also demonstrated effective team communication, pushing
and pulling information in a timely and constructive way. This
type of metastable pattern was also discovered in different
contexts using the entropy measure. For instance, a system
functions better if there is a trade-off between its level of
complexity and health functionality (Guastello, 2017). Another
sample entropy analysis on neurophysiology shows that teams at
the optimum level of organization exhibit metastable behavior in
order to overcome unexpected changes in the task environment
(Stevens et al., 2012). Sample entropy analysis also revealed that a
moderate amount of stability resulted in high team performance.
This finding also resembles the third experiment, moderately
stable behavior and timely anticipation of team members’ needs
helped teams to overcome the three types of failures. However,
one of the most important findings from these experiments
is entrainment. That is, one team member (in our case was
the pilot).

Through these studies it is clearly possibly to have successful
HATs, but a more important question moving forward is how
to achieve high levels of HAT performance. How can we
ensure effective levels of communication, coordination, and
situation awareness between humans and agents? In response
to this question, the authors propose three potential future
needs for ensuring effective HATs: (1) training humans how to
communicate and coordinate with agents, (2) training agents on
the principles of teamwork, and (3) human-centered machine
learning design of the synthetic agent. In other words, for humans
and agents to interact with one other as team members, all
participants must understand teamwork and be able to effectively
communicate and coordinate with the others; it’s not just one or
the other.

First, before participating in HATs, humans should be
specifically trained on how to interact with the agent. In the
future this training will be fundamentally important as the
types of available agents with which a person might team up
vary greatly, with many variants in both cognitive modeling
and machine learning. Understanding how to interact with
these agents is step one in ensuring effective HATs, because
without meaningful communication, effective teamwork is
impossible. In our studies, we specifically trained participants
in how to properly interact with the synthetic agents in
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FIGURE 4 | Example Joint Recurrence Plots for two RPAS teams’ interactions: (A) high performing team (Mission 10—DET: 48%) overcame all three failures

(automation, autonomy, and malicious cyber-attack); and (B) low performing team (Mission—DET: 54%) only overcame automation failure—Mission 10: length 40min

(from Grimm et al., 2018b; reprinted with permission).

their teams. If we had not trained them how to interact,
the interaction would have been significantly hindered due
to the participants not understanding the communication and
coordination limitations of the synthetic agent. The training
allowed them to successfully interact with the agent due to
an understanding of the agent’s capabilities. In the future, the
need for training humans to interact with agents will hopefully
decrease due to the increased availability and experience of
interacting with agents and advancements in natural language
processing. However, in the immediate future it will be
necessary to develop appropriate training specific to this type
of interaction.

Second, agents as team members must be programmed
and trained with a fundamental conceptualization of what
teamwork is and what the important principles of teamwork

are. If you dig into the fundamentals of the synthetic agent in
our studies, they did not understand the concept of teaming.
Instead, it was capable of communication and understood
its own task with very little understanding of other team
members’ tasks, let alone the team task. Moving forward,
computer scientists and cognitive scientists need to work
together to harness the power of machine learning to train
agents to knowwhat teamwork is (communication, coordination,
awareness, etc.). An agent will never be able to adapt and
adjust to dynamical characteristics such as coordination if it
is not trained to conceptualize and taught how to apply that
knowledge first.

Finally, there is a significant need to have serious discussions
on how the broader community should be developing these
agents technically. Our agent was built on the ACT-R cognitive
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architecture which has certain advantages, but as advancements
in machine learning continue, it is valuable to debate the
technical foundation of these agents. The major advantage and
promise of usingmachine learning is that the agent can be trained
and can learn many facets of teamwork. Reinforcement and deep
learning provide promise that an agent will develop human-
centered capabilities by recalibrating its technical infrastructure
based on more and more interactions with a human team
member. We are not arguing for one side or the other
(cognitive architectures or machine learning), but rather that
the community carefully should weigh the pros and cons
of each and then choose the technical methodology that is
most efficient and leads to developing an effective agent as a
team member.

We are still in the early stages of the evolution of HAT.
Our current work extends team coordination metrics to assess
coordination quality and ultimately, team effectiveness in
terms of adaptation and resilience; and also, explores the
kinds of training, technological design, or team composition
interventions that can improve HAT under degraded
conditions. A great deal of ongoing work is needed in
many areas. We strongly encourage the broader team
science community to conduct interdisciplinary work to
advance HAT.
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