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Both localist and connectionist models, based on experimental results obtained for

English and French, assume that the degree of semantic compositionality of a

morphologically complex word is reflected in how it is processed. Since priming

experiments using English and French morphologically related prime-target pairs reveal

stronger priming when complex words are semantically transparent (e.g., refill–fill)

compared to semantically more opaque pairs (e.g., restrain–strain), localist models

set up connections between complex words and their stems only for semantically

transparent pairs. Connectionist models have argued that the effect of transparency

should arise as an epiphenomenon in PDP networks. However, for German, a series

of studies has revealed equivalent priming for both transparent and opaque prime-target

pairs, which suggests mediation of lexical access by the stem, independent of degrees

of semantic compositionality. This study reports a priming experiment that replicates

equivalent priming for transparent and opaque pairs. We show that these behavioral

results can be straightforwardly modeled by a computational implementation of Word

and Paradigm Morphology (WPM), Naive Discriminative Learning (NDL). Just as WPM,

NDL eschews the theoretical construct of the morpheme. NDL succeeds in modeling

the German priming data by inspecting the extent to which a discrimination network

pre-activates the target lexome from the orthographic properties of the prime. Measures

derived from an NDL network, complemented with a semantic similarity measure derived

from distributional semantics, predict lexical decision latencies with somewhat improved

precision compared to classical measures, such as word frequency, prime type, and

human association ratings. We discuss both the methodological implications of our

results, as well as their implications for models of the mental lexicon.

Keywords: morphological processing, naive discriminative learning, priming, semantic transparency, stem-based

lexical access, complex verbs, morphological priming

1. INTRODUCTION

Current mainstream models of lexical processing assume that complex words such as
unmanagability comprise several morphemic constituents, un-, manage, -able, and -ity, that recur
in the language in many other words. Since early research in the seventies (e.g., Taft and Forster,
1975), it has been argued that the recognition of morphologically complex words is mediated by
such morphemic units (for a review of models of morphological processing, see Milin et al., 2017b).
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One of the issues under investigation in this line of research
is whether visual input is automatically decomposed into
morphemes before semantics is accessed. Several studies have
argued in favor of early morpho-orthographic decomposition
(Longtin et al., 2003; Rastle et al., 2004; Rastle and Davis,
2008), but others argue that semantics is involved from the start
(Feldman et al., 2009), that the effect is task dependent and
is limited to the lexical decision task (Norris and Kinoshita,
2008; Dunabeitia et al., 2011; Marelli et al., 2013), or fail
to replicate experimental results central to decompositional
accounts (Milin et al., 2017a).

Another issue that is still unresolved is whether complex
words are potentially accessed through two routes operating
in parallel, one involving decomposition and the other whole-
form based retrieval (Frauenfelder and Schreuder, 1992;Marslen-
Wilson et al., 1994b; Baayen et al., 1997, 2003). Recent
investigations that make use of survival analysis actually suggest
that whole-word based effects precede in time constituent-based
effects (Schmidtke et al., 2017).

A third issue concerns the role of semantic transparency.
Priming studies conducted on English and French prefixed
derivations that are semantically transparent, such as distrust,
have reported facilitation of the recognition of their stems
(trust), as well as other prefixed or suffixed derivations, such
as entrust or trustful. The same holds for suffixed derivations
that are semantically transparent like production and productivité
in French or confession and confessor in English, which prime
each other and their stem (confess). The critical condition in
this discussion, however, concerns semantically opaque (i.e.,
non-compositional) derivations, such as successor, which appear
not to facilitate the recognition of stems like success. This
latter finding was replicated under auditory prime presentations
or visual priming at long exposure durations at 230 or 250
ms (e.g., Rastle et al., 2000; Feldman and Prostko, 2001;
Pastizzo and Feldman, 2002; Feldman et al., 2004; Meunier and
Longtin, 2007; Lavric et al., 2011). Localist accounts take these
findings to indicate that only semantically transparent complex
words are processed decompositionally, via their stem, while
semantically opaque words are processed as whole word units.
Although on different grounds, also distributed connectionist
approaches assume that the facilitation between complex words
and their stem depends on their meaning relation. In a series
of cross-modal priming experiments, Gonnerman et al. (2007)
showed for English that morphological effects vary according
to the gradual overlap of form and meaning between word
pairs. Indeed, word pairs with a strong phonological and
semantic relation like preheat–heat induced stronger priming
than words with a moderate phonological and semantic relation
like midstream–stream, and words holding a low semantic
relation like rehearse–hearse induced no priming at all. According
to connectionist accounts of lexical processing, this result
arises as the consequence of the extent to which orthographic,
phonological, and semantic codes converge.

However, these findings for English and French contrast with
results repeatedly obtained for German, where morphological
priming appears to be unaffected by semantic transparency
(Smolka et al., 2009, 2014, 2015, 2019). Under auditory or overt

visual prime presentations, morphologically related complex
verbs facilitated the recognition of their stem regardless of
whether they were semantically transparent (aufstehen–stehen,
“stand up”–“stand”) or opaque (verstehen–stehen, “understand”–
“stand”). Smolka et al. interpreted these findings to indicate that
a German native speaker processes a complex verb like verstehen
by accessing the stem stehen irrespective of the whole-word
meaning, and argued that morphological structure overrides
meaning in the lexical processing of German complex words.
To account for such stem effects without effects of semantic
transparency, they hypothesized a model in which the frequency
of the stem is the critical factor, such that stems of complex
words are accessed and activated, independent of the meaning
composition of the complex word.

These findings for German receive support from experiments
on Dutch—a closely related language with a highly similar
system of verbal prefixes, separable particles, and non-
separable particles. Work by Schreuder et al. (1990), using
an intramodal visual short SOA partial priming technique
to study Dutch particle verbs, revealed morphological effects
without modulation by semantic transparency. Experiments
addressing speech production in Dutch (Roelofs, 1997a,b;
Roelofs et al., 2002) likewise observed, using the implicit priming
task, that priming effects were equivalent for transparent and
opaque prime-target pairs. Morphological priming without
effects of semantic transparency have recently been replicated in
Dutch under overt prime presentations (Creemers et al., 2019;
De Grauwe et al., 2019). Unprimed and primed visual lexical
decision experiments on Dutch low-frequency suffixed words
with high-frequency base words revealed that the semantics
of opaque complex words were equally quickly available as
the semantics of transparent complex words (Schreuder et al.,
2003), contradicting the original prediction of this study that
transparent words would show a processing advantage compared
to their opaque counterparts.

Importantly, there are some studies in English, e.g.,
Gonnerman et al. (2007, Exp. 4) and Marslen-Wilson et al.
(1994a, Exp. 5), that applied a similar cross-modal priming
paradigm with auditory primes and visual targets, and with
similar prefixed stimuli as in the abovementioned studies
by Smolka and collaborators, but found no priming for
semantically opaque pairs like rehearse–hearse (for similar
ERP-results in English see Kielar and Joanisse, 2011). Thus,
results for German and results for English appear at present to
be genuinely irreconcilable1.

In what follows, we first present an overt visual priming
experiment that provides further evidence for the equivalent
facilitation effects seen for German transparent and opaque
prime-target pairs. The behavioral results are consistent with
localist models in which connections between stems and derived
words are hand-wired into a network, as argued by, e.g., Smolka
et al. (2007, 2009, 2014, 2015) and Smolka and Eulitz (2018).
However, this localist model is a post-hoc description of the
experimental findings, and a computational implementation for
this high-level theory is not available.

1See Smolka et al. (2014) and Günther et al. (2019) for possible explanations.
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In this study, we proceed to show that the observed stem
priming effects can be straightforwardly modeled by naive
discriminative learning (NDL, Baayen et al., 2011, 2016a,b;
Arnold et al., 2017; Divjak et al., 2017; Sering et al., 2018b;
Tomaschek et al., 2019) without reference to stems or other
morphological units, and without requiring hand-crafting of
connections between such units. In fact, measures derived from
an NDL network, complemented with a semantic similarity
measure derived from distributional semantics, turn out to
predict lexical decision latencies with greater precision compared
to classical measures, such as word frequency, prime type,
and semantic association ratings. Importantly, the NDL model
predicts the effects of stem priming without a concomitant effect
of semantic compositionality. According to the NDL model,
the crucial predictor is the extent to which the target is pre-
activated by the sublexical form features of the prime. In the
final section, we discuss both the methodological implications
of our results, as well as their implications for models of the
mental lexicon.

2. THE PRIMING EXPERIMENT

2.1. Previous Results for German Complex
Verbs
German complex verbs present a very useful means to study
the effects of morphological structure with or without meaning
relatedness to the same base verb. German complex verbs are
very productive and frequently used in standard German. The
linguistic literature (Fleischer and Barz, 1992; Eisenberg, 2004)
distinguishes two word formations: prefix verbs and particle
verbs. Both consist of a verbal root and either a verbal prefix or
a particle.

In spite of some prosodic and morphosyntactic differences
(see Smolka et al., 2019), prefix and particle verbs share many
similar semantic properties. Both may differ in the degree of
semantic transparency with respect to the meaning of their base.
For example, the particle an (“at”) only slightly alters themeaning
of the base führen (“guide”) in the derivation anführen (“lead”),
but radically does so with respect to the base schicken (“send”)
in the opaque derivation anschicken (“get ready”). Similarly,
the prefix ver- produces the transparent derivation verschicken
(“mail”) as well as the opaque derivation verführen (“seduce”).
Prefix and particle verbs are thus a particularly useful means
by which the effects of meaning relatedness to the same base
verb can be studied. For instance, derivations of the base tragen
(“carry”), such as hintragen (“carry to”), forttragen (“carry away”),
zurücktragen (“carry back”), abtragen (“carry off”), auftragen
(“apply”), vertragen (“get along”), ertragen (“suffer”), alter the
meaning relatedness from fully transparent to fully opaque with
respect to the base. It is important to note that, in general,
complex verbs in German are true etymological derivations of
their base, regardless of the degree of semantic transparency they
share with it. Because morphological effects of prefix and particle
verbs are alike in German (see Smolka and Eulitz, 2018; Smolka
et al., 2019) and Dutch (Schriefers et al., 1991), henceforth, we
refer to them as “complex verbs” or “derived verbs.”

Previous findings on complex verbs in German have shown
that these verbs strongly facilitate the recognition of their stem,
without any effect of semantic transparency (Smolka et al., 2009,
2014, 2015, 2019; Smolka and Eulitz, 2018). That is, semantically
opaque verbs, such as verstehen (“understand”) primed their
base stehen (“stand”) to the same extent as did transparent
verbs, such as aufstehen (“stand up”). Further, the priming by
both types of morphological primes was stronger than that by
either purely semantically related primes like aufspringen (“jump
up”) or purely form-related primes like bestehlen (“steal”).
The morphological effects remained unaffected by semantic
transparency under conditions that were sensitive to detecting
semantic and form similarity, that is, when semantic controls
like verlangen–fordern (“require”–“demand”) and Biene–Honig
(“bee”–“honey”) induced semantic facilitation or when form-
controls with embedded stems, as in bekleiden–leiden (“dress”–
“suffer”) and Bordell–Bord (“brothel”–“board”) induced form
inhibition (see Exp. 3 in Smolka et al., 2014). This offered
assurance that the lack of a semantic transparency effect between
semantically transparent and opaque complex verbs was not a
null effect but rather indicated that morphological relatedness
overrides both semantic and form relatedness.

Further studies explored the circumstances of stem facilitation
in more detail. For example, in spite of several differences
in the phonological and morpho-syntactic properties of prefix
and particle verbs, prefix verbs showed processing patterns that
were substantially the same as those for particle verbs and,
crucially, were uninfluenced by semantic transparency (Smolka
et al., 2019). Furthermore, stem access occurs regardless of the
directionality of prime and target entwerfen–werfen vs. werfen–
entwerfen vs. entwerfen–bewerfen (Smolka and Eulitz, 2011).

Stem access is modality independent, as it occurs under
both intra-modal (visual-visual) and cross-modal (auditory-
visual) priming conditions (Smolka et al., 2014, 2019). Finally,
event-related brain potentials revealed wide-spread N400 brain
potentials in response to semantically transparent and opaque
verbs without effects of semantic transparency—N400 brain
potentials that are generally taken to be characteristic to
indicate expectancy and (semantic) meaning integration. Most
importantly, these brain potentials revealed that stem facilitation
in German occurs without an overt behavioral response and is
stronger than the activation by purely semantically related verbs
or form-related verbs (Smolka et al., 2015).

The present experiment was closely modeled after previous
experiments addressing priming effects for German verb pairs
(e.g., Smolka et al., 2009, 2014).

2.2. Design
We compared the differential effects of semantic, form, or
morphological relatedness between complex verbs and a base
verb in four priming conditions: (a) semantic condition, where
the complex verb was a synonym of the target verb, (b)
morphological transparent condition, where the complex verb
was a semantically transparent derivation of the target verb, (c)
morphological opaque condition, where the complex verb was a
semantically opaque derivation of the target verb, and (d) form
condition, where the base of the complex verb was form-related
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TABLE 1 | Stimulus characteristics of related primes and their matched unrelated controls in the semantic synonym list, semantically transparent list, semantically opaque

list, and form control list.

List Relatedness Lemma frequency Word length Syllable length Age of acquisition Relatedness score

SEMANTIC

vorangehen–führen Related 4.9 9.2 3.0 5.4 5.5

(“antecede”–“guide”) (6.3; 0–24) (1.2; 7–12) (0.2; 3–4) (1.3; 3.4–7.4) (0.6; 4.3–6.6)

Unrelated 4.7 9.1 3.0 7.1

(6.1; 0–24) (1.1; 7–11) (0; 3–3) (1.7; 4.3–9.8)

TRANSPARENT

anführen–führen Related 5.5 9.3 3.0 5.2 5.7

(“head”–“guide”) (5.6; 0–17) (1.5; 7–11) (0; 3–3) (1.2; 3.1–8.3) (0.5; 4.8–6.6)

Unrelated 5.6 9.2 3.0 6.5

(5.8; 0–20) (1.1; 7–11) (0; 3–3) (1.7; 3.7–9.2)

OPAQUE

verführen–führen Related 8.8 9.6 3.1 8.0 2.1

(“seduce”–“guide”) (9.5; 0–34) (1.4; 8–13) (0.3; 3–4) (1.7; 4.4–9.8) (0.5; 1.1–2.9)

Unrelated 9.1 9.1 3.0 6.6

(10.7; 0–47) (1.1; 7–11) (0.2; 3–4) (1.6; 3.7–9.2)

FORM

befühlen–führen Related 5.8 9.7 3.0 7.7 1.3

(“palpate”–“guide”) (9.2; 0–36) (1.2; 8–12) (0; 3–3) (1.8; 4.7–10.3) (0.5; 1–2.9)

Unrelated 6.4 9.2 3.0 6.5

(10.9; 0–47) (1.2; 7–11) (0.2; 3–4) (1.6; 3.4–9.2)

Statistics are given for the total set of stimuli: mean (SD; range); sample stimuli of prime-target pairs are italicized. Frequencies are from the CELEX database (Baayen et al., 1993), count

is per million. Lists were between-subjects.

with the base of the target.Wemeasured lexical decision latencies
to the target verbs and calculated priming relative to an unrelated
control condition. In addition to the (unrelated minus related)
priming effects, the influence of the stem should surface in the
comparison of the conditions (a) and (b), where both types of
primes are synonyms of the base verb—the former holding a
different stem as the target, the latter holding the same stem as
the target; the influence of the degree of semantic transparency
should surface in the comparison between conditions (b) and (c),
where both types of primes are true morphological derivations of
the base target. The influence of form similarity should surface in
the comparison between conditions (c) and (d), where both types
of primes have stems that are form-similar with the target.

As in our previous experiments, we were interested in tapping
into lexical processing, when participants are aware of the prime
and integrate its meaning, and thus applied overt visual priming
at a long SOA (see Milin et al., 2017b, for a comparison between
masked and overt priming paradigms). We used only verbs as
materials to avoid word category effects, and inserted a large
number of fillers to prevent expectancy or strategic effects.
Different from our previous experiments, though, we applied a
between-subject and between-target design.

In summary, the primes in all conditions were complex verbs
with the same morphological structure and were thus (a) of the
same word category, and (b) closely matched on distributional
variables like lemma frequency, number of syllables and letters.
They differed only with respect to the morphological, semantic,
or form-relatedness with the target. Prime conditions are

exemplified in Table 1; all critical items are listed inAppendix A.
Our prediction is that both semantically transparent and opaque
complex verbs will induce the same amount of priming to their
base, and that this priming will be stronger than the priming by
either semantically related or form-related verbs.

2.3. Method
2.3.1. Participants

Fifty students of the University of Konstanz participated in
the experiment (14 males; mean age = 22.69, range 19–32).
All were native speakers of German, were not dyslexic, and
had normal or corrected-to-normal vision. They were paid for
their participation.

2.3.2. Materials

As critical stimuli, 88 prime-target pairs with complex verbs
as primes and base verbs as targets were selected from the
CELEX German lexical database (Baayen et al., 1993), 22 pairs
in each of four conditions (see also Table 1): (a) morphologically
unrelated synonyms of the base (e.g., vorangehen–führen,
“antecede”–“guide”), (b) morphologically related synonyms of
the base, these were semantically transparent derivations of the
base, (e.g., anführen–führen, “head”–“guide”), (c) semantically
opaque derivations of the base (e.g., verführen–führen, “seduce”–
“guide”), and (d) semantically and morphologically unrelated
form controls that changed a letter in the stem (by retaining the
stem’s onset and changing a letter in the rime, e.g., befühlen–
führen, “palpate”–“guide”). Complex verbs in conditions (a) and
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(b) were synonyms of the target base and were selected by means
of the online synonym dictionaries http://www.canoo.net/ and
https://synonyme.woxikon.de/.

For each of the 88 related primes, we selected an unrelated
control that served as baseline and (a) was morphologically,
semantically, and orthographically unrelated to the target and
(b) matched the related prime in word class, morphological
complexity (i.e., it was a complex verb), number of letters and
syllables. In addition, control primes were pair-wise matched to
the related primes on lemma frequency according to CELEX.
Furthermore, primes across conditions were matched on lemma
frequency according to CELEX.

The critical set of 88 prime-target pairs was selected from a
pool of verb pairs that had been subjected to semantic association
tests, in which participants rated the meaning relatedness
between the verbs of each prime-target pair on a 7-point scale
from completely unrelated (1) to highly related (7) (for a detailed
description of the database see Smolka and Eulitz (2018). The
following criteria determined whether a verb pair was included in
the critical set: The mean ratings for a semantically-related pair
(in the synonym and semantically transparent conditions) had
to be higher than 4, and those for a semantically unrelated pair
(in the semantically opaque and form-related conditions) lower
than 3. The set of words that were included in the experiment
had mean ratings of 5.5 (range 4.3–6.7) for synonyms, 5.7
(range 4.78–6.56) for semantically transparent derivations,
2.13 (range 1.5–2.88) for semantically opaque derivations,
and 1.7 (range 1.0–2.89) for form-related pairs. Table 1

provides the prime characteristics (lemma frequency, number of
letters and syllables, meaning relatedness); the Appendix lists
all stimuli.

In order to prevent strategical processes, a total of 140 prime-
target pairs was added as fillers. All had complex verbs as primes,
48 had verbs and 92 had pseudoverbs as targets. With respect
to the former, 18 of the 48 prime-verb fillers comprised related
prime-target pairs of the other lists. These types were included
to assure that participants would not detect a certain type of
prime-target relatedness in a list. For example, list A held six
items of list B, six of list C, and six of list D as fillers. The other
30 prime-target pairs were semantically, morphologically, and
orthographically unrelated.

Regarding the prime-pseudoverb fillers, 44 of the pseudoverb
targets were closely matched to the critical verb targets by
keeping the onset of the verbs’ first syllable (e.g., binden–
binken). To further ensure that participants did not respond
with “word” decisions for any trial where prime and target were
orthographically similar, eleven pseudoverbs were preceded by a
form-related prime (e.g., umwerben–wersen) to mimick the form
condition. All pseudoverbs were constructed by exchanging one
or two letters in real verbs, while preserving the phonotactic
constraints of German.

The between-subject design had the following list
composition: Each list comprised 184 prime-target pairs,
half of these holding verbs, the other half pseudoverbs as targets.
Of the 92 prime-verb pairs, 22 were related prime-target pairs of
either condition (a), (b), (c), or (d), 22 were matched unrelated
prime-target pairs, and 48 were filler pairs (30 unrelated and 18

of other related conditions). The 92 prime-pseudoverb-target
pairs included 44 form-matched and 48 unrelated pairs.

Overall, the large amount of fillers in the present study
reduced the proportion of (a) critical prime-target pairs to 24%
per list or 48% of prime-verb pairs, and (b) related prime-target
pairs (including critical and filler pairs) to 22% per list or 43%
of verb pairs. Napps and Fowler (1987) showed that a reduction
in the proportion of related items from 75% to 25% reduced
both facilitatory and inhibitory effects. A significant reduction
of related items in the present study should thus discourage
participants from expecting a particular related verb target and
thus prevent both expectancy and failed expectancy effects. All
filler items differed from the critical items. Throughout the
experiment, all primes and targets were presented in the infinitive
(stem/-en), which is also the citation form in German.

2.3.3. Apparatus

Stimuli were presented on a 18.1′′ monitor, connected to
an IBM-compatible AMD Atlon 1.4 GHz personal computer.
Stimulus presentation and data collection were controlled by
the Presentation software developed by Neurobehavioral Systems
(https://www.neurobs.com). Response latencies were recorded
from the left and right buttons of a push-button box.

2.3.4. Procedure

Each participant saw only one list. Each list was divided into four
blocks, each block containing the same amount of stimuli per
condition. The critical prime-target pairs were rotated over the
four blocks according to a Latin Square design in such a way
that the related and unrelated primes of the same target were
separated by a block. The related fillers (form-related prime-
pseudoverb pairs, related prime-verb pairs) and unrelated filler
pairs were evenly allocated to the blocks.

In total, an experimental session comprised 184 prime-
target pairs, with 66 pairs per block. Within blocks, prime-
target pairs were randomized separately for each participant.
Twenty additional prime-target pairs were used as practice trials.
Participants were tested individually in a dimly lit room, seated at
a viewing distance of about 60 cm from the screen. Stimuli were
presented in Sans-Serif letters on a black background. To ensure
that primes and targets were perceived as physically distinct
stimuli, primes were presented in uppercase letters, point 32, in
light blue (RGB: 0-255-255), 20 points above the center of the
screen. Targets were presented centrally in lowercase letters, point
36, in yellow (RGB: 255-255-35).

Each trial started with a fixation cross in the center of the
screen for 300 ms. This was followed by the presentation of the
prime for 400 ms, followed by an offset (i.e., a blank screen)
for 100 ms, resulting in a stimulus onset asynchrony (SOA)
of 500 ms. After the offset, the target immediately followed
and remained on the screen until a participant’s response. The
intertrial interval was 1,500 ms. Participants were instructed to
make lexical decisions to the targets, as fast and as accurately
as possible. “Word” responses were given with the index
finger of the dominant hand, “pseudoword” responses with the
subordinate hand. Feedback was given on both correct (“richtig”)
and incorrect (“falsch”) responses during the practice session,
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and on incorrect responses during the experimental session. The
experiment lasted for about 12 min, during which participants
self-administered the breaks between blocks.

2.4. Results
A generalized additive mixed model (Wood, 2017) was fitted
to the inverse-transformed reaction times with predictors Prime
Type (using treatment coding, with the unrelated condition as
reference level) and log target frequency2. Random intercepts
were included for target and prime, and a factor smooth for
the interaction of subject by trial number (see Baayen et al.,
2017, for detailed discussion of this non-linear counterpart to
what in a linear mixed model would be obtained with by-subject
random intercepts and by-subject random slopes for trial).
Table 2 presents the model summary. Prime-target pairs in the
semantic condition were responded to slightly more quickly than
prime-target pairs in the unrelated condition. Prime-target pairs
in the transparent and opaque conditions showed substantially
larger facilitation of equal magnitude. Prime-target pairs in the
form condition elicited reaction times that did not differ from
those seen in the control condition.

To obtain further insight into the effects of the predictors not
only for the median, but across the distribution of reaction times,
we fitted quantile GAMs to the deciles 0.1, 0.2, . . . , 0.9, using
the qgam package (Fasiolo et al., 2017)3. For the median, the
quantile GAM also complements the Gaussian GAMM reported
in Table 2. The Gaussian GAMM could have been expanded with
further random effects for the interaction of subject by priming
effect, but such models run the risk of overspecification (Bates
et al., 2015). More importantly, the distribution of the residuals
showed clear deviation from normality that resisted correction.
As quantile GAMS are distribution free, simple main effects can

2Frequency was added as a covariate to the model for three reasons. First,

frequency varied within priming conditions, and since frequency is a strong

predictor of response latencies in the visual lexical decision task, the presence of

a frequency effect certifies that participants were engaging with the task, rather

than performing on the basis of some high-level task-specific strategies, such

as searching for similar letter substrings. Second, we wanted to make sure that

any differences in frequency between priming conditions, related not to mean

frequencies, but to imbalances in the distributions of frequencies within the

separate priming conditions, cannot be held responsible for the observed priming

effects. Third, we were interested in exploring to what extent the magnitude of the

frequency effect might change across the distribution of reaction times.
3Quantile regression is a statistical method for predicting the quantiles of a

response variable. Standard regression methods consider only the mean of the

response, which, if the response is Gaussian, is equal to the median, which in

turn is the 5th decile. However, a researcher’s interest may be not in predicting

the mean, but a specific quantile. For instance, an electricity company may be

interested in balancing atomic power and water power. Energy from water power

is scarce, but the (limited) amount of power generated can be varied quickly in

time as demand changes. Energy from atomic plants is available in large quantities,

but the amount of energy generated can be varied only very slowly over time. To

balance atomic power and water power, it can be of interest to generate 98% of

the energy demand using atomic power, and supplement the remaining energy

demand from water power. In this case, quantile regression can be used to predict

the 98 percentile of energy demand as a function of time (Fasiolo et al., 2017). For

the analysis of reaction times, quantile regression can be used to clarify where in the

distribution of reaction times effects are present, and to investigate whether effects

change in magnitude across the distribution (see e.g., Tomaschek et al., 2018, for

an application in phonetics).

TABLE 2 | Generalized additive mixed model fitted to inverse-transformed primed

lexical decision latencies.

A. Parametric coefficients Estimate Std. Error t-value p-value

Intercept (PrimeType = Unrelated) −1.8791 0.0298 −63.0083 <0.0001

PrimeType = Semantic −0.0761 0.0240 −3.1709 0.0015

PrimeType = Transparent −0.2514 0.0248 −10.1222 <0.0001

PrimeType = Opaque −0.2519 0.0249 −10.1305 <0.0001

PrimeType = Form 0.0016 0.0242 0.0669 0.9467

B. Smooth terms edf Ref.df F-value p-value

TPRS smooth LogTargetFreq 1.0001 1.0001 9.1823 0.0025

Factor smooths for trial × subject 113.0046 449.0000 2.6135 <0.0001

Random intercepts Prime 16.7699 116.0000 0.1907 0.0585

Random intercepts Target 21.4123 39.0000 1.6359 <0.0001

be studied without having to bring complex random effects into
the model as a safeguard against anti-conservative p-values.

Figure 1 presents, from top left to bottom right, the effects
of Prime Type for the deciles 0.1, 0.2, . . . , 0.9. The p-values
above the bars concern the contrasts with the unrelated condition
(the reference level). Across the distribution, the form condition
was never significantly different from the unrelated condition.
The small effect of the semantic condition hardly varied in
magnitude across deciles, but was no longer significant at the
last decile. The magnitude of the effects for the transparent and
opaque conditions was significantly different from that for the
unrelated condition across all deciles, and increased in especially
the last three deciles. Across the deciles, the transparent condition
showed a growing increase in facilitation compared to the opaque
condition, but as indicated by the p-values in red, the difference
between these two conditions was never significant.

Figure 2 visualizes the effect of target frequency. From the
second decile onwards, target frequency was significant, with
greater frequencies affording shorter reaction times, as expected.
The magnitude of the frequency effect, as well as its confidence
interval, increased across deciles.

In summary, replicating earlier studies, morphologically
related primes elicited a substantial priming effect that did not
vary with semantic transparency. The priming effect tended to be
somewhat stronger at larger deciles, for which the effect of target
frequency was also somewhat larger.

When the transparent and opaque priming conditions are
considered in isolation, it might be argued that participants
are superficially scanning primes and targets for shared stems,
providing a word response when a match is found, and a non-
word response otherwise. Such a task strategy can be ruled out,
however, due to the high proportion of unrelated fillers, and once
the other two priming conditions are taken into consideration. If
subjects would indeed have been scanning for stems shared by
prime and target, then the Unrelated and Semantic conditions
should have elicited the same mean reaction times, contrary
to fact. Clearly, participants processed the word stimuli more
deeply than a form-based scan suggests. Furthermore, since
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FIGURE 1 | Effects of Prime Type (with unrelated as reference level) in a Quantile GAM fitted to primed lexical decision latencies, for deciles 0.1, 0.2, …, 0.9.

form-based evaluation of pairs in the Form condition is more
difficult given the substantial similarity of the stems, longer
reaction times are predicted for the Form condition compared
to the Unrelated condition. Also this prediction is falsified by the
data: The means for the Form and Unrelated condition do not
differ significantly.

At first sight, it might be argued that the present between-
participants design has strengthened the opaque priming effects.
However, given that all our previously conducted experiments
used within-participants designs (e.g., three visual priming
experiments in Smolka et al., 2009; one cross-modal and two
visual priming experiments in Smolka et al., 2014; two cross-
modal priming experiments in Smolka et al., 2019; and one visual
EEG priming experiment in Smolka et al., 2015) and yielded

equivalent priming by opaque and transparent prime-target
pairs, we are confident that our present findings are not due to
a design limitation.

We therefore conclude that the behavioral results of “pure
morphological priming” without semantic transparency effects
in German, as well as the older results obtained for speech
production in Dutch, appear to indicate a fundamental role
in lexical processing for morphemic units, such as the
stem. However, perhaps surprisingly, developments in current
linguistic morphology indicate that the theoretical construct of
the morpheme is in many ways problematic. In what follows,
we show that the present results can be explained within the
framework of naive discriminative learning, even though this
theory eschews morphemic units altogether.
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FIGURE 2 | Partial effect of log target frequency in a Quantile GAM fitted to primed lexical decision latencies, for deciles 0.1, 0.2, …, 0.9.

3. COMPUTATIONAL MODELING WITH
NAIVE DISCRIMINATIVE LEARNING

Before introducing naive discriminative learning (NDL), we first
provide a brief overview of developments in theoretical
morphology over the last decades that motivated the
development of NDL.

3.1. Developments in Theoretical
Morphology
The concept of the morpheme, as the minimal linguistic sign
combining form and meaning, traces its history to the American

structuralists that sought to further systematize the work of
Leonard Bloomfield (see Blevins, 2016, for detailed discussion).
The morpheme as minimal sign has made it into many
introductory textbooks (e.g., Plag, 2003; Butz and Kutter, 2016).
The hypothesis that semantically transparent complex words
are processed compositionally, whereas semantically opaque
words are processed as units, is itself motivated by the belief
that morphemes are linguistic signs. For semantically opaque
words, the link between form and meaning is broken, the
morpheme is no longer a true sign, and hence the rules operating
over true signs in comprehension and production are no
longer relevant.
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The theoretical construct of the morpheme as smallest sign
of the language system has met with substantial criticism
(see e.g., Matthews, 1974; Beard, 1977; Aronoff, 1994; Stump,
2001; Blevins, 2016). Whereas the morpheme-as-sign appears
a reasonably useful construct for agglutinating languages, such
as Turkish, as well as for morphologically simple languages,
such as English (but see Blevins, 2003), it fails to provide
much insight for typologically very dissimilar languages, such as
Latin, Estonian, or Navajo (see e.g., Baayen et al., 2018, 2019;
Chuang et al., 2019, for detailed discussion). One important
insight from theoretical morphology is that systematicities in
form are not coupled in a straightforward one-to-one way with
systematicities in meaning. Realizational theories of morphology
(e.g., Stump, 2001) therefore focus on how sets of semantic
features are expressed in phonological form, without seeking to
find atomic form features that line up with atomic semantic
features. Interestingly, as pointed out by Beard (1977), form and
meaning are subject to their own laws of historical change or
resistance to change.

Within realizational theories, two main approaches have been
developed, Realizational Morphology and Word and Paradigm
Morphology. Realizational Morphology formalizes how bundles
of semantic (typically inflectional) features are realized in
phonological form by making use of units for stems, stem
variants, and the morphs (now named exponents) that realize
(or express) sets of inflectional or derivational features (see
e.g., Stump, 2001). Realizational Morphology is to some extent
compatible with localist models in psychology, in that the stems
and exponents of realizational morphology can be seen as
corresponding to the “morphemes” (now understood strictly as
form-only units, henceforth “morphs”) in localist networks. The
compatibility is only partial, however, as current localist models
typically remain underspecified as to how, in comprehension, the
pertinent semantic feature bundles are activated once the proper
exponents have been identified. For instance, in the localist
interactive activation model of Veríssimo (2018)4, the exponent
-er that is activated by the form teacher has a connection to a
lemma node for ER as deverbal nominalization, but no link is
given from the -er exponent to an inflectional function that
in English is also realized with -er, namely, the comparative.
Furthermore, even the node for deverbal -ER is semantically
underspecified, as -ER realizes a range of semantic functions,
including AGENT, INSTRUMENT, CAUSER, and PATIENT (Booij,
1986; Bauer et al., 2015).

A further, empirical, problem for decompositional theories
that take the first step in lexical processing to be driven by units
formorphs are experiments indicating that quantitativemeasures
tied to properties of whole words, rather than their component
morphs, are predictive much earlier in time than expected. For
eye-tracking studies on Dutch and Finnish, see Kuperman et al.
(2008, 2009, 2010) and for reaction times analyzed with survival
analysis, see Schmidtke et al. (2017). These authors consistently
find that measures linked to whole words are predictive for

4To our knowledge, this poster presentation is the only computational study

addressing morphological processing that makes use of the interactive activation

framework.

shorter response times, and that measures linked to morphs
are predictive for longer response times. This strongly suggests
that properties of whole words determine early processing and
properties of morphs arise later in processing.

There is a more general problem specifically with models
that make use of localist networks and the mechanism of
interactive activation to implement lexical access. First of
all, interactive activation is a very expensive mechanism,
as inhibitory connections between morpheme nodes grow
quadratically with the number of nodes, and access times increase
polynomially or even exponentially. Furthermore, interactive
activation as a method for candidate selection in a what amounts
to a straightforward classification task is unattractive as it would
have to be implemented separately for each classification task that
the brain has to carry out. Redgrave et al. (1999) and Gurney et al.
(2001) therefore propose a central single mechanism, supposed
to be carried out by the basal ganglia, that receives a probability
distribution of alternatives as input from any system requiring
response selection, and returns the best-supported candidate (see
Stewart et al., 2012, for an implementation of their algorithmwith
spiking neurons).

The second main approach within morpheme-free theories,
Word and Paradigm Morphology, rejects the psychological
reality of stems and exponents, and calls upon proportional
analogies between words to explain how words are produced
and comprehended (Matthews, 1974; Blevins, 2003, 2006, 2016).
Although attractive at a high level of abstraction, without
computational implementation, supposed proportional analogies
within paradigms do not generate quantitative predictions that
can be tested experimentally. As discussed in detail by Baayen
et al. (2019), discrimination learning provides a computational
formalization of Word and Paradigm Morphology that does
generate testable and falsifiable predictions.

In what follows, we will use NDL to estimate a distribution
of activations (which, if so desired, could be transformed into
probabilities using softmax) over the set of possible word
meanings given the visual input. Specifically, we investigate
whether we can predict how prior presentation of a prime word
affects the activation of the target meaning.

3.2. Morphological Processing Without
Morphemes
Naive discriminative learning is not the first cognitive
computational model that seeks to move away from morphemes.
The explanatory adequacy of the morpheme for understanding
lexical processing has also been questioned within psychology
by the parallel distributed processing programme (McClelland
and Rumelhart, 1986; Rumelhart and McClelland, 1986).
As mentioned previously, the triangle model (Harm and
Seidenberg, 2004) has been argued to explain the effects of
semantic transparency observed for English derived words as
reflecting the convergence of phonological and semantic codes
(Plaut and Gonnerman, 2000; Gonnerman and Anderson, 2001;
Gonnerman et al., 2007). It is noteworthy, however, that to our
knowledge, actual simulation studies demonstrating this have
not been forthcoming. Importantly, if indeed the triangle model
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FIGURE 3 | The two-layer network corresponding to W. The outer vertices in

blue represent the input nodes, the inner vertices in red represent the output

nodes. All input nodes are connected to each of the three output nodes. Each

edge in the graph is associated with a weight which specifies the support that

an input node provides for an output node.

makes correct predictions for English, then one would expect its
predictions for German to be wrong, because it would predict
semantic transparency effects and no priming for semantically
opaque word pairs.

Like the PDP programme, the twin theories of Naive
Discriminative Learning (NDL Baayen et al., 2011, 2016b; Sering
et al., 2018b) and Linear Discriminative Learning (Baayen
et al., 2018, 2019), eschew the construct of the morpheme. But
instead of using backpropagation multi-layer networks, NDL and
LDL build on simple networks with input units that are fully
connected to all output units.

An NDL network is defined by its weight matrixW. By way of
example, consider the following weight matrix,

W =





























QAID SAID HID

#q 0.33 −0.17 −0.08
qa 0.33 −0.17 −0.08
ai 0.17 0.17 −0.17
id 0.08 0.08 0.17
d# 0.08 0.08 0.17
#s −0.17 0.33 −0.08
sa −0.17 0.33 −0.08
#h −0.08 −0.08 0.33
hi −0.08 −0.08 0.33





























,

which is visualized in Figure 3. The output nodes are on the
inner circle in red, and the input nodes in the outer circle in
blue. A star layout was chosen in order to guarantee readability

of the connection weights. The network corresponding to this
weight matrix comprises nine sublexical input units, shown in
the left margin of the matrix. We refer to these units, here
the letter bigrams of the words qaid, said, and hid, as cues;
the # symbol (a + in Figure 3 represents the space character).
There are three output units, the outcomes, shown in the upper
margin of the matrix. The entries in the matrix present the
connection strengths of the digraphs to the lexical outcomes.
The digraph qa provides strong support (0.33) for QAID (“tribal
chieftain”), and sa provides strong support (0.33) for SAID.
Conversely, ai, which is a valid cue for two words, QAID and
SAID, has connection strengths to these lexomes of only 0.17. The
weights from hi and sa to QAID are negative,−0.08 and−0.17,
respectively. For QAID, the cue that best discriminates this word
from the other two words is qa. Conversely, sa is a (somewhat
less strong) discriminative cue arguing against QAID. Informally,
we can say that the model concludes the outcome must be QAID

given qa, and that the outcome cannot be QAID given sa.
In the present example, form cues are letter pairs, but other

features have been found to be effective as well. Depending on
the language and its writing conventions, larger letter or phone n-
grams (typically with 1 < n ≤ 4) may outperform letter bigrams.
For auditory comprehension, low-level acoustic features have
been developed for modeling auditory comprehension (Arnold
et al., 2017; Shafaei Bajestan and Baayen, 2018; Baayen et al.,
2019). For visual word recognition, low-level visual “histograms
of gradient orientation” features have been applied successfully in
(Linke et al., 2017).

The total support aj for an outcome j given the set of cues
C in the visual input to the model, henceforth its activation, is
obtained by summing the weights on the connections from these
cues to that outcome:

aj =
∑

i∈C

wij.

For QAID (j = 1), the total evidence a1 given the cues #q, qa,
ai, id, and d# is 0.33+ 0.33+ 0.17+ 0.08+ 0.08 = 1.
The values of the weights are straightforward to estimate. We
represent the digraph cues of the words by a matrix C, with a 1
representing the presence of a cue in the word, and a 0 its absence:

C =





#q qa ai id d# #s sa #h hi

QAID 1 1 1 1 1 0 0 0 0
SAID 0 0 1 1 1 1 1 0 0
HID 0 0 0 1 1 0 0 1 1



.

We also represent the outcomes using a matrix, again using
binary coding:

T =





QAID SAID HID

QAID 1 0 0
SAID 0 1 0
HID 0 0 1



.

The vectors representing the outcomes in an NDL network are
orthogonal: each pair of row vectors of T is uncorrelated. The
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weight matrixW follows by solving5

CW = T.

In other words,W projects words’ forms, represented by vectors
in a form space {C}, onto words’ meanings, represented by
vectors in a semantic space {T}6.

The outcomes of an NDL network represent lexical meanings
that are discriminated in a language. Milin et al. (2017a) refer to
these outcomes as lexomes, which they interpret as pointers to (or
identifiers of) locations (or vectors) in some high-dimensional
space as familiar from distributional semantics (see e.g., Landauer
and Dumais, 1997; Mikolov et al., 2013). However, as illustrated
above with the T matrix, NDL’s lexomes can themselves be
represented as high-dimensional vectors, the length k of which
is equal to the total number of lexomes. The vector for a
given lexome has one bit on and all other bits off (cf. Sering
et al., 2018b). Thus, the lexomes jointly define a k-dimensional
orthonormal space.

However, the orthonormality of the outcome space does not
do justice to the fact that some lexomes are more similar to each
other than others. Within the general framework of NDL, such
similarities can be taken into account, but to do so, measures
gauging semantic similarity have to be calculated from a separate
semantic space that constructs lexomes’ semantic vectors (known
as word embeddings in computational linguistics) from a corpus.
A technical complication is that, because many words share
semantic similarities, the dimensionality of NDL’s semantic space,
k, is much higher than it need be. As a consequence, the
classification accuracy of the model is lower than it could be (see
Baayen et al., 2019, for detailed discussion).

The twin model of NDL, LDL, therefore replaces the one-hot
encoded semantic vectors as exemplified by T by real-valued
vectors. For the present example, this amounts to replacing T by
a matrix, such as S:

S =





QAID SAID HID

QAID 0.4 −0.2 0.3
SAID −0.2 −0.2 −0.3
HID −0.1 0.3 0.3



.

Actual corpus-based semantic vectors are much longer than
this simple example suggests, with hundreds or even thousands
of elements. The method implemented in Baayen et al. (2019)
produces vectors the values of which represent a given lexome’s
collocational strengths with all the other lexomes in the corpus.

Model accuracy is evaluated by examining how close a
predicted semantic vector ŝ is to the targeted semantic vector
s, a row vector of S. In the case of NDL, this evaluation is
straightforward: The lexome that is best supported by the form

5In R: W = ginv(C) %*% T, see Baayen et al. (2018) and Baayen et al. (2019)

for further details on linear transformations from form to meaning (and from

meaning to form).
6The weight matrix W is identical to the weight matrix obtained by applying

the equilibrium equations of Danks (2003) for the Rescorla-Wagner learning rule

(Rescorla andWagner, 1972) that was used by Baayen et al. (2011), see Sering et al.

(2018b) for detailed discussion. W is also identical to the matrix of beta weights

of a multivariate multiple regression model regressing the semantic vectors on the

form vectors.

features in the input, and that thus receives the highest activation,
is selected. In the case of LDL, that word ω is selected as
recognized for which the predicted semantic vector ŝ is most
strongly correlated with the targeted semantic vector sω.

As the dimensionality of the row vectors of S, T, and C can be
large, with thousands or tens of thousands of values, we refer to
the networkW as a “wide learning” network, as opposed to “deep
learning” networks which have multiple layers but usually much
smaller numbers of units on these layers.

Of specific relevance to the present study is how NDL and
LDL deal with morphologically complex words. With respect
to the forms of complex words, exactly the same encoding
scheme is used as for simple words, with either n-grams or
low-level modality-specific features used as descriptor sets. No
attempt is made to find morpheme boundaries, stems, affixes,
or allomorphs.

At the semantic level, both NDL and LDL are analytical. NDL

couples inflected words, such as walked and swam with the
lexomes WALK and PAST, and SWIM and PAST, respectively. In
the example worked out in Table 3, the word form walk has LX6
as identifier; the lexome for past is indexed by LX4. The form
walked is linked with both LX6 and LX4. For clarity of exposition,
instead of using indices, we refer to lexomes using small caps:
WALK and PAST. An NDL network is thus trained to predict, for
morphologically complex words, on the basis of the form features
in the input, the simultaneous presence of two (ormore) lexomes.
Mathematically, as illustrated in the top half of Table 3, this
amounts to predicting the sum of the one-hot encoded vectors
for the stem (WALK) and the inflectional function (PAST). Thus,
NDL treats the recognition of complex words as a multi-label
classification problem (Sering et al., 2018b).

LDL proceeds in exactly the same way, as illustrated in the
bottom half of Table 3. Again, the semantic vector of the content
lexome and the semantic vector of the inflection are added. The
columns now label semantic dimensions. In the model of Baayen
et al. (2019), these dimensions quantify collocational strengths
with—in the present example—10 well-discriminated lexomes.
Regular past tense forms, such as walked and irregular past tense
forms, such as swam are treated identically at the semantic level.
It is left to the mapping W (the network taking form vectors as
input and producing semantic vectors as output) to ensure that
the different forms of regular and irregular verbs are properly
mapped on the pertinent semantic vectors.

The NDL model as laid out by Baayen et al. (2011) treats
transparent derived words in the same way as inflections, but
assigns opaque derived words their own lexomes. For opaque
words in which the semantics of the affix are present, even though
there is no clear contribution from the semantics of the base
word, a lexome for the affix is also included (e.g., employer:
EMPLOY + ER; cryptic: CRYPTIC + IC).

The LDL model, by contrast, takes the idea seriously that
derivation serves word formation, in the onomasiological sense.
Notably, derived words are almost always characterized by
semantic idiosyncracies, the exception being inflection-like
derivation, such as adverbial -ly in English7. For instance, the

7The reason that adverbial -ly is generally treated as derivational is that the word

category of words with -ly is not identical to the word category of its base word.
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TABLE 3 | Semantic vector representations for inflected words in NDL (top) and

LDL (bottom).

NDL

Lx1 Lx2 Lx3 Lx4 Lx5 Lx6 Lx7 Lx8 Lx9 Lx10

Walk 0 0 0 0 0 1 0 0 0 0

Past 0 0 0 1 0 0 0 0 0 0

Walked 0 0 0 1 0 1 0 0 0 0

LDL

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Walk −0.16 0.25 −0.07 −0.04 0.13 0.03 −0.04 0.10 0.22 −0.25

Past 0.16 0.13 −0.36 0.01 −0.07 −0.04 −0.32 0.07 0.45 0.14

Walked 0.00 0.38 −0.43 −0.03 0.06 −0.01 −0.36 0.17 0.67 −0.11

English word worker denotes not just “someone who works,” but
“one that works especially at manual or industrial labor or with a
particular material,” a “factory worker,” “amember of the working
class,” or “any of the sexually underdeveloped and usually sterile
members of a colony of social ants, bees, wasps, or termites
that perform most of the labor and protective duties of the
colony” (https://www.merriam-webster.com/dictionary/worker,
s.v.). Given these semantic idiosyncracies, when constructing
semantic vectors from a corpus, LDL assigns each derived word
its own lexome. However, in order to allow the model to assign
an approximate interpretation to unseen derived words, each
occurrence of a derived word is also coupled with a lexome for the
semantic function of the affix. For instance, worker (in the sense
of the bee) is associated with the lexomes WORKER and AGENT,
and amplifier with the lexomes AMPLIFIER and INSTRUMENT. In
this way, semantic vectors are created for derivational functions,
along with semantic vectors for the derived words themselves (see
Baayen et al., 2019, for detailed discussion and computational
and empirical evaluation)8.

To put LDL and NDL in perspective, consider the substantial
advances made in recent years in machine learning and its
applications in natural language engineering. Computational
linguistics initially worked with deterministic systems applying
symbolic units and formal grammars defined over these units.
It then became apparent that considerable improvement in
performance could be obtained by making these systems
probabilistic. The revolution in machine learning that has
unfolded over the last decade has made clear that yet another
substantial step forward can be made by moving away from
hand-crafted systems building on rules and representations,
and to make use instead of deep learning networks, such
as autoencoders, LSTM networks for sequence to sequence
modeling, and deep convolutional networks, outperforming
almost all classical symbolic algorithms on tasks as diverse as
playing Go (AlphaGo, Silver et al., 2016) and speech recognition
(deep speech, Hannun et al., 2014). How far current natural

8For a compositional approach to the semantics of complex words using

distributional semantics, see Lazaridou et al. (2013) andMarelli and Baroni (2015).

language processing technology has moved away from concepts
in classical (psycho)linguistics theory is exemplified by Hannun
et al. (2014), announcing in their abstract that they “. . . do
not need a phoneme dictionary, nor even the concept of a
‘phoneme”’ (p. 1).

The downside of the algorithmic revolution in machine
learning is that what exactly the new networks are doing often
remains a black box. What is clear, however, is that these
networks are sensitive to what in regression models would be
higher-order non-linear interactions between predictors (Cheng
et al., 2018). Crucially, such complex interactions are impossible
to reason through analytically. As a consequence, models for
lexical processing that are constructed analytically by hand-
crafting lexical representations for stems and exponents, and
hand-crafting inhibitory or excitatory connections between these
representations, as in standard interactive activation models, are
unable to generate sufficiently accurate estimates for predicting
with precision aspects of human lexical processing.

We note here that NDL and LDL provide high-level functional
formalizations of lexical processing. They should not be taken as
models for actual neural processing: biological neural networks
involve cells that fire stochastically, with connections that are
stochastic (Kappel et al., 2015, 2017) as well. Furthermore,
most neural computations involve ensembles of spiking neurons
(Eliasmith et al., 2012).

NDL and LDL are developed to provide a linguistically
fully interpretable model using mathematically well-understood
networks that, even though very simple, are powerful enough
to capture important aspects of the interactional complexities
in language, and to generate predictions that are sufficiently
precise to be pitted against experimental data. Although NDL

and LDL make use of the simplest possible networks, these
networks can, in combination with carefully chosen input
features, be surprisingly effective. For instance, for auditory
word recognition, an NDL model trained on the audio of
individual words extracted from 20 hours of German free
conversation correctly recognized around 20% of the words,
an accuracy that was subsequently found to be within the
range of human recognition accuracy (Arnold et al., 2017).
Furthermore, Shafaei Bajestan and Baayen (2018) observed that
NDL outperforms deep speech networks by a factor 2 on isolated
word recognition. With respect to visual word recognition, Linke
et al. (2017) showed, using low-level visual features, that NDL

outperforms deep convolutional networks (Hannagan et al.,
2014) on the task of predicting word learning in baboons
(Grainger et al., 2012). For a systematic comparison of NDL/LDL

with interactive activation and parallel distributed processing
approaches, the reader is referred to Appendix B.

3.3. Computational Modeling With Naive
Discriminative Learning
In the present study, we model our experiment with NDL, rather
than LDL, for two reasons. First, it turns out that NDL, the simpler
model, is adequate. Second, work is in progress to derive corpus-
based semantic vectors for German along the lines of Baayen
et al. (2019), which will include semantic vectors for inflectional
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and derivational semantic functions, but these vectors are not yet
available to us.

The steps in modeling with NDL are the following. First, the
data on which the network is to be trained have to be prepared.
Next, the weights on the connections from the form features to
the lexomes are estimated. Once the network has been trained,
it can be used to generate predictions for the magnitude of the
priming effect. In the present study, we generate these predictions
by inspecting the extent to which the form features of the prime
support the lexome of the target.

3.3.1. Data Preparation

The data on which we trained our NDL network comprised
18,411 lemmas taken from the CELEX database, under the
restrictions that (i) they contained no more than two morphemes
according to the CELEX parses, (ii) that the word was not
a compound, and (iii) that it either had a non-zero CELEX
frequency or occurred as a stimulus in the experiment. One
stimulus word, betraten, was not listed in CELEX, and hence
this form was not included in the simulation study. For each
lemma, its phonological representation and its frequency were
retrieved from CELEX. As form cues, we used triphones (for the
importance of the phonological route in reading, see Baayen et al.,
2019, and references cited there).

Each lemma was assigned its own lexome (but homophones
were collapsed). The decision to assign each lemma its own
lexome follows Baayen et al. (2019) and departs from Baayen
et al. (2011). This similar treatment of transparent and opaque
verbs is motivated by several theoretical considerations. First,
there is no binary distinction between transparent and opaque.
The meanings of particle verbs lie on a continuum between
relatively semantically compositional and relatively semantically
opaque. Second, even the compositional interpretation of a
supposedly transparent verb, such as aufstehen (“stand up”) is
not straightforward in the absence of situational experience—
the particle auf (roughly meaning on or onto) may express a
wide range of meanings, depending on cotext and context. In
what follows, we therefore assume that even transparent complex
words possess somewhat idiosyncratic meanings, and hence
should receive their own lexomes in the NDL network.

The resulting input to the model was a file with 4,492,525 rows
and two columns, one column spelling out a word’s triphones,
and the other column listing its lexome. Each word appeared in
the file with a number of tokens equal to its frequency in CELEX.
The order of the words in the file was randomized.

3.3.2. Training the Network

An NDL network with 10,180 input nodes (triphones) and 18,404
output nodes (lexomes) was trained on the input list, with
incremental updating of the weights on the connections from
features in the input to the lexomes, using the learning rule of
Rescorla and Wagner (1972) (λ = 1,α = 0.001,β = 1; i.e.,
with a learning rate of 0.001). As there were 4,492,525 learning
events in the input file, the total number of times that weights
were updated was 4,492,5259.

9Optimized software, e.g., Sering et al. (2017), makes it possible to harness multiple

cores in parallel. Using 6 cores, training the network takes <10 min. Incremental

3.4. Modeling Priming
To model the effect of priming, we presented the triphones
of the prime to the network, and summed the weights on the
connections from these triphones to the pertinent target to
obtain a measure of the extent to which the prime pre-activates
its target (henceforth PrimeToTargetPreActivation).
Figure 4, upper left panel, presents a boxplot for
PrimeToTargetPreActivation as a function of
PrimeType. Interestingly, the opaque and transparent prime
types comprise prime-target pairs for which the prime provides
substantial and roughly the same amount of pre-activation for
the target. For the other prime types, pre-activation is close to
zero. Form-related prime-target pairs show some pre-activation,
but this pre-activation is much reduced compared to the
prime-target pairs in the opaque and transparent conditions.

The upper right panel of Figure 4 presents the results obtained
when the empirical frequencies with which words were presented
to the NDL network are replaced by uniformly distributed
frequencies. This type-based simulation generates predictions
that are very similar to those of the token-based simulation.
This result shows that imprecisions in the frequency counts
underlying the token-based analysis are not responsible for the
model’s predictions.

Above, we called attention to the finding of Smolka and Eulitz
(2011) that very similar priming effects are seen when the order of
prime and target is reversed. We therefore also ran a simulation
in which we reversed the order of prime and target, and
investigated the extent to which the current targets (now primes)
co-activate the current primes (now targets). The distributions
of the predicted pre-activations are presented in the lower left
panel of Figure 4 (target-to-prime pre-activation).
Apart from one extreme outlier for the opaque condition, the
pattern of results is qualitatively the same as for the Prime-to-
Target Pre-Activation presented in the upper panel. For both
simulations, there is no significant difference in the mean for the
opaque and transparent conditions, whereas these two conditions
have means that are significantly larger than those of the other
three condition (Wilcoxon-tests with Bonferroni correction).
In summary, our NDL model generates the correct prediction
that the priming effect does not depend on the order of prime
and target.

Reaction times are expected to be inversely proportional
to PrimeToTargetPreActivation. We therefore ran
a linear model on the stimuli, and used the reciprocal
of PrimeToTargetPreActivation as response variable,
based on the simulation in which the model was presented with
the empirical word frequencies. As the resulting distribution
is highly skewed, the response variable was transformed
to log(1/(PrimeToTargetPreActivation + 0.14)10. The
opaque and transparent priming conditions were supported as
having significantly shorter simulated reaction times compared

learning is much faster than weight estimation by means of the Danks equilibrium

equations, which were used by Baayen et al. (2011).
10The shift 0.14 is slightly larger than the absolute value of the most negative pre-

activation. This shift thus ensures that all pre-activation values are positive, so that

a log-transform becomes possible.
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FIGURE 4 | Predicted NDL Prime-to-Target Pre-Activation using empirical word frequencies (upper left panel), Predicted NDL Prime-to-Target Pre-Activation using

uniformly distributed frequencies (upper right panel), Target-to-Prime Pre-Activation using empirical frequencies (lower left panel), and Prime-target Cosine Similarity

(lower right panel), broken down by prime type.

to the unrelated condition (both p ≪ 0.0001), in contrast to the
other two conditions (both p > 0.5).

Recall that the outcome vectors of NDL are orthogonal, and
that hence the present NDL models all make predictions that are
driven purely by form similarity. The model is blind to potential
semantic similarities between primes and targets, not only for the
primes and targets in the transparent and opaque conditions, but
also to semantic similarities present for the other prime types. To
understand to what extent semantic similarities might be at issue
in addition to form similarities, we therefore inspected prime and
target’s semantic similarity using distributional semantics.

3.5. Semantic Vectors From Tweets
As LDL-based semantic vectors for German are currently under
construction, we fell back on the word embeddings (semantic
vectors) provided at http://www.spinningbytes.com/resources/
wordembeddings/ (Cieliebak et al., 2017; Deriu et al., 2017).
These embeddings (obtained with word2vec, Mikolov et al.,
2013) are 300-dimensional vectors derived from a 50 million
word corpus of German tweets. Tweets are relatively short
text messages that reflect spontaneous and rather emotional
conversation. Tweets from facebook have been shown to

outperform frequencies from standard text corpora in predicting
lexical decision latencies (Herdağdelen and Marelli, 2017).

Cieliebak et al. (2017) and Deriu et al. (2017) provide separate
semantic vectors for words’ inflected variants. For instance, the
particle verb vorwerfen (“accuse”) occurs in their database in the
forms vorwerfen (infinitive and 1st or 3rd person plural present),
vorwerfe (1st person singular present), vorwirfst (2nd person
singular present), vorwirft (3rd person singular present), vorwerft
(2nd person plural present), vorgeworfen (past participle), and
vorzuwerfen (infinitive construction with zu). As we can expect
for tweets, not all inflected forms, in particular the more formal
ones, appear in the database. Importantly, the semantic vectors
are probably obtained without taking into account that the
particle of a particle verb can appear separated from its verb,
sometimes at a considerable distance (see Schreuder, 1990, for
discussion of the cognitive consequences of this separation),
as in the sentence “Sie wirft ihm seinen Leichtsinn vor,” “She
accuses him of his thoughtlessness.” Given the computational
complexity of identifying particle-verb combinations when the
particle appears at a distance, it is highly likely that for split
particle verbs, the base verb of the verb-particle combination is
processed as if it were a simple verb (e.g., werfe, wirfst, wirft,
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TABLE 4 | Effect of PrimeType in a linear model predicting cosine similarity, using

treatment coding with the semantic condition as reference level.

Estimate Std. Error t-value Pr (>|t|)

Intercept (Semantic) 0.7778 0.0134 58.19 0.0000

PrimeType = Form −0.0404 0.0197 −2.05 0.0418

PrimeType = Opaque 0.0696 0.0191 3.64 0.0004

PrimeType = Transparent 0.1083 0.0191 5.66 0.0000

PrimeType = Unrelated −0.0700 0.0150 −4.67 0.0000

TABLE 5 | GAMM fitted to inverse transformed reaction times using model-based

predictors; te(): tensor product smooth.

A. Parametric coefficients Estimate Std. Error t-value p-value

Intercept −1.9404 0.0294 −66.0214 < 0.0001

B. Smooth terms edf Ref.df F-value p-value

te(Target Activation ×

Prime-to-target pre-activation ×

Prime-to-target cosine similarity) 14.9326 17.4660 10.3959 <0.0001

Random intercepts prime 15.4237 108.0000 0.1888 0.0547

Factor smooths for trial × subject 101.6786 449.0000 2.4620 <0.0001

Random intercepts target 19.9620 40.0000 1.2681 <0.0001

werfen, and werft, 1st, 2nd, and 3rd person singular and plural
present, respectively). As a consequence, the semantic similarity
of simple verbs and particle verbs computed from the word
embeddings provided by Cieliebak et al. (2017) and Deriu et al.
(2017) is in all likelihood larger than it should be.

Not all words in the experiment are in this database; but for
six words, we were able to replace the infinitive by a related form
(einpassen→ reinpassen, verqualmen→ verqualmt, fortlaufen→
fortlaufend, bestürzen → bestürzend, verfinstern → verfinstert,
beschneien→ beschneites).

For each prime-target pair for which we had data, we
calculated the cosine similarity of the semantic vectors of
prime and target, henceforth Prime-to-Target Cosine
Similarity. Figure 4, lower right panel, shows that the
transparent pairs have the greatest semantic similarity, followed
by the opaque pairs, then the semantic pairs and the form pairs,
and the least semantic similarity by the unrelated pairs.

Surprisingly, the semantic controls have a rather low semantic
similarity, substantially less than that of the opaque pairs. A linear
model with the semantic primes as reference level clarifies that
the semantic pairs are on a par with the form controls, more
similar than the unrelated pairs, but less similar than both the
opaque and transparent pairs (Table 4).

There is a striking discrepancy between the assessment of
semantic similarity across prime types based on the cosine
similarity of the semantic vectors on the one hand, and an
assessment based on the ratings for semantic relatedness between
word pairs, as documented in Table 1. In the former, semantic
pairs pattern with form controls and differ from transparent ones,

while in the latter, semantic pairs pattern with transparent pairs
(5.5 and 5.7, respectively), and opaque pairs with form-related
ones (2.1 and 1.7, respectively).

Most important to our study is that the opaque pairs show
significantly less semantic similarity than the transparent ones
(p < 0.0047, Wilcoxon test): The analysis of word embeddings
confirms that there is a true difference in semantic transparency
between the transparent and opaque prime-target pairs. And yet,
this difference is not reflected in our reaction times.

Given the strong track record of semantic vectors in both
psychology and computational linguistics, the question arises
of whether the prime-target cosine similarities are predictive
for reaction times, and how the magnitude of their predictivity
compares to that of the NDL Prime-to-Target Pre-Activation.

3.6. Putting It All Together: Predicting
Reaction Times
To address these questions, we fitted a new GAMM to the
inverse-transformed reaction times of our experiment, replacing
the factorial predictor PrimeType with the model-based
predictor Prime-to-Target Pre-Activation. We
also replaced target frequency by the activation that the
target word receives from its own triphones (henceforth
TargetActivation, see Baayen et al. (2011) for detailed
analyses using this measure). Target activation is proportional
to frequency, and hence larger values of target activation are
expected to indicate shorter response times11.

Of the experimental dataset, about 7% of the observations
was lost due to 7 words not being available in CELEX or in
the dataset of word embeddings. To set a baseline for model
comparison, we refitted the GAMM discussed above to the 1999
datapoints of the reduced dataset. The fREML score for this
model was 360.76. A main effects model replacing Target
Frequency by Target Activation, PrimeType by
Prime-to-Target Pre-Activation, and as additional
predictor the Prime-to-Target Cosine Similarity
had a slightly higher fREML score, 370.97. An improved model
was obtained by allowing the three new covariates to interact,
using a tensor product smooth. The fREML score of this model,
summarized in Table 5, was 354.16. A chi-squared test for model
comparison (implemented in the compareML function of the
itsadug package van Rij et al., 2017) suggests that the investment
of 4 additional effective degrees of freedom is significant (p =

0.010). As the models are not nested and the increase in
goodness of fit is moderate (6.6 fREML units), we conclude
that—to obtain a model that is at least equally good—it is
possible to replace the classical predictors, such as Frequency and
PrimeType by model-based predictors without loss of prediction
accuracy12.

11Both activation measures were log-transformed after adding a small number,

0.14 for Prime-to-Target Pre-Activation and 0.01 for Target
Activation, to ensure that all pertinent numbers were positive before taking

logarithms.
12Including an interaction of PrimeType by Target Frequency in the GAMM with

classical predictors led to an increase in the fREML score, indicating overfitting

and increased model complexity without increased prediction accuracy.
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FIGURE 5 | Interaction of Target Activation by Prime-to-Target Pre-Activation by Prime-to-Target Cosine Similarity in a GAMM fitted to the inverse-transformed

reaction times. Darker shades of blue indicate shorter reaction times, and darker shades of yellow longer RTs. For visualization, one extreme outlier value for

Prime-to-Target Pre-Activation was removed (13 datapoints). Contour lines are 0.1 inverse RT units apart.

The three-way interaction involving Target
Frequency, Prime-To-Target Pre-Activation, and
Prime-to-Target Cosine Similarity is visualized
in Figure 5. The five panels show the joint effect of the first
two predictors for selected quantiles of Prime-to-Target
Cosine Similarity: From top left, to bottom right, Prime-
to-Target Cosine Similarity is set to its 0.1, 0.3, 0.5, 0.7, and 0.9
deciles. Darker shades of blue indicate shorter reaction times,
and darker shades of yellow longer RTs.

As can be seen in the upper left panel (for the first decile
of Cosine Similarity), reaction times decrease slightly as
Target Activation is increased, but only when there is
little Prime-To-Target Pre-Activation. A clear effect
of Prime-to-Target Pre-Activation is present for the
larger values of Target Activation.

Recall that, as shown in Figure 4, transparent and opaque
prime-target pairs have the same mean pre-activation, whereas
the mean cosine similarity is greater for transparent prime-target
pairs compared to opaque pairs. If both pre-activation and cosine
similarity would have independent effects, one would expect
a difference in the mean reaction times for these two prime
types, contrary to fact. The interaction of pre-activation by target

activation by cosine similarity resolves this issue by decreasing
the effect of pre-activation as cosine similarity increases. When
prime and target are more similar semantically, the effect of pre-
activation is reduced, and reaction times are longer than would
otherwise have been the case. This increase in RTs may reflect the
cognitive system slowing down to deal with two signals for very
similar meanings being presented in quick succession in a way
that is extremely rare in natural language.

We checked whether the association ratings that were used for
stimulus preparation were predictive for the reaction times. This
turned out not to be the case, not for the model with classical
predictors, nor when the association ratings were added to the
model with discrimination-based predictors.

Finally, Table 6 presents the fREML scores for the full
model, and the three models obtained when one covariate
is removed at a time. Since smaller fREML scores indicate
a better fit, Table 6 clarifies that Prime-to-Target
Pre-Activation is the most important covariate, as
its exclusion results in the worst model fit (386.11). The
variable importances of Prime-to-Target Cosine
Similarity is also substantial (383.49) whereas removing
Target Activation from the model specification reduces
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TABLE 6 | fREML scores for four models: the full model, a model without

Prime-to-Target Cosine Similarity, a model without Prime-to-Target Pre-Activation,

and a model without Target Activation.

Model fREML score

Full model 354.16

te(Target activation × prime-to-target pre-activation) 383.49

te(Target activation × prime-to-target cosine similarity) 386.11

te(Prime-to-target pre-activation × prime-to-target cosine similarity) 361.62

A smaller fREML score indicates a better fit. te(), tensor product smooth.

model fit only slightly (361.62). The model that best predicts
(AIC 354.16) pure morphological priming includes all
three factors: Prime-to-Target Pre-Activation
(capturing Prime Type), Prime-to-Target Cosine
Similarity (capturing minor semantic effects), and Target
Activation (capturing the frequency effect).

4. DISCUSSION

We presented an overt primed visual lexical decision experiment
that replicated earlier results for German complex verbs: Priming
effects were large and equivalent for semantically transparent and
semantically opaque prime-target pairs.

These findings add to the cumulative evidence of “pure
morphological priming” patterns that suggest stem access
independent of semantic compositionality in German, in contrast
to English and French, where semantic compositionality has been
reported to co-determine word processing.

One could argue that the fact that we used verbsmight account
for these cross-language differences, in particular because the
majority of the verbs inGerman hold prefixes or particles. Indeed,
there are only few studies in English that applied prefixed stimuli
that can be interpreted as verbs, such as preheat–heat (e.g., Exp.
5 in Marslen-Wilson et al., 1994b; Exp. 4 in Gonnerman et al.,
2007; EEG-experiment in Kielar and Joanisse, 2011). In these
experiments, though, opaque prime-target pairs like rehearse–
hearse did not induce priming, which contrasts with our findings
in German. Furthermore, in a previous study (Exp. 3 in Smolka
et al., 2014), we applied both verbs and nouns or adjectives in the
same experiment to make sure that the opaque priming effects
are not due to the fact that participants see verbs only. It might
indeed be the case that, in German, morphological constituents
assume amore prominent role than prefixes and suffixes in nouns
and adjectives in languages as English and French, and that
the complexity and structure of the language affects its (lexical)
processing (Günther et al., 2019).

Most importantly, because neither localist nor connectionist
models of lexical processing are able to account for the German
findings, Smolka et al. (2009, 2014, 2019) proposed a stem-
based frequency account, according to which stems constitute the
crucial morphological units regulating lexical access in German,
irrespective of semantic transparency.

In the present study, we took the next step and modeled
the German stem priming patterns using naive discriminative
learning (NDL). This morpheme-free computational model

clarifies that the observed priming effects across all prime
types may follow straightforwardly from basic principles of
discrimination learning. The extent to which sublexical features
of the prime (letter triphones) pre-activate the lexome of the
target is the strongest predictor for the reaction times. A
substantially smaller effect emerged for the activation of the target
(comparable to a frequency effect). The semantic similarity of
prime and target as gauged by the cosine similarity measure also
had a solid effect.

The semantic vectors (word embeddings) used for calculating
the cosine similarity between primes and their targets were
taken from a database of German tweets. It is noteworthy
that the cosine similarity measure provided good support
for the transparent prime-target pairs being on average
more semantically similar than the opaque prime-target pairs.
However, this difference between the two prime types was not
reflected in the corresponding mean reaction times.

A three-way interaction between prime-to-target pre-
activation, target activation, and prime-target cosine similarity
detected by a generalized additive mixed model fitted to the
reaction times clarified that as the semantic similarity of primes
and targets increases, the facilitatory effect of pre-activation
decreases. Apparently, when primes and targets are more similar,
pre-activation by the prime forces the cognitive system to slow
down in order to resolve the near simultaneous activation of two
very similar, but conflicting, meanings.

Interestingly, even though across prime types stimuli were
matched for association ratings, these ratings were not predictive
for reaction times. Stimuli were not matched across prime types
for the cosines of the angles between primes’ and targets’ tweet-
based semantic vectors, yet, surprisingly, these were predictive
for reaction times. This finding is particularly surprising for the
present data on German, as in previous work semantic similarity
measures (not only human but also vector-based measures like
LSA (Landauer and Dumais, 1997) and HAL (Lund and Burgess,
1996)) were observed not to be predictive of reaction times. It
is conceivable that the present semantic measure is superior to
LSA and HAL, due to it being calculated from a large volume of
tweets—Herdağdelen andMarelli (2017) point out that measures
based on distributional semantics calculated from corpora of
social media provide excellent predictivity for lexical processing.

A caveat is in order, though, with respect to the cosine
similarity measure, as in all likelihood particle verbs and their
simple counterparts are estimated to be somewhat more similar
than they should be. Particles can be separated by several
words from their stems, and these stems will therefore be
treated as simple verbs by the algorithm constructing semantic
vectors (especially when the particle falls outside word2vec’s 5-
word moving window). This, however, implies that the cosine
similarity measure must be less sensitive than it could have been:
The vector for the simple verb is artifactually shifted in the
direction of the vector of its particle verb, with the extent of this
shift depending on the frequency of the simple verb, and the
frequencies of the separated and non-separated derived particle
verbs. As simple verbs typically occur with several particles, the
semantic vectors for these simple verbs are likely to have shifted
somewhat in the direction of the centroid of the vectors of its
particle verbs.
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Nevertheless, the present tweet-based semantic vectors
contribute to the prediction of reaction times. Importantly, there
is no a-priori reason for assuming that the rate at which particles
occur separated from their stem would differ across prime types.
As a consequence, the partial confounding of particle verbs and
simple verbs by the distributional semantics algorithm generating
the semantic vectors cannot be the main cause of the different
distributions of cosine similarities across the different prime
types (in this context, it is worth noting that any skewing in
frequency counts of complex and simple verbs does not affect the
qualitative pattern of results for the predictor with the greatest
effect size, the prime-to-target activation measure, as shown by
the simulation in which all words are presented to the network
with exactly the same frequency.We leave answering the question
of why this particular frequency measure appears to be effective
as predictor for the present reaction times to further research).

An important result is that a generalized additivemixedmodel
fitted to the reaction times provides a fit that is at least as good, if
not slightly better, when the activation, pre-activation, and cosine
similarity measures are used, compared to when prime type and
frequency of occurrence are used as predictors (reduction in
fREML score: 6.6, which, for 4 degrees of freedom is significant
(p = 0.010) according to the chi-squared test implemented in the
compareML function of the itsadug package)13.

The theoretical contribution of this study is that it challenges
the general localist interactive activation framework that
dominates the current discourse on morphological processing.
Stems and morphemes are assumed to be psychologically real
(see e.g., Zwitserlood, 2018), and to excite or inhibit each
other. Furthermore, these high-level concepts are apparently
understood to be sufficient for explaining the effects of
experimental manipulations. NDL, by contrast, provides a
framework within which quantitative measures can be derived
that can be pitted against experimental response variables. NDL

(and LDL) make use of the simplest possible network, the
mathematics of which are well understood—in essence, NDL is
nothing more (or less) than incremental multivariate multiple
(logistic) regression. An NDL model is essentially parameter-
free14, and driven completely by the distributional properties
of the words in the corpus it is trained on. NDL, just as the
interactive activation framework, requires the analyst to make
decisions on input and output nodes, but unlike the interactive
activation framework, no hand-crafting of connections is
required, and no search is required for finding a set of parameters
thatmake themodel behave in the way desired. As a consequence,
the measures derived from an NDL network can be used simply

13When the analysis is restricted to the prime-target pairs in the Opaque and

Transparent conditions, the model with NDL predictors again outperforms the

model with classical predictors, now by 24.4 fREML units (for 8 edf, p < 0.0001).

This provides further support against the present result being due to subjects using

a task strategy using stem identity as response criterion.
14The learning rule of Rescorla and Wagner has several parameters that were

introduced specifically to model differences in the salience of input features and

the importance to the animal of different outcomes. In our implementation, we

always set λ (representing the maximum amount of learning) to 1, and use a fixed

learning rate (the product of the α and β parameters). In Baayen et al. (2011), the

learning rate was 0.01, but subsequent work showed optimal performance when

the learning rate is set to 0.001. For the simulation reported here, these values were

used, and no simulations were run with different values.

as a statistical tool for assessing how well a word’s meaning
can be “classified” or “discriminated” given its form features. As
expected, reaction times become shorter when target meanings
are better discriminated, i.e., when target activation is higher and
the probability of the target being correctly classified is greater.
Furthermore, when a morphologically related prime is presented
to the network, a distribution of activations over the lexomes
ensues in which the activation of the target is greater compared to
trials with primes that are not morphologically related. This pre-
activation of the target by reading the prime apparently carries
over to the reading of the target15.

Although NDL-based measures can be used in the same way
as measures such as word frequency and neighborhood density,
the linguistic theory underlying NDL holds that morphemes (in
the sense of minimal signs) as well as sublexical form units,
such as stems and exponents are not necessary. At the same
time, this theory is analytical at the semantic level. What Baayen
et al. (2019) and Baayen et al. (2018) have shown for LDL is
that accurate mappings between form vectors and distributional
semantic vectors can be set up with linear transformations, i.e.,
with simple two-layer networks (and no hidden layers). Themore
comprehensive model of the mental lexicon developed in Baayen
et al. (2019) and Chuang et al. (2019) makes use of multiple
such networks to generate quantitative predictions for auditory
comprehension (with audio as input), visual comprehension, and
speech production. A proof of concept that inflected forms of rich
paradigms can be predicted from their corresponding semantic
vectors without requiring sublexical form units, such as stems
and exponents is provided by Baayen et al. (2018). It is within this
wider context that the present computational modeling of overt
primed visual lexical decision comes into its own.

It is important to note that the design decision to assign
complex verbs their own lexome, irrespective of semantic
transparency, following Baayen et al. (2019), is crucial for
enabling NDL to simulate the German behavioral priming data.
This design decision is well-motivated, as it is widely recognized
that in word formation, in contrast to inflection, complex forms
almost always have their idiosyncratic shades of meaning, even
when classified as “transparent.”

We have shown that the effect of morphological priming
can be modeled precisely with a simple network that eschews
morphemes and sublexical units, such as stems, affixes, and
exponents, a result that is consistent with Word and Paradigm
Morphology (Blevins, 2016) and the model of the mental lexicon
proposed in Baayen et al. (2019). Do these findings imply
that morphemes or morphs do not have any psychological or
cognitive reality? Answering this question is not straightforward.

First, it is logically possible that morphemes are actually
cognitively real and crucially involved in the lexical processing
of German verbs. In this case, NDL is no more than a machine
learning algorithm that generates correct predictions, but for the
wrong reasons. To give substance to this argumentation, it will be

15The NDL framework currently does not provide mechanisms that account for

how the cognitive system reaches a response on the basis of lexome activations.

Analyses with the generalized additive model indicate non-linear interactions for

these mechanisms. At present, all we can do is bring these non-linearities to light

with GAMs, in the hope that across experiments consistent patterns will emerge

that then can be the subject of further computational modeling.
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FIGURE 6 | Connection weights from triphones to the lexome STOSSEN (upper

panel), and to the lexome ANSTOSSEN (lower panel). As the primes are of much

lower frequency of occurrence than the targets, the magnitude of weights in

the lower panel is substantially reduced compared to the upper panel. In the

lower panel, the blue and red disks are presented on the same scale as the

upper panel. The disks in gray and black represent the same datapoints, but

now on an enlarged scale, depicted at the right-hand side of the plot.

essential for alternative explicit computational models to be put
forward to champion the cause of units representingmorphemes.

Second, the sublexical cues (triphones) that are shared by
prime and target drive the prime-to-target pre-activation. For
the prime-target pair ANSTOSSEN, STOSSEN, the set of shared
trigrams is Sto, tos, os@, s@n, s@n, @n#, and the
set of trigrams unique to only one of the two words is
#an, anS, nSt, and #St. Figure 6 presents the connection
strengths of these cues to the lexome STOSSEN (upper panel)
and ANSTOSSEN (lower panel). The cues that occur in both
lexomes (the blue dots with inner red dots) support STOSSEN

(upper panel), or ANSTOSSEN (lower panel) to exactly the
same extent—as expected, as the cues are sublexical features
that by definition must provide the same support for STOSSEN

irrespective of whether they are embedded in the word form
Stos@n or anStos@n.

Figure 6 brings to the fore two important points. First, the
two central triphones of the stem that are shared by both the
simple and the complex verb, Sto and tos, provide substantial
contributions to the (pre-)activation of both STOSSEN and
ANSTOSSEN, as expected. This observation fits well with the
stem-frequency hypothesis, according to which the stem is the
crucial unit mediating lexical access. Second, however, triphones
at the boundary of the stem can have even greater strengths
than these central triphones. For STOSSEN, this is the case for
os@, and for ANSTOSSEN, this happens for both nSt and os@.

The boundary triphone s@n also makes a non-negligible, albeit
much smaller, contribution to the activation of these lexomes.
Crucially, it is exactly here that NDL moves beyond the stem-
frequency hypothesis. Triphones at the boundary of the stem
often carry substantial discriminatory potential. The boundary
triphone os@ is important for discriminating (AN)STOSSEN from
nominal lexomes, such as TROSS, STOSS, SCHLOSS and adjectival
lexomes, such as GROSS, and the boundary triphone nSt is
important for discriminating ANSTOSSEN from STOSSEN (note
its high positive value as cue for ANSTOSSEN and its slightly
negative value as cue for STOSSEN).

In other words, the present NDL model can be viewed as
a refinement of the stem-frequency model that, by taking into
account not only central sublexical features of the stem, but also
the discriminatory potential of features at the stem boundary,
achieves superior predictivity16.

Third, NDL (and LDL) target implicit learning, the continuous
recalibration of the lexicon that goes on without conscious
thought and attention, similar to the way that object recognition
is continually recalibrated (Marsolek, 2008). The finding of
Smolka et al. (2015) that morphological priming effects are visible
in evoked response potentials even in the absence of behavioral
correlates is consistent with NDL capturing subliminal lexical
processing. However, we also reflect on language, we enjoy word
play, we have poetry, we teach grammar in schools, and in
second language teaching we instruct learners how to put words
together from their parts. Patients suffering from a stroke may
benefit from explicit instruction about how inflected words can
be put together (Nault, 2010). This knowledge about language is
cognitively real, and it may also affect lexicality decisions inmeta-
linguistic tasks, such as primed lexicality decision making. NDL

and LDL, however, are blind to this higher-order knowledge.
Fourth, in LDL, we can ask the question of how the triphone

or trigram units used for its form vectors might be organized in
two-dimensional space. The ordering of such units in the model’s
form vectors is not cognitively meaningful, but their organization
in a 2-D plane, used as approximation of the cortical surface,
might reveal interesting clustering. Depending on language and
inflectional or derivational function, clusters in 2D space are
indeed sometimes visible in triphone graphs when projected onto
a plane, subject to constraints of stress minimization under self-
organization (see Baayen et al., 2018, for detailed discussion).
Topographic patterning under self-organization is also observed
by Chersi et al. (2014), Marzi et al. (2018), who use temporal
self-organizing maps (TSOMs). In their theory, trajectories in
these maps capture, albeit fluidly, stems, and affixes. Since in
this theory these trajectories subserve production, they can
be viewed as morpheme-like units that are algorithmically
functional for speech production. By contrast, the clusters of
triphones that emerge under self-organization in NDL/LDL have
no such algorithmically functional role. They typically do not
form consecutive sequences of phones as found for stems and

16For detailed discussion of the importance of sublexical features at the boundary

of morphemic units from a discrimination learning perspective, see Baayen et al.

(2016b). For frailty at stem boundaries in speech production, see Baayen et al.

(2019).
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affixes in TSOMs. They emerge purely as a consequence of self-
organizational constraints on spatial clustering of triphones given
their overlap. If such clusters could be shown to correctly describe
neuronal organization at more detailed levels of neurobiological
modeling, then if such clusters were to be detected by brain
imaging techniques, they should not be mistaken for evidence
supporting algorithmically functional morphemes. In short,
morpheme-like clusters can arise in NDL/LDL, without having
any of the algorithmic functionalities commonly attributed to
morphemes. Thus, these clusters of units are fundamentally
different from neuronal clusters that might be hypothesized to
underly localist morpheme units in interactive activation models.

Fifth, NDL and LDL are based on wide learning networks,
simple two-layer networks with large numbers of units that can
be trained very quickly, the mathematics of which are well-
understood, and that can perform with surprising accuracy
given well-chosen input and output representations (see e.g.,
Linke et al., 2017; Shafaei Bajestan and Baayen, 2018). Deep
learning networks offer architectures in which units on hidden
layers have the potential to become sensitive to, and in some
sense “represent,” morpheme-like units. Such networks are
powerful statistical classifiers, but require decisions about the
number of hidden layers, the number of units on these layers,
and where to position convolutional and/or recurrent layers.
Unfortunately, deep learning networks are widely recognized
to have a “black box” nature, although progress is being made
toward understanding why they work (see e.g., Cheng et al., 2018;
Daniel and Yeung, 2019). NDL and LDL are specifically designed
to provide both interpretational transparency and accurate and
falsifiable predictions.

Importantly, what sets both wide learning and deep learning
apart from the interactive activation framework is, first, that the
former models are dynamically learning classifiers whereas the
latter approach builds on the idea of a static classifier with a
large number of parameters that have to be set manually, and
second, that the former are end-to-end models whereas the latter
solves only a partial task. The interactive activation framework
is set up to select one word form and suppress all others, given
visual input, but it remains silent about the semantics to which
this form is supposed to provide access. This approach is still
chained to the metaphor of the paper dictionary, in which form
entries have to be located that, once found, provide access to
meaning (see also Elman, 2009, for detailed criticism of the
dictionarymetaphor). By contrast, wide learning, followingmany
practical applications in computational linguistics that make use
of deep learning, is set up to predict the ultimate true goal of
comprehension: the semantics targeted by the input signal. The
results obtained with NDL and LDL obtained thus far suggest that
this goal can be reached without mediation by form units, such as
stems, affixes, or exponents. It is likely that future versions of the
general LDL model of Baayen et al. (2019) will incorporate deep
learning for some of its components, sacrificing interpretational
transparency for increased accuracy. If morph-like units arise
in such versions of the model, these units will not be part of a
classical morphological calculus with symbolic representations
and rules operating on these representations, such as proposed
by Chomsky and Halle (1968) and Pinker (1999). Their function

would be to statistically integrate high-dimensional evidence for
semantics in interaction with large numbers of other such units.

In the light of these considerations, it is clear that the
present study cannot provide a full answer to the question of
whether morphemes are, or are not, cognitively real. Clearly, the
behavioral findings that have been interpreted as evidence for
stem-driven lexical access are real. What the present study adds
to this is that there actually is another possible interpretation
for the observed priming effects, namely, prime-to-target
pre-activation in a discriminative lexicon. The discriminative
lexicon provides detailed quantitative predictions within a larger
conceptual framework that is informed by recent developments
in linguistic morphology, using a computational algorithm
that is completely driven by the distributional properties of
the lexicon, and that does not require (nor allow) tuning
of free parameters to bring the model’s performance in line
with the observed data. The present modeling results thus
challenge proponents of morpheme-driven, decompositional,
lexicons to demonstrate that their high-level conceptual theories
can actually be made to work algorithmically. This in
turn will make it possible to pit against each other the
detailed quantitative predictions of morpheme-based and
morpheme-free models.
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