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While there exists a number of serious games geared toward helping children with

ASD to produce facial expressions, most of them fail to provide a precise feedback to

help children to adequately learn. In the scope of the JEMImE project, which aims at

developing such serious game platform, we introduce throughout this paper a machine

learning approach for discriminating between facial expressions and assessing the quality

of the emotional display. In particular, we point out the limits in generalization capacities

of models trained on adult subjects. To circumvent this issue in the design of our

system, we gather a large database depicting children’s facial expressions to train and

validate the models. We describe our protocol to elicit facial expressions and obtain

quality annotations, and empirically show that our models obtain high accuracies in both

classification and quality assessment of children’s facial expressions. Furthermore, we

provide some insight on what the models learn and which features are the most useful

to discriminate between the various facial expressions classes and qualities. This new

model trained on the dedicated dataset has been integrated into a proof of concept of

the serious game.

Keywords: facial expression recognition, expression quality, random forests, emotion, children, dataset

1. INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects communication
and socialization. Individuals with ASD present deficits in social emotion reciprocity in non-verbal
communication, as well as in developing and maintaining social interaction. These social skills
are factors of integration and constitute important factors for one to achieve social competence
(Spence, 2003). Specifically, emotional skills are essential to communicate with others, and react
adequately. Among emotional skills, correct recognition and production of facial expressions (FEs)
are key components of emotional communication and allow people to express and understand
emotions (Izard, 2001). Furthermore, FE production shall be adapted to the social context, which
requires people to take care of the situation and abide to social rules (Barrett et al., 2011).

Teaching social skills to individuals with ASD is a considerable challenge and the community
has made tremendous efforts to tackle this issue, notably by exploring the vein of serious game
platforms. Serious games offer the advantages of proposing a playful and immersive environment
to create the incentive for the child to learn in the first place. Though enumerating the different
serious game platforms that were proposed to teach children with ASD how to adequately produce
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FEs is out of the scope of this paper, there has been quite a number
of attempts to do so in the past (Cockburn et al., 2008; Fernandes
et al., 2011; Park et al., 2012; Tan et al., 2013). Also, they do not
provide enough feedback on FE productions, nor do they take
into account social situations.

On the other hand, the JEMImE project aims at developing
such a game. JEMImE is a French acronym standing for “multi-
modal educative game for emotional imitation.” Specifically,
JEMImE is geared toward providing feedback to children with
ASD who are asked in the game to produce FEs that are adequate
given a social context (Dapogny et al., 2018). Toward this goal, it
relies on an automatic facial expression recognition (FER) system
that works in real-time on a standard machine, with consumer
sensors (e.g., a single webcam). This system is built uponmachine
learning and face analysis techniques and meant discriminate
children’s FEs. Adequate data has been gathered to train and
evaluate the predictive capacities of FER models. In order to
propose more precise feedback, we not only predict expression
classes, but we go one step further and assess the quality of
one’s emotional display, as defined by its relevance w.r.t. a given
context. The contributions of this paper are the following:

1. We propose a protocol for gathering a large corpus of
videos depicting children’s FEs, involving several recording
instructions, such as on request and imitation (explained later).

2. We introduced a database containing 157 children producing
FEs with a large variety of ethnicities, genders and age groups,
several modalities, and 4 FEs.

3. We applied machine learning to train and validate models for
both FE recognition and quality assessment.

4. We propose an information gain-based visualization method
based to highlight the most relevant features and face regions
for describing each FE, or FE quality.

The rest of the paper is organized as follows: in section 2.1
we describe the protocol that we use to gather data describing
children FEs, as well as the database itself. In section 2.2 we
describe our face analysis and pipeline to automatically assess
children’s FEs and FE quality, as well as how we can retrieve the
most relevant features to describe each FE class or quality range.
In section 3, we show that models trained on available databases,
which generally contains mostly young adults, perform poorly
when evaluated on children. We then show that we can obtain
satisfying recognition accuracies and quality estimations by
training on our JEMImE database. Finally, we offer some insight
on the most relevant features for FE classification or quality
assessment by applying our visualization scheme. Lastly, in
section 4 we draw conclusions raised by the proposed study and
discuss future work.

2. METHODOLOGY

2.1. The JEMImE Database
2.1.1. Related Datasets
In two decades, we are witnessing the emergence of affective
computing and emotion-aware technologies. Despite this
growing interest, most of the existing datasets for FER contain
images of adult faces and there only exists a few datasets with

children displaying FEs. Table 1 gathers the main characteristics
of the publicly available datasets with children:

• The Radboud Faces Database (Langner et al., 2010)
• TheNIMHChild Emotional Faces Picture Set (NIMH-ChEFS)

(Egger et al., 2011)
• TheDartmouth Database of Children’s Faces (Dalrymple et al.,

2013)
• The Child Affective Facial Expression (CAFE) (LoBue and

Thrasher, 2015)
• The LIRIS-CSE dataset (Khan et al., 2019)
• The EmoReact dataset (Nojavanasghari et al., 2016)

These datasets greatly differ in terms of (1) number of subjects,
(2) the nature of the records (still images, video sequences or
audio-visual records), (3) the age range of the participants, (4)
the annotation (nature and the number of categories), (5) the
emotion elicitation strategy, and (6) the environment conditions
(from lab to unconstrained environments). The most related
dataset in terms of (1), (2), (3), (4), and (6) is the EmoReact
database. Unfortunately this dataset only contains spontaneous
behaviors annotated with categorical labels. On the contrary, the
JEMImE dataset contains posed emotions that are elicited by two
different means : by asking children to produce a specific emotion
or to imitate an avatar that produces an emotion.Moreover, video
are annotated in both emotion category and quality. This specific
protocol is led by our aforementioned use case.

2.1.2. Data Collection
The study was approved by the ethical committee of
Nice University (Comité de Protection des Personnes Sud
Méditerranée V) under the number 15-HPNCL-02. Participants
were recruited in two French schools, one in Paris, one in Nice
from January 2015 to January 2016. Before inclusion in the
study, written consents were obtained from school directors,
parents and children (They were previously informed about the
purpose of the study as well as their rights as required by the
European law). A total of 157 volunteer children aged between
6 and 11 years were recorded in Paris (63 children) and Nice
(94 children). Among this pool of children, 52% were boys and
48% girls. Moreover, 77% were Caucasian, 8.3% Black-African,
7% Asian, and 7% North-African (the ethnic distribution of
the sample is representative of the local demography). Each
child was asked to produce four facial expressions: neutral,
happiness, anger and sadness following two tasks: the on request
and imitation FE production tasks.

More specifically, children were put in front of a computer
that was recording the emotional display. An examiner stood
behind this screen in order to encourage children to keep their
heads in front of the screen. The interface for eliciting emotions
is illustrated on Figure 1. For the on request task, the screen was
explicitly displaying the FE that the child had to produce (“can
you show me happiness?”). For the imitation task, the child was
presented an avatar displaying the desired FE, and was asked to
imitate it. Each child was asked to perform each FE six times
total, two times for the on request task and four times for the
imitation task, each corresponding to either visual or audiovisual
modalities, and with avatars of both genders. The modality and
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TABLE 1 | Comparison of JEMImE dataset with other emotion datasets with children. F, female; mod., modality; I, image; V, video; AV, audio and video; Spont.,

spontaneous; Unconst., unconstrained; C, category; Int., intensity; Q, quality.

#id Age Gender Mod. #V/#I #Labels Elicitation Env. Labels

Radboud 10 8–12 years 60% F I −/80 8 Posed Lab C

NIMH-ChEFS 60 10–17 years 66% F I −/482 5 Posed Lab C

Dartmouth 80 6–16 years 50% I −/640 8 Posed Lab C + Int.

CAFE 154 2–8 years 58% F I −/1,192 7 Posed Lab C

LIRIS-CSE 12 6–12 years 58% F V 208/26k 6 Spont. Unconst. C

EmoReact 63 4–14 years 51% F A/V 1,102 V 17 Spont. Unconst. C

JEMImE 157 6–12 years 48% F A/V 3,768 V 4 Posed + Imit. Unconst. C + Q

avatar presentation order was randomized to avoid any learning
effect. Children were roughly 1 meter away from the recording
sensor, and the face crops are∼300× 400 pixels.

2.1.3. Annotation and Extraction
Thus, each child was recorded 24 times in total, making a total
of 3,768 videos of 3s average length. As previously explained, the
JEMImE project is geared toward assessing, through a serious
game platform, whether the FEs produced by children with
ASD are adequate given a social context. Therefore, we not
only had to recognize FEs produced by children, but also to
guess to what extent the recognized FE is credible. For that
matter, three judges blindly labeled the videos in terms of
FE quality. FE quality was measured on a 0–10 continuous
interval with the following convention: a 0 corresponds to
an unrecognized FE, a 5 corresponds to a recognized but not
credible FE, and a 10 corresponds to a completely credible,
well-identified expression. For each video, we converted the
first frame to grayscale levels, and applied opencv Viola & Jones
face detector (Viola and Jones, 2001). Then, we applied the
intraface feature point tracker (Xiong and De la Torre, 2013)
to locate a set of 49 feature points. We subsequently tracked
the feature points on the remaining frames of the video. We
selected the last frame of each video for training and testing the
FER models, as it usually depicted the peak (apex) of the FE.
We discarded some videos for which the feature point tracker
could not follow the head motion and extracted a total of 1,458
images for children from Paris and 2,110 images from Nice, each
associated to a FE quality label, a children ID number and a set
of aligned feature points. In what follow, we respectively
refer to those datasets as JEMImE-Paris and JEMImE-
Nice. The concatenation of those two datasets is referred
as JEMImE-All.

The data repartition for JEMImE-All is showed on Table 2, in
terms of FE category and FE qualities, respectively. As it can be
seen on Table 2, the database is heavily imbalanced in favor of
classes neutral as compared to anger and sadness, as there are
roughly three times more examples of the former than of the
latter. Thus, the proposed FER pipeline shall be robust to data
imbalanced to a certain extent. As for FE quality repartition,
Table also reveals that the data is heavily skewed in favor or
high qualities and, more importantly, zero-quality FEs. This is
not surprising because a zero-quality score for one specific FE

and a video clip indicates that this FE has not been recognized;
henceforth, ideally all videos labeled with happiness shall have
very low quality for neutral, anger, and sadness.

2.2. Facial Expression Recognition Pipeline
A traditional FER pipeline (Dapogny et al., 2017) consists
in first extracting a set of candidate features upon which a
prediction model can be trained. As it will be discussed in
the following subsections, we use random forests (RFs) for the
purpose of classifying or regressing the facial expressions. This
RF framework offers several advantages over its competitors, for
instance it is very fast and practically handles heterogeneous data.
Furthermore, it allows to generate a large pool of features on-
the-fly at the node level (section 2.2.1). Relevant features among
those large collections are then selected by minimizing a purity
criterion. Last but not least, once training is done, we can easily
introspect the models to visualize the most relevant features—see
section 2.2.3.

2.2.1. Facial Feature Extraction From Multiple

Templates
To perform FER, we essentially extract heterogeneous features
(i.e., geometric and appearance) from multiple generic templates
(e.g., distance/angle between feature points, or appearance
features extracted at a specific location on the space). Each of
these feature templates φ(i) have different input parameters that
are randomly generated during training. More specifically, for
each template φ(i), the upper and lower bounds are estimated
from the training data and candidate thresholds are sampled
from uniform distributions within this range prior to training.
Those features are then associated with a set of candidate
thresholds θ to produce a set of binary split candidates for
splitting the data coming at each node. We use two different
geometric feature templates which are generated from the set of
facial feature points f (x) aligned on image x with SDM (Xiong

and De la Torre, 2013). The first geometric feature template φ
(1)
a,b

is the distance between feature points fa and fb, normalized w.r.t.
inter-ocular distance iod(f ) for scale invariance (Equation 1).

φ
(1)
a,b
(x) =

||fa − fb||2

iod(f )
(1)
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FIGURE 1 | Illustration of the imitation and on request recording instructions.

TABLE 2 | Expression label category and quality repartition (%) for JEMImE-All.

Expression Category Quality

Repartition (%) 0 1 2 3 4 5 6 7 8 9 10

Neutral 36.5 68.5 0.5 1.5 1.5 1.5 2 2 2.5 2.5 1.5 16.5

Happiness 28.5 67.5 2 3 2.5 2.5 2.5 3 3 3 2 8.5

Anger 21.5 75 1 1.5 2 2 3 3.5 3 2.5 1 5

Sadness 13.5 78.5 1 2 2.5 2.5 3 3.5 2.5 2 0.5 2.5

Because any information relative to orientation is discarded in
φ(1), we also use the angles between feature points fa, fb and fc as

a second geometric feature φ
(2)
a,b,c,λ

. In order to ensure continuity
for angles around 0, we use the cosine and sine instead of the
raw angle value. Thus, φ(2) outputs either the cosine or sine

of angle f̂afbfc, depending on the value of a boolean parameter
λ (Equation 2):

φ
(2)
a,b,c,λ

(x) = λ cos(f̂afbfc)+ (1− λ) sin(f̂afbfc) (2)

As for appearance features, we use Histogram of Oriented
Gradients (HOG) for their descriptive power and robustness
to illumination changes. To allow fast HOG feature extraction,
we use pre-computed integral channels as discussed in Dollár
et al. (2009). First, images are rescaled to a constant size of
250 × 250 pixels. Then, we compute horizontal and vertical
gradients on the image and use these to generate nine feature
maps, the first one containing the gradient magnitude, and the
eight remaining correspond to a eight-bin quantization of the
gradient orientation. Then, integral images are computed from
these feature maps. From here, we define the appearance feature

template φ
(3)
τ ,ch,s,α,β ,γ

as an integral histogram computed over

channel ch within a window of size s normalized by inter-ocular
distance. Such histogram is evaluated at a point defined by its
barycentric coordinates α, β , and γ within a triangle τ defined
over feature points f (x). Also, we store the gradient magnitude
in the first channel to normalize the histograms. Thus, HOG
features can be computed with only four access to the channels.

2.2.2. The Random Forest Framework
Random Forests (RFs) is a popular learning framework
introduced in Breiman (2001). They have been ubiquitously
used in computer vision as they are suited to handle very
high-dimensional data (such as images) and can be easily
parallelized for fast training and evaluation. Moreover, RFs
are suitable predictors to handle heterogeneous data and some
measures (such as variable importance or the information gain
measurement detailed in section 2.2.1) allow, to a certain extent,
to understand the models. A RF is traditionally built from
the combination of T decision trees grown by only examining
a subset of the whole feature pool (random subspace), and
using data bootstraps sampled from the whole training dataset
(bagging). In our case, we use bootstraps generated at the level
of subject IDs, which allows extra tree randomization as well as
faster evaluation using out-of-bag error estimate (see section 3.1).
Formally, a tree can be defined recursively as either a split or a
leaf node. Split nodes contains information about a binary split
function which consists in a feature and an associated threshold.
During training, split nodes are set using a greedy procedure. For
each node n. We denote l(n) and r(n) the left and right subtrees
associated with node n. xn, xl(n), and xr(n) with class labels yn,
yl(n), and yr(n) ∈ Y denote the data at node n, l(n), and r(n),

respectively. At node n we generate k(i) binary feature candidates
for each template φ(i). For each candidate φ and threshold θ

we compute the information gain G induced by this candidate,
defined as a function of an impurity criterion H:

G(yn, yl(n), yr(n)) = H(yn)−H(yl(n))−H(yr(n)) (3)
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Then, we select the “best" binary feature φn among all features
from the different templates, i.e., the one that maximizes the
information gain G, and use it to set a split at node n. Then, those
steps are recursively applied for the left and right subtrees with
accordingly routed data until the label distribution at each node is
homogeneous, where a leaf node is set. Depending on the purpose
of the predictive model (e.g., classification or regression), the
nature of the impurity criterion H and the nature of data stored
in leaf nodes vary, as explained in the following subsections.

2.2.2.1. RF for classification
For classification purposes, we use Shannon’s entropy as the
impurity criterion. For a node nwithm training examples and for
which card(yn = y) denotes the number of elements with label y
we have:

H(yn) = −m

Y
∑

y=1

card(yn = y)

m
log

(

card(yn = y)

m

)

(4)

Moreover, as in the seminal work of Breiman (2001), the leaf
nodes contains the class distributions. During evaluation, an
image x is successively routed left or right of each tree according
to the outputs of the binary tests, until it reaches a leaf node.
Each tree t thus returns the class distribution pt(y|x). The output
prediction ŷ is thus given by averaging among the T trees of
the forest:

ŷ = argmaxy
1

T

T
∑

t=1

pt(y|x) (5)

Note that given the highly skewed label distribution showed in
Table 2, balancing the dataset to train the classifiers is essential.
For that matter, we apply class-wise downsampling of the
bootstraps prior to learning each tree. As compared to alternative
solutions (e.g., class weighting), downsampling leads to similar
results compared to other alternatives (e.g., oversampling or class
weighting), with a significantly reduced runtime, as described in
Chen et al. (2004).

2.2.2.2. RF for Regression
As for regression, the impurity function measures the variance
of the continuous variable yn distribution at node n with m
examples and ȳ the average of variable yn over these examples:

H(yn) =
1

m

m
∑

i=1

(yn − ȳ)2 (6)

Each leaf node contain the average of variable yn for all examples
falling into that leaf. The output prediction of a RF can thus be
obtained by averaging the value predicted by each separate tree:

ŷ =
1

T

T
∑

t=1

ŷt (7)

Note that the method has to be adjusted when the predicted
value is a vector. Generally speaking, when the prediction tasks
are closely related (which is the case, for example, for regressing
the quality of several expressions), training one regressor for
predicting multiple values is better than training a model for
each separate output dimension. Thus, as it was successfully
applied for Action Unit detection (Dapogny et al., 2017), we train
multi-output regression trees by selecting, for each node n, one
regression task at random and computing the gain for that task
only using Equations (3) and (6). This process allows to add extra
randomization to the regression trees, which in turn increases the
overall accuracy of the RF.

2.2.3. Visualization of Relevant Features
Given a previously trained RF model, we now want to visualize
which features are the most important for classifying or
regressing the different expression classes or quality values. To
do that we propose a method based on the accumulation of
information gain at each split node. To do that, we pass all the
examples of the dataset (not just the out-of-bag samples) through
the trees once again: for each split node n, we measure the
information gain relatively to a transformed binary classification
problem. Formally, we denote m(n) is the number of examples
that pass down node n ∈ N, and 1(φn,φ, f ) an indicator function
defined to have 1(φn,φ, f ) = 1 if φn and φ correspond to
the same feature template and if feature point f appears in the
parameters of the split function φn. The relative importance of a
feature point f is given by:

4(f , y,φ) =
1

Z

∑

n∈N s.t.∃r(n)

1(φn,φ, f )G(ỹn, ỹl(n)), ỹr(n)) (8)

With Z a normalization factor such that
∑

f 4(f , y,φ) = 1. We

thus pass all the examples through the forest once again and build
an accumulator in which the information gain for each node is
stored for each combination of feature φ and feature point f .
Designing such indicator function allows to test the relevance of
a feature point (relatively to each feature template, geometric or
appearance). By transforming amulti-class classification problem
or regression problem to a binary classification problem, we can
further test the relevance of a feature point to predict one specific
class or (in case of a regression problem) a specific interval of
values of a continuous variable.

In the case of a classification problem, we can for example
visualize relevant features for distinguishing between one class y
and every other class, by setting ỹn = 1 if yn = y, and 0 otherwise,
for each node n. We can also set ỹn = 1 if yn = y and 0 if
yn = y′ to visualize one class (represented by label y) vs. another
one (represented by y′). In the latter case, all other elements are
discarded during the computation of G(ỹn, ỹl(n), ỹr(n)). Lastly, If
y is a continuous variable (e.g., the quality of an expression),
we transform the regression problem in a binary classification
problem by setting y∗ = 1 iff 21 > y > 22. We can thus vary
the thresholds21 and22 to observe the variations of the selected
feature repartition.
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3. EXPERIMENTS

In this Section, we first describe our experimental protocol in
section 3.1. Then, in section 3.2, we study the predictive capacities
of models trained on adults for discriminating children’s FE
in a cross-database fashion. Next, in section 3.3, we present
results obtained by cross-validation on the JEMImE database.
We also show in Section 3.4 that it is possible to reliably assess
the FE quality using multi-output regression trees. In both the
classification and regression case, we propose a visualization of
the facial features extracted to decipher between the FEs, or
between the different quality levels of FEs.

3.1. Experimental Setup
For cross-database evaluation, we train 7-class RF models and
unit-normalize the probabilities outputted for classes neutral,
happiness, anger, and sadness. Trees are trained by generating
20 distances features, 20 angles and 80 randomly samples HOG
for each split node, with 25 thresholds per candidate feature. We
grow 500 trees with a maximum depth of 16 for each experiment.

For intra-database experiments, RFs are evaluated using
the Out-Of-Bag (OOB) error estimate (Breiman, 2001). More
specifically, bootstraps for individual trees are generated at the
subject level. Thus, during evaluation, each tree is applied only
on subjects that were not used for its training. The OOB error
estimate is an unbiased estimate of the true generalization error
(Breiman, 2001) which is faster to compute than Leave-One-
Subject-Out or k-fold cross-evaluation estimates. Also, it has
been shown to be generally more pessimistic than traditional
error estimates (Bylander, 2002), further emphasizing the quality
of the proposed contributions. Finally, for FE classification we
use the unweighted accuracy (trace of the confusion matrix) as
the evaluation metric, as it is common in the literature. For
regression we report both the mean squared error (MSE) as well
as the correlation coefficient (CC).

3.2. Generalization Capacities of Models
Trained on Adults
First, we study the applicability of RFmodels trained on databases
from the literature for FER in cross-domain situations, and
particularly on the JEMImE database.

3.2.1. Databases
There exists a large number of available FER databases. However,
the purpose of this study is not to draw a comprehensive study
on cross-databases performances of predictive model trained
on each of these, but rather to assess whether or not these
models generalize well-enough for predicting children FEs. Thus,
we select three broadly used datasets that depict categorical
and spontaneous FEs, as well as low intensity expressions. The
datasets that we use in this study are the following ones:

The CK+ or Extended Cohn-Kanade database (Lucey

et al., 2010) contains 123 subjects, each associated with various
numbers of expression records. Those records show a gradual
evolution from neutral toward one of the 6 universal FEs
described by Ekman and Friesen (1971) (anger, happiness,
sadness, fear, digust and surprise), plus contempt. Expressions are
acted with no head pose variation and their duration is about

20 frames. From this dataset we extract 309 sequences, each one
corresponding to one of the six basic expressions, and use the
three first and last frames from these sequences for training. The
extracted face crops are∼300× 400 pixels.

The BU-4DFE database (Yin et al., 2008) contains 101
subjects, each one displaying 6 acted FEs with moderate head
pose variations. Expressions are still prototypical but they are
generally exhibited with much lower intensity and greater
variability than in CK+. Sequence duration is about 100
frames. As the database does not contain frame-wise expression
annotations, we manually selected neutral and apex of expression
frames as in Dapogny et al. (2015). More specifically, we select
8,219 frames for training. Face images are 520× 696 pixels.

The FG-NET FEED database (Wallhoff et al., 2006) contains
19 subjects, each one recorded three times while performing
seven spontaneous expressions (the six universal expressions,
plus neutral). The data contain low-intensity emotions, very short
expression displays, as well as moderate head pose variations. The
extracted face images are roughly 120× 150 pixels.

The JEMImE-Paris and JEMImE-Nice databases contains
1,458 and 2,110 examples, respectively, labeled with FE quality.
The concatenated database is referred to as JEMImE-All and
contains 3,781 samples. For FE classification, we only use
the examples whose quality is rated higher than 7, making
534 and 1,312 examples for JEMImE-Paris and JEMImE-Nice,
respectively, and a total of 1,846 examples.

3.2.2. Cross-Database Evaluation
Table 3 shows results obtained for cross-database evaluation of
predictive models trained on the three databases, as well as a
comparison with the internal (out-of-bag) error estimated on
each of these databases for 4-class FE. Note that the baseline
results (bolded in the table) are quite variable between the
different databases. This indicate that FER on BU-4DFE is a
more challenging benchmark than on CK+, due to low intensity
expressions. FEED is even more challenging that the two others,
due to the spontaneous nature of the expressions as well as the
restricted number of subjects.

Generally speaking, we observe a dramatic drop in
performance when training on one database and testing on
another database, when compared to the baseline accuracies. For
instance, models trained on CK+ fail to recognize lower intensity
or subtle spontaneous FEs. Models trained on prototypical data
generalize poorly to spontaneous FER scenarios, and vice-
versa. Furthermore, all these models generalize poorly on
JEMImE database.

Table 4 displays per-FE accuracies on JEMImE database. We
observe that happiness is generally correctly recognized even by
models trained on prototypical data. Indeed, even low-intensity
children smiles are generally associated with easily identifiable
patterns (lip corner raise + cheek raise) that are essentially the
same as prototypical smiles. However, the predictors seem to have
a much harder time discriminating neutral, anger, and sadness.
Due to the spontaneous nature of the expressions in FEED
database, the recognition rates are a little higher for anger and
sadness, although those are still pretty low.

To sum it up, FER is heavily dependent on the context and,
in the frame of the JEMImE project, training on the JEMImE
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TABLE 3 | Test on JEMImE (% accuracy).

Train-test CK+ BU-4DFE FEED JEMImE-All

CK+ 88.5 65.2 52.5 53.5

BU-4DFE 82.7 78.8 50.0 56.1

FEED 67.1 60.1 63.8 56.5

Bold values indicate the best results.

TABLE 4 | Test on JEMImE-All.

Train Neutral Happiness Anger Sadness

CK+ 61.9 82.3 53.3 16.3

BU-4DFE 61 88.4 67.3 7.7

FEED 33.8 94.7 71.9 25.6

TABLE 5 | Test on JEMImE (% accuracy).

Train-test JEMImE-Paris JEMImE-Nice JEMImE-All

JEMImE-Paris 78.4 74.6 75.6

JEMImE-Nice 79.6 82.2 81.7

JEMImE-All 81.3 82.1 81.9

TABLE 6 | Classification of facial expressions on JEMImE-All (% accuracy).

Train Neutral Happiness Anger Sadness Average

JEMImE-Paris 87.3 92.6 78.6 43.9 75.6

JEMImE-Nice 84.2 89.1 85.7 67.9 81.7

JEMImE-All 86.4 91.2 83.9 65.9 81.9

database will greatly enhance the predictive capacities of the
classification models.

3.3. Generalization Capacities of Models
Trained on Children
Next, in Table 5 we compare accuracies obtained by training
classification models on JEMImE-Paris database, and testing
on JEMImE-Nice, and vice-versa. Note however that the two
databases were collected using a similar protocol and with
the same sensors, so this benchmark does not exactly mimic
cross-database scenarios presented in section 3.2.2. However,
it provides some insight on the generalization capacities of
predictive models in slightly different contexts—luminosity, as
well as eventual regional discrepancies.

Models trained on JEMImE-Paris does not generalize very
well on JEMImE-NICE database, and therefore does pretty bad
on the concatenated dataset JEMImE-All. Interestingly, we still
observe a drop in performance when training on JEMImE-Nice
and testing on JEMImE-Paris, so this can not be only attributed
to the lower number of examples in JEMImE-Paris database.

Table 6 presents the per-FE classification scores on JEMImE-
All database, along with the average accuracy among the FE
classes. As one can see, the classifiers have different biases, as

TABLE 7 | Classification of facial expressions on JEMImE-All (% accuracy).

Expression Neutral Happiness Anger Sadness

Neutral 86.41 2.80 6.94 3.84

Happiness 4.38 91.23 2.09 3.28

Anger 8.54 4.52 83.91 3.01

Sadness 12.60 8.94 12.60 65.85

TABLE 8 | Regression of facial expression quality on JEMImE-All.

Train Neutral Happiness Anger Sadness Average

MEAN SQUARE ERROR (MSE)

JEMImE-Paris 10.5 5.5 5.8 5.4 6.8

JEMImE-Nice 10.3 5.0 5.4 5.1 6.5

JEMImE-All 9.6 4.6 5.2 4.9 6.1

CORRELATION COEFFICIENT (CC)

JEMImE-Paris 0.63 0.78 0.67 0.55 0.66

JEMImE-Nice 0.64 0.79 0.69 0.57 0.67

JEMImE-All 0.66 0.80 0.70 0.60 0.69

Bold values indicate the best results.

the model trained on JEMImE-Paris outputs better accuracies
for neutral and happiness classes, with very poor performance
for sadness. Indeed, sadness is the more subtle FE and we believe
the low number of examples does not allow to efficiently capture
the variability to describe this class. This is confirmed by the
accuracies outputted by the models trained on JEMImE-Nice
and JEMImE-All that allows more satisfying accuracies for anger
and sadness. Table 7 shows the confusion matrix obtained for
the best overall model, trained on JEMImE-All. Due to the
sheer subtlety and variability of the FEs, anger is frequently
misclassified as neutral and sadness is often confounded with
either anger or neutral.

3.4. Expression Quality Assessment
Table 8 shows the accuracies of regression models trained on
JEMImE-Paris, JEMImE-Nice and JEMImE-All and evaluated
on JEMImE-All. We measured both the MSE and CC for
regression models. Echoing the results reported in section 3.3,
models trained on JEMImE-All have lower MSE and higher CC
for all FEs, as compared to models trained on JEMImE-Paris
and JEMImE-Nice.

Overall, the precision of the system for the different FEs seems
satisfying, showing that we can not only reliably discriminate
between childrens’ FEs, but also provide relevant feedback on
the quality of the FE display. However, in the case of regression,
neutral is the least recognized FE, with a high MSE value and a
CC on par with sadness.

3.5. Visualization of Relevant Features
3.5.1. Features for Classification
Figure 2 presents the relative importance of the different face
areas for the facial expression classification task, using the
method introduced in section 2.2.3. We grouped the features
according to their nature, i.e., the template that was used to
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FIGURE 2 | Most relevant features for FE classification (one vs. all). Best viewed in color.

generate this feature, as well as its relevance for distinguishing
between the presence or absence of a specific expression.
For instance, expression happiness is mostly characterized by
distances and angles related to the lip corners, as well as
HOGs extracted on the cheeks (triangles between feature points
from the lip corners and eye corners). Anger is most notably
characterized by features extracted around the eye/eyebrows
region, as well as texture information sampled from the outer eye
corners and between the eyes, which respectively advocate for eye
closure and eyebrow frowning. Sadness mainly requires distance
features from the mouth corner (lip corner depressor) along
with angles and HOGs extracted between the eyes and on the
inner brows. Neutral presents a feature repartition quite similar
to happiness with a little more importance of geometric features
located on the eyebrows, which helps the models to distinguish it
from anger and sadness.

This visualization scheme allow to analyze features extracted
relatively to one class against every other class. Conversely, we
can also visualize features extracted in a one-vs.-one manner, i.e.,

plotting each class against each other. The results are compiled

in Figure 3. Those results are obtained by tweaking Equation (8)
with indicator functions returning 1 for one expression (y-axis
on Figure 3) and 0 for another specific one (x-axis on Figure 3).
As such visualization is essentially symmetric, we only display the
upper diagonal elements of this pseudo-confusion matrix. First,
happiness can be distinguished from any other expression using
mostly lip corner features. Anger vs. neutral involves features
located around the eyes (nose wrinkle) as well as inner brow
lowering. Distinguishing sadness from neutral is more reliant
on lip corner depressor. Finally, sadness vs. anger is heavily

reliant on inner brow raise and nose wrinkles as well as lip
corner depressor.

3.5.2. Features for Quality Regression
Figure 4 shows a visualization of the selected features for the
multi-output regression model. We see that the selected features
are qualitatively very similar for deciphering high (quality > 7)
and low (quality < 3) quality expressions. Thus, the extracted
features are very stable, and the results echoes the analysis of the
classification model. Overall, we can see that high quality is more
reliant on texture information, particularly in areas like between
the eyes (presence/absence of nose wrinkle) or eye corners (lid
tightening/opening), and less on geometric features, particularly
the distances. Indeed, high quality FEs are characterized by very
“pure” patterns that excludes any other FE, e.g., high quality
happiness shall exclude any nose wrinkle, which is specific to
anger. Conversely, a display of anger without any nose wrinkle
may be misclassified as sadness. Hereby, its quality is likely to be
rated down. Interestingly, intermediate quality (3 < quality < 7)
FEs are less reliant on distance features, with more emphasis on
angles and texture. Indeed, recall that this quality zone is where
FEs are correctly recognized, but not credible. Thus, the models
have to fetch subtle features, such as wrinkles for happiness, lip
corner pull or mouth opening while expressing sadness.

In particular, distinguishing the different quality levels for
neutral and happiness involve geometric features extracted from
the mouth area, in addition to appearance features extracted
around the eyelid, particularly for intermediate quality levels.
Anger involves both kinds of features extracted around the
eyes and eyebrows and sadness involves a combination of both
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FIGURE 3 | Most relevant features for FE classification (one vs. one).

angle and texture features distributed around the mouth and
eyelid, respectively.

4. DISCUSSION AND CONCLUSION

Throughout this work, we tackled the issue of designing
classification and regression models to decipher FEs, and more
precisely FE quality among children subjects. In particular, we
studied the transferability of models trained for FER on adults
to children, showing that such models do not generalize well
to unseen children data, due to a combination of domain gaps
in expressive behavior and environmental recording conditions.
Furthermore, the existing FER databases appear as limited in
some fashion, whether it concerns the number of subjects,
the recording modality, or the nature of the annotation.
This motivated us to gather a large database of children FE
records involving several modalities that we call the JEMImE
database. Most notably, FEs in JEMImE are annotated not
only in terms of categorical FEs, but also in term of FE
quality, which is a step toward more precise annotation of
facial behavior.

Furthermore, we implemented a FER pipeline for FE
classification and quality regression, that uses a random forest

algorithm trained upon a combination of geometric and
appearance features. Such models allows high recognition rates
and offer the possibility to visualize relevant features for each
expression. We showed that, contrarily to such model trained
on adult FE databases, RF models trained on JEMImE database
generalize far better on children, both for FE classification
and quality regression. Last but not least, we proposed a
visualization scheme based on the accumulation of information
gain metric for random forest predicts, which shows the most
useful features and regions used to discriminate each FE or FE
quality level.

While the present work focuses on describing JEMImE
database and showing its interest for training and evaluating FER
systems for categorical FE classification as well as FE quality
regression, there remains a lot of work to be done to investigate
the possibilities offered by its rich annotation and experimental
protocol. First, from a machine learning standpoint, we only
benchmarked with a specific (RF) framework for FER. Though
using other algorithms is out of the scope of this study, we
conducted some experiments using deep neural networks, that
did not significantly outperform RFs. The reasons for this stems
from the difficulty to integrate heterogeneous data (such as
landmarks and face crops) as well as the low numbers of training
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FIGURE 4 | Visualization of features relevant for quality regression. Big, yellow circles indicate a large importance of a feature and face area. Conversely, small and

black circles suggest a low relevance. Best viewed in color.

examples that make some sort of transfer learning a necessity.
More investigations will be required to assess the capacity of
such models for future studies. Furthermore, there is still a
lot of work to be done to explore the possibilities offered by
JEMImE database: for instance, was the on request task better
at eliciting FEs, compared to the imitation task? How did the
corresponding FEs fare in these two scenarios in terms of FE
quality? Would an automated system be able to learn from one
and predict the other, and vice-versa? The same questions can
be asked for the different modalities (audio/visual). Last but
not least, there is still a long road to validate the effectiveness
of the presented children FER pipeline for providing real-time
feedback for helping ASD children to produce adequate FEs
given a social context, which is the ultimate motivation of
this work.

As such, future work is 2-folds: first, we will work on the
FE recognition models to enhance robustness to head pose
variations and partial occlusions. Second, we will integrate the
proposed FE recognition and quality regression methods inside
JEMImE serious game solution, and validate its usefulness for
helping children with ASD to produce realistic FEs, from a
clinical standpoint.
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