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The current study tests whether individuals (n � 53) produce distinct speech adaptations
during pre-scripted spoken interactions with a voice-AI assistant (Amazon’s Alexa) relative
to those with a human interlocutor. Interactions crossed intelligibility pressures (staged
word misrecognitions) and emotionality (hyper-expressive interjections) as conversation-
internal factors that might influence participants’ intelligibility adjustments in Alexa- and
human-directed speech (DS). Overall, we find speech style differences: Alexa-DS has a
decreased speech rate, higher mean f0, and greater f0 variation than human-DS. In speech
produced toward both interlocutors, adjustments in response to misrecognition were
similar: participants produced more distinct vowel backing (enhancing the contrast
between the target word and misrecognition) in target words and louder, slower,
higher mean f0, and higher f0 variation at the sentence-level. No differences were
observed in human- and Alexa-DS following displays of emotional expressiveness by
the interlocutors. Expressiveness, furthermore, did not mediate intelligibility adjustments in
response to a misrecognition. Taken together, these findings support proposals that
speakers presume voice-AI has a “communicative barrier” (relative to human interlocutors),
but that speakers adapt to conversational-internal factors of intelligibility similarly in human-
and Alexa-DS. This work contributes to our understanding of human-computer
interaction, as well as theories of speech style adaptation.
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INTRODUCTION

People dynamically adapt their speech according to the communicative context and (apparent)
barriers present. In the presence of background noise, for example, speakers produce speech that is
louder, slower, and higher pitched (“Lombard speech”) (for a review, see Brumm and Zollinger,
2011), argued by some to be an automatic, non-socially mediated response (Junqua, 1993; Junqua,
1996). Other work has shown that people adapt their speech to the type of listener they are engaging
with. One stance is that speakers presume certain types of interlocutors to have greater
communicative barriers (Clark and Murphy, 1982; Clark, 1996; Oviatt et al., 1998b; Branigan
et al., 2011). Supporting this account, prior work has shown that people use different speech styles
when talking to non-native speakers (Scarborough et al., 2007; Uther et al., 2007; Hazan et al., 2015),
hearing impaired adults (Picheny et al., 1985; Scarborough and Zellou, 2013; Knoll et al., 2015), and
computers (Oviatt et al., 1998a; Oviatt et al., 1998b; Bell and Gustafson, 1999; Bell et al., 2003;
Lunsford et al., 2006; Stent et al., 2008; Burnham et al., 2010; Mayo et al., 2012; Siegert et al., 2019).
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For example, computer-directed speech (DS) has been shown to
be louder (Lunsford et al., 2006), with durational lengthening
(Burnham et al., 2010; Mayo et al., 2012), greater vowel space
expansion (Burnham et al., 2010), and smaller pitch range (Mayo
et al., 2012) than speech directed to a (normal hearing
adult) human.

This paper explores whether speakers use a specific speech
style (or “register”) when talking to a voice-activated artificially
intelligent (voice-AI) assistant. Voice-AI assistants (e.g.,
Amazon’s Alexa, Apple’s Siri, Google Assistant) are now a
common interlocutor for millions of individuals completing
everyday tasks (e.g., “set a timer for 5 min”, “turn on the
lights”, etc.) (Bentley et al., 2018; Ammari et al., 2019). A
growing body of research has begun to investigate the social,
cognitive, and linguistic effects of humans interacting with voice-
AI (Purington et al., 2017; Arnold et al., 2019; Cohn et al., 2019b;
Burbach et al., 2019). For example, recent work has shown that
listeners attribute human-like characteristics to the text-to-
speech (TTS) output used for modern voice-AI, including
personality traits (Lopatovska, 2020), apparent age (Cohn
et al., 2020a; Zellou et al., 2021), and gender (Habler et al.,
2019; Loideain and Adams, 2020). While the spread of voice-
AI assistants is undeniable—particularly in the
United States—there are many open scientific questions as to
the nature of people’s interactions with voice-AI.

There is some evidence for a different speech style used in
interactions with voice-AI assistants: several studies have used
classifiers to successfully identify “device-” and “non-device-
directed” speech from users’ interactions with Amazon Alexa
(Mallidi et al., 2018; Huang et al., 2019). Yet, in these cases, the
linguistic content, physical distance from the device, and other
factors were not controlled and might have contributed to
differences that are not speech-style adaptations per se.
Critically, holding the interaction constant across a voice-AI
and human interlocutor can reveal if individuals have a
distinct voice-AI speech style. Some groups have aimed to
compare human and voice-AI speech styles in more similar
contexts. For instance, the Voice Assistant Conversation
Corpus (VACC) had participants complete the same type of
communicative task (setting an appointment on a calendar and
doing a quiz) with an Alexa Echo and a real human confederate
(Siegert et al., 2018). Several studies measuring the acoustic-
phonetic features of human- and Alexa-DS in the corpus found
productions toward Alexa were louder (Raveh et al., 2019; Siegert
and Krüger, 2021), higher in fundamental frequency (f0,
perceived pitch) (Raveh et al., 2019), and contained different
vowel formant characteristics1 (Siegert and Krüger, 2021). Yet,
similar to studies of individuals using Alexa in their homes (e.g.,
Huang et al., 2019), differences observed in the VACC might also
be driven by physical distance from the device and conversational
variations. The current study holds context and physical distance
from the microphone constant for the two interlocutors to
address these limitations in prior work.

Making a direct human- and Alexa-DS comparison in a
scripted task can speak to competing predictions across
different computer personification accounts: if speech styles
differ because speakers have a “routinized” way of talking to
computers (in line with routinized interaction accounts) or if
speech styles are the same (in line with technology equivalence
accounts). Routinized interaction accounts propose that people
have a “routinized” way of interacting with technological systems
(Gambino et al., 2020), borne out of real experience with the
systems, as well as a priori expectations. As mentioned, there is
ample evidence for a computer-DS register (e.g., Bell and
Gustafson, 1999; Bell et al., 2003; Burnham et al., 2010).
Specifically, some propose that the computer faces additional
communicative barriers, relative to humans (Oviatt et al., 1998b;
Branigan et al., 2011). These attitudes appear to be a priori,
developed before any evidence of communicative barriers in an
interaction. For example, people rate TTS voices as less
“communicatively competent” (Cowan et al., 2015). Therefore,
one prediction for the current study is that speakers might have
overall different speech styles in human- and Alexa-DS, reflecting
this presumed communicative barrier and a “routinized” way of
talking to voice-AI.

Technology equivalence accounts, on the other hand, propose
that people automatically and subconsciously apply social
behaviors from human-human interaction to their interactions
with computer systems (e.g., Lee, 2008). For example, “Computers
are Social Actors” (CASA) (Nass et al., 1994; Nass et al., 1997)
specifies that this transfer of behaviors from human-human
interaction is triggered when people detect a “cue” of humanity
in the system, such as engaging with a system using language. For
example, people appear to apply politeness norms from human-
human interaction to computers: giving more favorable ratings
when a computer directly asks about its own performance, relative
to when a different computer elicits this information (Nass et al.,
1994; Hoffmann et al., 2009). In line with technology equivalence
accounts, there is some evidence for applied social behaviors to
voice-AI in the way people adjust their speech, such as gender-
mediated vocal alignment (Cohn et al., 2019b; Zellou et al., 2021).
In the present study, one prediction from technology equivalence
accounts is that people will adjust their speech patterns when
talking to voice-AI and humans in similar ways if the
communicative context is controlled.

Different Strategies to Improve Intelligibility
Following a Misrecognition?
To probe routinized interaction and technology equivalence
accounts, the present study further investigates if speakers
adapt their speech differently after a human or a voice-AI
assistant “mishears” them. There is evidence that speakers
monitor communicative pressures during an interaction,
varying their acoustic-phonetic output to improve intelligibility
when there is evidence listeners might mishear them (Smiljanić
and Bradlow, 2009; Hazan and Baker, 2011). Lindblom’s (1990)
Hyper- and Hypo-articulation (H&H) model proposes a real-
time trade-off between speakers’ needs (i.e., to preserve
articulatory effort) and listeners’ needs (i.e., to be more1They do not report a directionality of difference.
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intelligible). While the majority of prior work examining
speakers’ adaptations following a computer misrecognition has
lacked a direct human comparison, many of the adjustments
parallel those observed in human-human interaction; for
example, speakers produce louder and slower speech after a
dialogue system conveys that it “heard” the wrong word
(Oviatt et al., 1998a; Bell and Gustafson, 1999; Swerts et al.,
2000). Additionally, some studies report vowel adaptations in
response to a misunderstanding that are consistent with
enhancements to improve intelligibility, including vowel space
expansion (Bell and Gustafson, 1999; Maniwa et al., 2009) and
increase in formant frequencies (Vertanen, 2006). There is also
evidence of targeted adjustments: speakers produce more vowel-
specific expansion (e.g., high vowels produced higher) in response
to misrecognitions by a dialogue system (Stent et al., 2008). Will
speakers use different strategies to improve intelligibility
following a staged word misrecognition based on who their
listener is? One possibility is that speakers might have a
“routinized” way of improving their intelligibility following a
misrecognition made by a voice-AI assistant, which would
support routinized interaction accounts. At the same time,
Burnham et al. (2010) found no difference between speech
adjustments post-misrecognition for an (apparent) human and
digital avatar, but only more global differences for the computer
interlocutor (i.e., speech with longer segmental durations and
with greater vowel space expansion). Therefore, it is possible that
speakers will produce similar intelligibility adjustments in
response to a staged misrecognition made by either a voice-AI
or human listener, supporting technology equivalence accounts.

Additionally, the current study adds a novel manipulation in
addition to intelligibility pressures: emotional expressiveness.When
an interlocutor “mishears”, they might be disappointed and express
it (e.g., “Darn! I think I misunderstood.”); when they get it correct,
they might be enthusiastic and convey that in their turn (e.g.,
“Awesome! I think I heard boot.”). Emotional expressiveness is a
common component of naturalistic human conversations,
providing a window into how the listener is feeling (Goffman,
1981; Ameka, 1992). This “socio-communicative enhancement”
might increase the pressure for speakers to adapt their speech for
the listener. On the one hand, this enhanced emotional
expressiveness might result in even more similar adjustments for
voice-AI and human interlocutors, since adding expressiveness
might increase the perception of human-likeness for the device,
which could strengthen technology equivalence. Indeed, there is
some work to suggest that emotional expressiveness in a computer
system is perceived favorably by users. For instance, Brave and
colleagues (2005) found when computer systems expressed
empathetic emotion, they were rated more positively. For voice-
AI, there is a growing body of work testing how individuals perceive
emotion in TTS voices (Cohn et al., 2019a; Cohn et al., 2020a). For
example, an Amazon Alexa Prize socialbot was rated more
positively if it used emotional interjections (Cohn et al., 2019a).
Alternatively, the presence of emotionality might lead to distinct
clear speech strategies for the human and voice-AI interlocutors.
For example, a study of phonetic alignment (using the same corpus
in the current study) found that vowel duration alignment differed
both by the social category of interlocutor (human vs. voice-AI) and

based on emotionality (Zellou and Cohn, 2020): participants
aligned more in response to a misrecognition, consistent with
H&H theory (Lindblom, 1990), which increased even more
when the voice-AI talker was emotionally expressive when
conveying their misunderstanding (e.g., “Bummer! I’m not sure
I understood. I think I heard sock or sack.”). Still, that study
examined just one acoustic difference in speech behavior (vowel
duration alignment). The present study investigates whether
emotionality similarly mediates targeted speech adjustments to
voice-AI, an underexplored research question.

Current Study
The present study examines a corpus of speech directed at a human
and voice-AI interlocutor which crossed intelligibility factors
(staged misrecognitions) and emotionality of the interlocutor’s
responses in identical pre-scripted tasks (Zellou and Cohn, 2020).
This is the first study, to our knowledge, to test both intelligibility
and emotional expressiveness factors in speech style adaptations
for a voice-AI assistant and human. Here, the Amazon Alexa voice
(US-English, female) was selected for its ability to generate
emotionally expressive phrases recorded by the voice actor,
common in Alexa Skills Kit apps (“Speechcons”). To determine
overall differences between Alexa- and human-DS, as well as more
local intelligibility adjustments in response to a staged
misrecognition, we measure several acoustic features associated
with computer-DS and/or “clear” speech: intensity, speech rate,
mean f0, f0 variation, and vowel formant characteristics (F1, F2).

METHODS

Participants
Data were taken from a corpus (Zellou and Cohn, 2020)
containing 53 native English speaking participants (27 female,
26 male; mean age of 20.28 years old, sd � 2.42 years; range:
18–34) talking to a voice-AI and human interlocutor in an
identical interactive task. None reported having any hearing
impairment. Nearly all participants (n � 49) reported using a
voice-AI system: Alexa (n � 35), Siri (n � 13), Google Assistant
(n � 1). Participants were recruited from the UC Davis
psychology subjects pool and completed informed consent, in
pursuance with the UC Davis Institutional Review Board (IRB).

Target Words
Sixteen target words, presented in Table 1, were selected from
Babel (2012) who had chosen the items for being low frequency
in American English; higher frequency items have been shown
to be more phonetically reduced in production (e.g.,
Pluymaekers et al., 2005). Target words were all CVC words
containing either /i, æ, u, ow, a/ and a word-final obstruent

TABLE 1 | Target words and their (minimal pairs) used in the experiment dialogue.

Bat (boat) Boot (beat) Cheek (choke) Coat (kate)
Cot (cat) Deed (dude) Dune (dean) Hoop (heap)
Moat (meet) Pod (pad) Soap (seep) Sock (sack)
Tap (top) Toot (teat) Tot (tat) Weave (wove)
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(e.g., /z/, /p/) (a subset of the words used in Babel, 2012). In
addition, we selected a real-word vowel minimal pair, differing
in vowel backness, to be used in the interlocutor responses in the
misrecognition condition.

Interlocutor Recordings
The human and voice-AI interlocutor responses were pre-recorded.
For the human, a female native California English speaker recorded
responses in a sound attenuated booth, with a head-mounted
microphone (Shure WH20 XLR). The Alexa productions were
generated with the default female Alexa voice (US-English) with
the Alexa Skills Kit. Both interlocutors generated introductions (“Hi!
I’mMelissa. I’m a research assistant in the Phonetics Lab.”/“Hi! I’m
Alexa. I’m a digital device through Amazon.”) and voice-over
instructions for the task. We recorded each interlocutor
producing two responses for each target word: a “correctly
understood” response (“I think I heard bat”) and an
“misrecognition” response (“I’m not sure I understood. I think I
heard bought or bat.”). Figure 1 provides an example of the different
interlocutor responses. Order of target word andmisheard word was
counterbalanced across sentences, such that the “correct” word did
not always occur in the same position in these response types.

Both interlocutors generated 16 emotionally expressive
interjections as well: eight positive interjections (bam, bingo,
kapow, wahoo, zing, awesome, dynamite, yipee) and eight
negative interjections (argh, baa, blarg, oof, darn, boo, oy,
ouch) selected from the Speechcons website2 at the time of the

study. We generated these interjections for the Alexa text-to-
speech (TTS) output using synthesis markup language (SSML)
tags. The human produced these interjections in an expressive
manner (independently, not imitating the Alexa productions).
We randomly assigned each interjection to the interlocutor
responses, matching in whether the response was correctly
understood (positive interjection) or misunderstood (negative
interjection). The full set of interjections was used twice in each
block (e.g., eight positive interjections randomly concatenated to
16 correct productions). The full set of interlocutor productions
are available on Open Science Framework3.

Procedure
Participants completed the experiment while seated in a sound-
attenuated booth, wearing a head-mounted microphone (Shure
WH20 XLR) and headphones (Sennheiser Pro), and facing a
computer screen. First, we collected citation forms of the target
words produced in sentences. Participants read the word in a
sentence (“The word is bat.”) presented on the screen. Target
words were presented randomly.

Following the Citation block, participants completed identical
experimental blocks with both a human talker and an Alexa talker
(block order counterbalanced across subjects). First, the
interlocutor introduced themselves and then went through
voice-over instructions with the participant. Participants saw
an image corresponding to the interlocutor category: stock
images of “adult female” (used in prior work; Zellou et al.,
2021) and “Amazon Alexa” (2nd Generation Black Echo).

FIGURE 1 | Interaction trial schematic. After participants read a sentence, the interlocutor (human or Alexa) responds in one of the Staged Misunderstanding
Conditions (correctly heard, misrecognition) and Emotionality Conditions (neutral, emotionally expressive). Then, the subject responds (the production we analyze).
Finally, the interlocutor provides a follow-up response.

2https://developer.amazon.com/en-US/docs/alexa/custom-skills/speechcon-
reference-interjections-english-us.html 3doi: 10.17605/OSF.IO/3Y59M
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Each trial consisted of four turns. Participants first read a
sentence aloud containing the target word sentence-finally (e.g.,
“The word is bat.”). Then, the interlocutor responded in one of
four possible Staged Misunderstanding (correctly heard/
misrecognition) and Emotionality (neutral/expressive)
Conditions (see Figure 1). Next, the participant responded to
the interlocutor by repeating the sentence (e.g., “The word is
bat.”). This is the response that we acoustically analyze. Finally,
the interlocutor provides a confirmation, randomized (“Thanks”,
“Perfect”, “Okay”, “Uh huh”, “Got it”, etc.).

In 50% of trials, the interlocutor (human, Alexa)
“misunderstood” the speakers, while in the other 50% they
heard correctly. Additionally, in 50% of trials, the interlocutor
responded with an expressive production (distributed equally
across correctly heard and misrecognition trials). Order of target
words was randomized, as well as trial correspondence to the
Misunderstanding and Emotionality Conditions. In each block,
participants produced all target sentences once for all conditions
for a total of 128 trials for each interlocutor (16 words x two
misunderstanding conditions x two emotionality conditions).
Participants completed the task with both interlocutors (256
total target sentences). After the speech production experiment
ended (and while still in the soundbooth), participants used a
sliding scale (0–100) to rate how human-like each interlocutor
sounded (order of interlocutor was randomized) (“How much
like a real person did [Alexa/Human] sound?” (0 � not like a real
person, 100 � extremely realistic)”. The overall experiment took
roughly 45 min.

Acoustic Analysis
Four acoustic measurements were taken over each target sentence
in both the Citation and Interaction blocks using Praat scripts
(DiCanio, 2007; De Jong et al., 2017): intensity (dB), speech rate
(syllables/second), mean fundamental frequency (f0) (semitones,
ST, relative to 100 Hz), and f0 variation (ST). We centered the
measurements from the Interaction blocks within-speaker,
subtracting their Citation speech mean value (within-speaker,
within-word). This measurement indicates changes from the
speakers’ citation form for that feature.

To extract vowel-level features, recordings were force-
aligned (using the Forced Alignment and Vowel Extraction
(FAVE) suite) (Rosenfelder et al., 2014). Next, vowel
boundaries were hand-corrected by trained research
assistants: vowel onsets and offsets were defined by the
presence of both higher format structure and periodicity.
Following hand-correction, we measured vowel duration and
vowel formant frequency values (F1, F2) at vowel midpoint with
FAVE-extract (Rosenfelder et al., 2014) for the subset of 13
words containing corner vowels: /i/ (cheek, weave, deed), /u/
(boot, hoop, toot, dune), /a/ (pod, cot, sock, tot), and /æ/ (bat,
tap). We additionally scaled the formant frequency values (from
Hertz) using a log base-10 transformation and centering each
value to the subject’s citation production values for that word
(Nearey, 1978).

In order to assess whether speech changes made by
participants were not simply alignment toward the
interlocutors, the same sentence-level (rate, mean f0, f0

variation) and target vowel measurements (duration, F1, F2)
were also taken over each interlocutor’s production in Turn 2
(e.g., “I think I heard weave.”). In order to compare across the
interlocutors, formant frequency values (F1, F2) were centered
relative to each interlocutor’s mean value for that word (log mean
normalization: Nearey, 1978).

Statistical Analysis
Participants’ sentence-level values for each acoustic feature
(centered to speaker citation form values) were modeled in
separate linear mixed effects models with the lme4 R package
(Bates et al., 2015), with identical model structure: fixed effects of
Interlocutor (voice-AI, human), Staged Misunderstanding
Condition (correctly heard, misrecognition), Expressiveness
(neutral, expressive), and all possible interactions, with by-
Sentence and by-Speaker random intercepts.

Participants’ vowel-level features (F1, F2) were also modeled
in separate linear mixed effects models with a similar structure as
in the sentence-level models: Interlocutor, Staged
Misunderstanding Condition, Expressiveness Condition, with
by-Word and by-Speaker random intercepts. In both the F1
and F2 model, we included an additional predictor of Vowel
Category (For the F1 (height) model, this factor included two
height levels: high vs. low vowels; for the F2 (backness) model,
this factor included two levels: front vs. back vowels) and all
possible interactions with the other predictors (Vowel
Category*Interlocutor*Misunderstanding*Emotion). The
formant models (F1, F2) additionally included a fixed effect of
Vowel Duration (centered within speaker).

RESULTS

Human-likeness Rating
Figure 2 provides the mean values for participants’ human-like
ratings of the voices. A t-test on participants’ ratings of the voices
confirmed that the Alexa voice was perceived as less human-like

FIGURE 2 | Mean “human-like” ratings of each interlocutor. Error bars
depict the standard error.
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(x ̄ � 31.06) than the human (x ̄ � 87.67) [t (104.87) � −12.84,
p < 0.001].

Interlocutor Stimuli Acoustics
T-tests of the interlocutors’ productions found no overall difference
between the Alexa andHuman speaking rate (Human x ̄� 2.53 syll/
s; Alexa x ̄� 2.68 syll/s) [t (124.27) � −1.87, p � 0.06], but there was
a significant difference inmean f0: the human had a highermean f0
(x ̄ � 14.42 ST) than Alexa (x ̄ � 13.16 ST) [t (106.25) � 9.21, p <
0.001]. Additionally, the human produced greater f0 variation (x ̄ �
3.27 ST) than Alexa (x ̄ � 2.86 ST) [t (132.97) � 7.06, p < 0.001].
T-tests comparing formant frequency characteristics revealed no
difference in vowel height (F1) for the interlocutors for high vowels
(Human x ̄ � −0.37 log Hz; Alexa x ̄ � −0.41 log Hz) [t (35.28) �
−1.38, p � 0.18] or low vowels (Human x ̄ � 0.43 log Hz; Alexa

x ̄� 0.47 log Hz) [t (45.42) � 1.75, p � 0.09]. Additionally, there was
no difference in vowel fronting (F2) for the interlocutors for front
vowels (Human x ̄� 0.30; Alexa x ̄� 0.35)[t (34.66) � 0.67, p � 0.51]
or back vowels (Human x ̄� -0.18; Alexa x ̄� −0.22)[t (47.73)� 0.71,
p � 0.48].

T-tests comparing the Expressiveness Conditions (neutral vs.
emotionally expressive) confirmed differences: expressive
productions were produced with a slower speaking rate (Expressive
x ̄ � 2.45 syll/s; Neutral x ̄ � 2.76 syll/s) [t (153.88) � −4.25, p < 0.001]
and with a lower mean f0 (Expressive x ̄ � 13.55 ST; Neutral x ̄ �
14.03 S T) [t (145.44) � −2.89, p < 0.01]. However, there was no
difference for f0 variation (Expressive x ̄ � 3.04 ST; Neutral x ̄ �
3.09 ST) [t (157.44) � −0.60, p � 0.55].

T-tests comparing the Misunderstanding Conditions
(correctly heard vs. misrecognition) showed no significant

FIGURE 3 | Mean acoustic changes from speakers’ citation form productions to the interaction with the Interlocutors (Alexa vs. human) for sentence intensity (in
decibels, dB), speech rate (syllables per second), f0 (semitones, ST, rel. to 100 Hz), and f0 variation (ST). The x-axis shows StagedMisunderstanding Condition (correctly
heard vs. misrecognized), while Expressiveness Condition is faceted. Values higher than 0.0 indicate an increase (relative to speakers’ citation form), while values lower
than 0.0 indicate a relative decrease. Error bars depict the standard error.
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difference in speaking rate (Correct x ̄� 2.64 syll/s; misunderstood
x ̄ � 2.57 syll/s) [t (139.38) � 0.89, p � 0.37] or mean f0 (Correct
x ̄ � 13.92 ST; misunderstood x ̄ � 13.65 ST) [t (114.62) � 1.60,
p � 0.11]. However, they did vary in terms of f0 variation: larger
for correctly understood (x ̄ � 3.15 ST) than misrecognized
(x ̄ � 2.98 ST) [t (141.59) � 2.58, p < 0.05].

Participants’ Sentence-Level
Measurements
Figure 3 displays the mean acoustic values for participants’
sentence-level measurements (centered to speakers’ Citation
form values). Model output tables are provided in
Supplementary Data Sheet 3, Appendices A1–A4.

The Intensity model showed a significant intercept:
participants increased their intensity in the interaction
(relative to their citation form) [Coef � 2.64, SE � 0.45, t �
5.86, p < 0.001]. There was also amain effect ofMisunderstanding
Condition: as seen in Figure 3, participants’ productions of
sentences that the system did not understand correctly were
louder than repetitions of utterances that the system
understood correctly [Coef � 0.20, SE � 0.04, t � 5.13, p <
0.001]. No other effects or interactions were significant in the
Intensity model.

The Speech Rate model showed no difference from 0 for the
intercept: overall, speakers did not speed up or slow down their
speech in interlocutor interactions, relative to their citation form
productions. The model also revealed a main effect of
Interlocutor, producing a slower speech rate (indicated by
fewer syllables per second) in Alexa-DS [Coef � −0.03, SE �
0.01, t � −2.87, p < 0.01]. There was also a main effect of
Misunderstanding Condition wherein speakers decreased their
speech rate in response to a misrecognition [Coef � -0.02, SE �
0.01, t � −1.96, p < 0.05]. These effects can be seen in Figure 3. No
other effects or interactions were significant in the model.

The Mean F0 model had a significant intercept, indicating that
speakers increased their mean f0 in the interactions relative to the
citation form productions [Coef � 0.83, SE � 0.15, t � 5.65, p <
0.001]. The model also showed an effect of Interlocutor: speakers
produced a higher mean f0 toward the Alexa interlocutor [Coef �
0.03, SE � 0.01, t � 2.40, p < 0.05]. Additionally, there was an
effect of Misunderstanding wherein responses to misunderstood
utterances were produced with a higher f0 [Coef � 0.06 SE � 0.01,
t � 5.04, p < 0.001], as seen in Figure 3. Furthermore, there was a
main effect of Expressiveness Condition wherein speakers
produced a higher mean f0 in response to emotionally
expressive utterances [Coef � 0.03, SE � 0.01, t � 2.49, p <
0.05]. No other effects or interactions were observed in the Mean
f0 model.

The F0 Variation model also had a significant intercept:
relative to their citation form productions, speakers increased
their f0 variation in the interaction [Coef � 0.34, SE � 0.07, t �
4.94, p < 0.001]. There was also a main effect of Interlocutor:
speakers produced greater f0 variation in responses directed to
the Alexa voice [Coef � 0.02, SE � 0.01, t � 2.79, p < 0.01].
Additionally, there was an effect of Misunderstanding: responses
to misrecognitions were produced with greater f0 variation

[Coef � 0.01, SE � 0.01, t � 1.98, p < 0.05]. No other effects
or interactions were significant in the F0 Variation model.

Participants’ Vowel-Level Measurements
Figure 4 displays participants’ mean vowel-level values across
conditions. Model output tables are provided in Supplementary
Data Sheet 3, Appendices A5 and A6.

The F1 model testing changes in vowel height (where a smaller
F1 values indicate raising) showed no significant intercept;
relative to the citation forms, speakers did not change their
vowel height. The model revealed only an effect of Vowel
Duration: speakers produce lower vowels (higher F1) with
increasing duration [Coef � 2.1e-04, SE � 7.8e-05, t � 2.62,
p < 0.01]. No other effects or interactions were significant.

The F2 model, testing changes in vowel backness, showed
several significant effects. While there was no significant intercept
(indicating no general change in vowel backness from citation
form), participants produced more backed vowels (i.e., lower F2
values) with increasing vowel duration [Coef � −1.8e-04, SE �
3.4e-05, t � −5.41, p < 0.001]. There was also an interaction
between Misunderstanding Condition and Vowel Category. As
seen in Figure 4, back vowels were produced even farther back
(lower F2) in response to a staged word misrecognition [Coef �
−0.01, SE � 1.5e-03, t � −3.46, p < 0.001]. No other effects or
interactions were observed4.

DISCUSSION

The current study examined whether participants use a different
speech style when talking to an Alexa interlocutor, relative to a
human interlocutor, in a computer-mediated interaction (a
summary of the main effects is provided in Table 2). We
systematically controlled functional and socio-communicative
pressures in real-time during interactions with both
interlocutors who made the same types and rates of staged
word misrecognitions, and responded in emotionally
expressive and neutral manners. This approach serves to
complement studies done with users talking to devices in their
home (e.g., Mallidi et al., 2018; Huang et al., 2019) and also
pinpoint differences that might be present due to other factors in
the situation (e.g., physical distance from the microphone; rate
and type of automatic speech recognition (ASR) errors). While
TTS methods have advanced in recent years (e.g., Wavenet in
Van Den Oord et al., 2016), our participants rated the two talkers
as distinct in their human-likeness: Alexa was less human-like
than the human voice, consistent with prior work (Cohn et al.,
2020b; Cohn and Zellou, 2020).

Overall, we found prosodic differences across Alexa- and
human-DS, consistent with routinized interaction accounts that
propose people have a “routinized” way of engaging with
technology (Gambino et al., 2020), and in line with prior

4Note that while there is a numerical F2 increase in the Front Vowels in response to
Misrecognized Expressive productions, this was not significant in the main model
or in a post hoc model (with the subset of Front Vowels).
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studies finding differences in computer and voice-AI speech
registers (e.g., Burnham et al., 2010; Huang et al., 2019; Siegert
and Krüger, 2021). In the present study, speakers showed a
systematic Alexa-DS speech style: when talking to Alexa,
speakers produced sentences with a slower rate, higher mean
f0, and higher f0 variation, relative to human-DS. These
differences align with prior work showing slowed speech rate

toward Alexa socialbot (Cohn et al., 2021), increased higher mean
f0 in speech toward voice-AI (Raveh et al., 2019), and greater
segmental lengthening in computer-DS (Burnham et al., 2010).
Furthermore, both an increased mean f0 and f0 variation are
consistent with increased vocal effort in response to a presumed
communicative barrier; for instance, prior work has reported that
speakers produce greater f0 variation in response to a word

FIGURE 4 | Mean acoustic changes from speakers’ citation form productions to the interaction with the Interlocutors (Alexa vs. human) for vowel duration
(milliseconds, ms), F1 (log Hertz, Hz), and F2 (log Hertz, Hz). Formant plots are additionally faceted by Vowel Category: F1 (by vowel height: low vs. high vowels) and F2
(by vowel backness: front vs. back vowels). The x-axis shows StagedMisunderstanding Condition (correctly heard vs. misrecognized), while Expressiveness Condition is
faceted. Values higher than 0.0 indicate an increase (relative to speakers’ citation form), while values lower than 0.0 indicate a relative decrease. Error bars depict the
standard error.

TABLE 2 | Summary of effects in main analysis, comparing interlocutor acoustics.

Speaking style changes Interlocutor acoustics

Sentence-level Intensity Louder for misrecognition --

Speech rate Decreased rate in Alexa-DS Alexa vs. human N.S.
Decreased rate for misrecognition Correct vs. misrecognized N.S.

Mean f0 Higher mean f0 in Alexa-DS Human - higher mean f0 (p < 0.001)
Higher mean f0 for misrecognition Correct vs. misrecognized N.S.
Higher mean f0 for expressive Expressive - lower mean f0 (p < 0.01)

F0 variation More f0 variation in Alexa-DS Human- larger f0 var. (p < 0.001)
More f0 variation for misrecognition Correct - greater f0 var. (p < 0.05)

Vowel-level F1 (vowel height) No diff Alexa vs. human N.S.

F2 (vowel backness) Back vowels backed for misrecognition Alexa vs. human N.S.
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misrecognition in computer-DS (Vertanen, 2006), as well as
higher mean f0 and a larger f0 range in Lombard speech
(Brumm and Zollinger, 2011; Marcoux and Ernestus, 2019).
Furthermore, in contrast to other work reporting greater
intensity in Alexa-DS (Raveh et al., 2019; Siegert and Krüger,
2021), we did not see a difference in intensity in the present study.
This might reflect the controlled interaction, where participants
were recorded with a head-mounted microphone (such that it
was equidistant from their mouths for the entire experiment) and
heard amplitude normalized stimuli over headphones.
Additionally, the lack of an intensity effect suggests that
adjustments in Alexa-DS differ from strict “Lombard” effects
(e.g., louder in Brumm and Zollinger, 2011).

While one possibility was that these adjustments reflect
alignment toward the Alexa talker, we did not find support for
this: acoustic analyses demonstrated that the Alexa productions
had lower mean f0 and less f0 variation than the human
productions (speech rate did not significantly differ for the
Alexa and human productions). Hence, speakers appear to
produce more effortful prosodic adjustments in response to an
interlocutor with presumed communicative barriers (Clark and
Murphy, 1982; Oviatt et al., 1998a; Branigan et al., 2011; Cowan
et al., 2015), even while the “actual” misunderstandings were
matched across the two talker types.

Do the differences in human- and Alexa-DS reflect distinct
functionally oriented speech registers? Examining responses to
misrecognized utterances suggests that some of these adjustments
might be part of a more general speech intelligibility strategy.
When either interlocutor “misheard” the word, participants
responded by producing many of the same adjustments they
did in Alexa-DS, including slower rate, higher f0, and higher f0
variation. These adjustments are in line with proposals that the
speech adjustments people make in communicatively challenging
contexts are listener-oriented (Lindblom, 1990; Smiljanić and
Bradlow, 2009; Hazan and Baker, 2011). Thus, for these particular
features, the adjustments made when there is a local
communicative pressure parallel those made globally in Alexa-
DS, suggesting that speakers make adjustments following
misrecognitions and toward Alexa to improve intelligibility.

Yet, we see other adjustments in response to word
misrecognitions not seen globally in Alexa-DS: increased
intensity and F2 adjustments. These F2 adjustments, in
particular, are predicted based on the type of misunderstanding
created in the experimental design: when the interlocutor
“misheard” the participant, they always produced the correct
target word alongside its minimal pair counterpart which
differed in backness (e.g., “mask” (front vowel) vs. “mosque”
(back vowel)). Producing back vowels further back is consistent
with vowel space expansion. In particular, one possibility is that
these F2 adjustments are targeted specifically for clarity,making the
vowels more distinct from the distractor minimal pair. This aligns
with findings from Stent et al. (2008) who found that speakers
repaired misrecognitions of high vowels by a dialogue system (e.g.,
“deed”) by producing even higher vowels. That the same effect is
not seen for front vowels in the current study could come from the
dialectal variety of the speakers: participants were California
English speakers, a variety with back vowel fronting (Hall-Lew,

2011). Thus, it is possible that there ismore room for these speakers
to make back vowels more back, rather than to adjust the front
vowels, though further work exploring dialect-specific intelligibility
strategies can shed light on this question (cf. Clopper et al., 2017;
Zellou and Scarborough, 2019). Future work varying vowel height,
as well as hyperarticulation of consonants (e.g., flapping vs. /t/
release in Stent et al., 2008) can further explore targeting effects in
response to word misunderstandings.

However, if people produce global register differences in speech
toward Alexa that parallel those seen in response to
misrecognitions, why don’t we see greater speech adjustments in
response to misrecognitions made by Alexa? One possible
explanation for the similarities is the rate: in the current study,
the interlocutors both had staged word misrecognitions in 50% of
trials. Related work has shown that rate of misrecognition can
change speakers’ global and local adaptations (Oviatt et al., 1998b;
Stent et al., 2008); at a high rate of word misrecognitions, speakers
might produce more similar intelligibility-related adjustments
across interlocutors. Additionally, this high misrecognition
rate—as well as random occurrence of the
misunderstandings—might be interpreted by the speaker that the
listener (human or Alexa) is not benefiting from these adjustments,
which might drive similarities. In the current study, speakers might
produce a word as clearly as they can and the human/voice-AI
listener still misunderstands them half the time. The extent to which
these patterns hold at a lower misrecognition rate—or an adaptive
misrecognition rate, improving as the speaker produces “clearer”
speech—are avenues for future work.

Furthermore, another possible reason for the similar
intelligibility adjustments in response to a misunderstanding
(in both Alexa- and human-DS) is that the speakers did not
have access to information about the source of these perceptual
barriers. For example, Hazan and Baker (2011) found that
speakers dynamically adjust their speech to improve
intelligibility when they are told their listener is hearing them
in competing background speakers or as noise-vocoded speech
(simulating the auditory effect of cochlear implants), relative to
when the listener experienced no barrier. Furthermore, the type of
adjustments varied according to the type of barrier (e.g., more f0
adjustments when the listener was in “babble” than “vocoded
speech”). In the present study, speakers were left to “guess” what
the source of the communicative barrier was, based on observed
behavior of the human or voice-AI interlocutor. Indeed, when the
speaker does not have information about the listener, adaptations
might not be advantageous. For example, computer-DS
adaptations have been shown in some work to lead to worse
outcomes for some ASR systems, leading to a cycle of
misunderstanding (e.g., Wade et al., 1992; for a discussion, see
Stent et al., 2008; Oviatt et al., 1998b). Future work examining
intelligibility for the intended listener (here, a human or ASR
system) can further shed light on the extent local intelligibility
adjustments in Alexa- and human-DS are equally beneficial.

Another possible factor why we see similar local intelligibility
adjustments in response to misunderstandings (across Alexa- and
human-DS) is that the experiment was computer-mediated.
Recent work has shown differences in linguistic behavior
across contexts: for example, participants show stronger style
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convergence toward their interlocutor in the in-person condition,
relative to a (text-based) computer-mediated interaction (Liao
et al., 2018). In line with this possibility, Burnham et al. (2010)
found similar adjustments in response to a misrecognition made
by a computer- and human-DS (but overall differences in
computer-DS, paralleling our findings). At the same time, in
the current study, the human-likeness ratings for the
interlocutors collected at the end of study suggest that the
participants found the interlocutors to be distinct. Future work
manipulating rate of misunderstanding and embodiment (Staum
Casasanto et al., 2010; Cohn et al., 2020a) can investigate what
conditions lead to greater targeted intelligibility strategies for
distinct interlocutor types.

We also explored whether emotional expressiveness mediates
speech styles for Alexa- and human-DS. Here, we found the same
speech adjustments in response to expressiveness by both
interlocutors: higher mean f0 in response to utterances
containing emotional expressiveness. First, speakers’ overall
higher f0 in their sentences does not appear to reflect an
alignment toward the interlocutors (who actually produced
lower mean f0 in their expressive productions). One possible
explanation for the increased f0 following the expressive
responses is that it reflects a positivity bias in reaction to
stimuli (but see Jing-Schmidt (2007) for work on biases
toward negative valence). Indeed, work has shown that smiling
is associated with higher mean f0 (Tartter, 1980; Tartter and
Braun, 1994) (but we did not see formant shifts, which are also
associated with smiled speech, in response to Expressiveness).
Here, one explanation for similarities in response to emotion by
both interlocutors is that speakers are applying the social
behaviors toward voice-AI as they do toward humans, as
proposed by technology equivalence accounts (Nass et al., 1994;
Nass et al., 1997; Lee, 2008). For instance, here people are reacting
to emotional expressiveness by both types of interlocutors
similarly. This explanation is consistent with work showing
similar affective responses to computers as seen in human-
human interaction (e.g., Brave et al., 2005; Cohn et al., 2019a;
Cohn and Zellou, 2019).

Additionally, we did not observe differences in how
participants adapted their speech following an emotionally
expressive or neutral word misrecognition. This contrasts with
related work on this same corpus (Zellou and Cohn, 2020) that
found greater vowel duration alignment when participants
responded to an emotionally expressive word
misunderstanding made by a voice-AI system. Thus, it is
possible that emotional expressiveness might shape vocal
alignment, but it might not influence speech style adjustments.
That emotion appears to have an effect on vocal alignment
toward humans and voice-AI (e.g., Vaughan et al., 2018; Cohn
and Zellou, 2019) could be explained by proposals that alignment
is used as a means to communicate social closeness (Giles et al.,
1991). While conveying affect is thought to be part of infant- and
pet-DS registers (Trainor et al., 2000), listener-oriented speech
styles directed toward human adults (non-native speakers,
hearing impaired speakers) and computers are generally not
associated with increased emotionality. Furthermore,
conveying affect is generally not associated with clear speech

strategies. Indeed, classic perspectives on clear speech (H&H
theory) do not account for emotionality in predicting
hyperspeech behavior (e.g., Lindblom, 1990). Yet, one
possibility for a lack of difference in the current study is based
on how emotion was added in the stimuli: emotional
expressiveness was conveyed only in the interjection. Since the
time this study was run, there are now more ways to adapt the
Alexa voice in terms of positive and negative emotionality (at low,
medium, and high levels5), which can serve as avenues for future
research.

There were also several limitations of the present study which
open directions for future work. For instance, one possible factor
in the lack of difference detected for emotionality across Alexa-
and human-DS is the communicative context: the current study
consisted of fully scripted interactions in a lab setting. While this
controlled interaction was intentional as we were interested in
word misrecognitions (which might otherwise be difficult to
control in voice-AI interactions), it is possible that differences
based on emotional expressiveness might be seen in a non-
scripted conversation with voice-AI, as well as one conducted
outside a lab context (e.g., Cohn et al., 2019b). Additionally, the
present study used two types of voices; it is possible that other
paralinguistic features of those voices might have mediated
speech style adjustments. For example, recent work has shown
that speakers align speech differently toward TTS voices that
“sound” older (e.g., Apple’s Siri voices, rated in their 40 and 50s)
(Zellou et al., 2021). Furthermore, there is work showing that
introducing “charismatic” features from human speakers’ voices
shapes perception of TTS voices (Fischer et al., 2019; Niebuhr and
Michalsky, 2019). The extent to which individual differences in
speakers (human and TTS) and participants remain avenues for
future research.

While here the findings align with those for another Germanic
language (e.g., German in Raveh et al., 2019; Siegert and Krüger,
2021), the extent to which the same effects might be observed
with other languages and other cultures is another open question
for future work. For example, cultures might vary in terms of
acceptance of voice-AI technology, such as due to privacy
concerns (e.g., GDPR in Europe: Voss, 2016; Loideain and
Adams, 2020). Additionally, cultures vary in terms of their
expressions of emotion (Shaver et al., 1992; Mesquita and
Markus, 2004; Van Hemert et al., 2007). How emotional
expressiveness and “trust” in voice-AI (Shulevitz, 2018;
Metcalf et al., 2019) might interact remains an open question
for future work.

CONCLUSION

Overall, this work adds to our growing understanding of the
dynamics of human interaction with voice-AI assistants—still
distinct from how individuals talk to human interlocutors. As
these systems and other AI robotics systems are even more widely

5https://developer.amazon.com/en-US/docs/alexa/custom-skills/speech-synthesis-
markup-language-ssml-reference.html#amazon-emotion
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adopted, characterizing these patterns across different
timepoints—and with diverse populations of participants—is
important in our ability to track the trajectory of the influence
of voice-AI on humans and human speech across languages and
cultures.
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