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Most of our daily activities in a highly mobile digital society require timely spatial

decision-making. Much of such decision-making is supported by map displays on

various devices with different modalities. Spatial information visualized onmaps, however,

is always subject to a multitude of uncertainties. If space-time decision-makers are

not informed about potential uncertainties, misleading, or at worst, life-threatening

outcomes might result from map-based decisions. Therefore, data uncertainties should

be communicated to decision-makers, especially when they are made with limited

time resources and when decision outcomes can have dramatic consequences.

Thus, the current study investigates how data uncertainty visualized in maps might

influence the process and outcomes of spatial decision-making, especially when

made under time pressure in risky situations. Although there is very little empirical

evidence from prior uncertainty visualization research that considered decision time

constraints, we hypothesized that uncertainty visualization would also have an effect

on decision-making under time critical and complex decision contexts. Using a

map-based helicopter landing scenario in mountainous terrain, we found that neither

time pressure nor uncertainty affected participants decision-making accuracy. However,

uncertainty affected participants’ decision strategies, and time pressure affected

participants’ response times. Specifically, when presented with two equally correct

answers, participants avoided uncertainty more often at a cost of landing distance

(an equally important decision criteria). We interpret our results as consistent with a

loss-aversion heuristic and suggest implications for the study of decision-making with

uncertainty visualizations.

Keywords: uncertainty, visualization, decision-making, time pressure, usability, geographic information, interface

evaluation

INTRODUCTION

Data visualization is becoming more and more ubiquitous in society as a way of communicating
complex phenomena to scientific experts and the general public alike. Along with this increase
in availability comes a responsibility for scientists to visualize uncertainty, which includes a
consideration of the accuracy of data from a variety of sources, such as measurement error,
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natural variation, and prediction error (Skeels et al., 2010;
MacEachren et al., 2012). Since the launch of the “Visualization
of Data Quality” research initiative by the National Center
for Geographic Information and Analysis (NCGIA; Beard
et al., 1991) in 1991, geographic information scientists have
been working on the problem of uncertainty visualization in
spatial data. Because uncertainty is a multi-faceted concept,
there are many different uncertainties, and the visualization
of uncertainties is applied in various contexts with different
objectives, so there cannot be a single optimal uncertainty
visualization technique. This calls for evaluation of uncertainty
visualization methods in specific contexts.

The current research will focus on two specific contexts:
making decisions using map-based geographic data with and
without time pressure. Maps depicting geographic data offer a
plethora of options to visualize uncertainty, but it is not often
clear how (e.g., choice of color, texture, glyphs) to effectively
communicate uncertainty information. Since the ultimate goal of
uncertainty visualizations is for decision-makers to make “well-
founded decisions based on imperfect information” (Pang et al.,
1997), it is important to understand what influence uncertainty
visualizations have on map-based decisions. In principle, there
is agreement that geographic uncertainties influence decisions
in some way (MacEachren et al., 2005). For a long time,
however, it was simply assumed that uncertainty visualizations
are useful for a decision-maker without empirical evaluation
(MacEachren et al., 2005). The more uncertainty visualization
techniques have developed, the more there has been a call
for empirical evaluations and theoretical frameworks to test
the effects uncertainty visualizations have on decision-making
(Spiegelhalter et al., 2011; Kinkeldey et al., 2015a; Kay et al., 2016;
Padilla et al., 2018).

Decision-Making With Uncertainty and
Uncertainty Visualizations
Decisions can be divided into two basic elements: (1) the
decision-making process and (2) the decision outcome (Keuper,
2004). A bounded rationality model of decision-making assumes
that decision-makers cannot obtain complete and perfect
information; their knowledge of all options, their cognitive
abilities, and the time available are limited (Simon, 1956; Orquin
and Mueller Loose, 2013). For this reason, decision-makers
must break down the decision-making problem and prioritize
certain information or apply specific strategies to reach a decision
(Kahneman, 2011; Orquin and Mueller Loose, 2013). In the
context of visualizations, Padilla et al. (2018) more recently
have proposed two types of decision-making with visualizations,
one that is fast and easy (type I) and one that is slower
and more effortful (type II). Type I decisions occur if the
visualization matches common preconceptions (e.g., “dark is
more” on maps; Garlandini and Fabrikant, 2009) and processing
is relatively simple, resulting in a fast and correct decision. Type
II decisions occur if the visualization requires additional effort.
Additional effort could be due to a variety of reasons, such as
inconsistencies with the viewer’s preexisting knowledge, a lack
of knowledge about uncertainty, or difficulty integrating multiple

sources of information. In these cases, processing is effortful and
requires more time and working-memory resources to arrive at a
correct decision.

Decisions can be difficult without uncertainties, but when
uncertainties are involved in decisions, they can become many
times more complicated. For decisions with uncertainties, each
option can lead to different outcomes, with the results arriving
with different probabilities (Joslyn and LeClerc, 2013). We
argue this may result in more effortful type II processing,
even if representations of uncertainty match pre-existing
knowledge about graphs. Since the assessment and estimation of
probabilities is extremely complex, decision-makers often resort
to simpler procedures in order to assess and weigh different
options against each other. Such simplifications are called
heuristics, or strategies (Tversky and Kahneman, 1974). While
heuristics are often useful in simplifying a very complex problem,
they can also lead to serious, systematic errors (Padilla et al.,
2018). For example, in the context of uncertainty visualization,
this can take the form of an inside-outside heuristic, where
decision-makers have no sense of risk for data located outside the
borders of a hurricane forecast’s “cone of uncertainty”—which
indicates a 66% confidence interval of potential forecast tracks—
even though those areas are still at risk of being affected by the
hurricane (Cox et al., 2013; Ruginski et al., 2016; Padilla et al.,
2017).

Empirical studies on uncertainty visualization comprehension
often contain complex tasks in which not “only” values have to be
retrieved or compared from a map, but which require a thorough
analysis of the primary data as well as the uncertainties. In
concrete terms, participants often have to decide which option is
themost optimal from a selection of options, sometimes based on
multiple sources of information (Kinkeldey et al., 2015b; Kübler
et al., 2019). The effects of uncertainty visualizations on the
decision can be analyzed in two ways. In the objective assessment
of the effects, it is analyzed whether more correct decisions are
made as a result of the uncertainty visualizations, whether the
decision-makers arrive at a decision more quickly or whether the
decisions differ in other ways (Kinkeldey et al., 2015a; Padilla
et al., 2018). The objective assessment, especially regarding
decision accuracy, can be challenging, depending on the study
design, due to the “right decision, wrong result” problem. The
problem says that under uncertainty a right decision (the most
rational decision based on task-relevant information) can lead
to a wrong result due to uncertainty (Cheong et al., 2016, 2020).
In the subjective assessment of the effects, it is analyzed whether
the uncertainty visualizations change the attitude of the decision-
makers (e.g., their risk attitude) or their decision security.
Subjective assessments are usually based on self-assessments of
the participants (Kinkeldey et al., 2015a).

Overall, results aremixed concerning the effects of uncertainty
visualizations: uncertainty visualizations can result in more
accurate decisions (Andre and Cutler, 1998; Greis et al., 2018),
but accuracy can also remain unchanged compared to decisions
made without uncertainty (Leitner and Buttenfield, 2000; Riveiro
et al., 2014). Results are likely mixed since visualization choice
has a large effect on comprehension, as specific encodings of
uncertainty visualizations have been shown to be more effective
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than others at facilitating accurate judgments and reducing
misconceptions (Cheong et al., 2016; Ruginski et al., 2016;
Hullman et al., 2018). Others have argued that individuals take
specific decision strategies when presented with uncertainty,
which may or may not change accuracy. For example, Hope and
Hunter (2007b) found that participants chose significantly more
regions with low uncertainty, often although these regions should
not have been chosen due to the low soil suitability class or other
rational considerations. The authors justify this behavior with
the concept of loss aversion by Kahneman and Tversky (1979).
The concept states that, for example, in a bet with the same
chance of losing and winning, the participants suffer more from
a possible loss than they are happy about the possible win, which
is why they reject the bet. In terms of a decision made with map-
based uncertainty, this means that the participants estimate the
potential losses due to high uncertainty to be higher than the
potential gains, and therefore do not select locations with high
uncertainty (Hope and Hunter, 2007b).

Decision-Making With Time Pressure
Even if an optimal uncertainty visualization technique is chosen,
gathering information for a decision and cognitively processing
the information is a time-consuming process. Decision-makers
therefore almost always have internal or external time constraints
in real-world decisions made with uncertainty. While time limits
place internal or external constraints on decision-making, time
pressure, on the other hand, only exists if the time limitation
triggers a feeling of stress (Ordóñez and Benson, 1997). Time
pressure is therefore a subjective (often negative) reaction to a
time limit associated with strong arousal (Svenson and Edland,
1987). In uncertainty visualization research, however, the aspect
of time pressure has not received extensive research. With the
exception of a few studies (e.g., Riveiro et al., 2014; Cheong
et al., 2016), the participants in uncertainty decision-making
studies typically have as much time as needed for their decisions,
which does not always correspond to real-world decision-
making scenarios.

The current study therefore focuses on the influence of time
pressure, given that time pressure can affect decision-making
processes and outcomes (Hwang, 1994) and is important for
real-world scenarios under time pressure, such as emergency
search and rescue operations (Wilkening and Fabrikant, 2011)
and evacuation decisions (Cao et al., 2016; Cheong et al.,
2016). Results are mixed as to the effects of time pressure on
decision-making. Time pressure can facilitate decision-making
by increasing engagement or arousal but hinders decision-
making when time pressure is extreme and induces stress
(Hwang, 1994; Ordóñez et al., 2015). Negative effects of time
pressure on decision performance are often characterized by
speed-accuracy trade-offs. Speed accuracy trade-offs occur when
faster decisions result in less correct decisions (Ahituv et al.,
1998; Wilkening and Fabrikant, 2011; Kyllonen and Zu, 2016;
Cheong et al., 2020). These trade-offsmay occur due to increasing
task difficulty (Hwang, 1994; Crescenzi et al., 2016; Padilla et al.,
2019) or speed-confidence trade-offs, where decision confidence
decreases with increased time pressure (Maule and Edland,
1997; Wilkening, 2012). Further, time pressure results in users

reporting a lesser amount of satisfaction overall with their task
performance (Crescenzi et al., 2013, 2016).

Even if time pressure does not alter decision outcomes,
it can alter decision strategies and information search. For
example, individuals under time pressure tend to constrain
their search and alter decision-making strategies. Time pressure
can have a negative effect on decision performance because
decision-makers use different decision strategies to reduce
cognitive stress (Hwang, 1994). These strategies are heuristics,
as are the strategies for decisions under uncertainty. Research
suggests that individuals process information more quickly (e.g.,
more effective or scattered search per unit of time) and filter
information (Maule and Edland, 1997; Maule et al., 2000).
Generally, decision-makers under time pressure use fewer but
more important attributes, give greater weight to negative or
task-irrelevant aspects, take fewer risks, and consider fewer
options than decision-makers with unlimited time (Ahituv et al.,
1998; Forster and Lavie, 2008).

The Current Study and Hypotheses
While the effects of time-pressure on decision-making seem to be
largely negative, very limited work has been done analyzing the
effects of time pressure on geographic uncertainty data, especially
when individuals must weigh multiple equally important sources
of map information. To our knowledge,Wilkening and Fabrikant
(2011) and Cheong et al. (2016) are the only studies that have
studied the effects of time pressure on map-based decisions
with uncertainty, even though individuals must make important,
quick decisions with uncertainty every day. Yet it is critical
to have a better understanding of how decision-making might
change in these high pressure, information-dense situations,
since decisions can have life-altering consequences in contexts
such as search-and-rescue. Therefore, the current study will
implement a search-and-rescue landing site selection task with
uncertainty information, similar to Wilkening and Fabrikant
(2011).

Wilkening and Fabrikant (2011) investigated the influence
of time pressure on map-based decisions using various map
representations of slope. In the study, the participants had to
decide under low, medium or high time pressure, depending on
the task, which of the six marked helicopter landing sites had a
slope inclination of<14% and were therefore safe for a helicopter
landing. Slopes were visualized using four different methods:
(1) contour lines only, (2) contour lines plus light hill shading,
(3) contour lines plus dark hill shading, and (4) contour lines
plus colored slope classes. Wilkening and Fabrikant (2011) found
that the participants performed significantly better with the slope
color hue map (4) than with all other maps (see also Wilkening,
2012). Individuals also felt that this map was the safest way
to make their decision. Participants performed best at medium
time pressure, followed by coping under low time pressure. The
worst performance was achieved by the participants under great
time pressure. Further, when individuals had to make evacuation
decisions under time pressure with uncertainty visualizations of
forest fires, Cheong et al. (2016) found that individuals made the
most accurate judgments under time pressure when uncertainty
was encoded as color hue when compared to text, borders (simple
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solid and dashed lines), color value, and transparency. Due to
the results of these studies, our study implements a diverging
green-purple color hue to encode slope information. We chose to
overlay uncertainty as a texture given texture’s appropriateness to
visualize uncertainty with a diverging color scale (Brewer, 2016;
see section Preliminary Study Stimuli for more). The decision
of texture type was driven by a preliminary study (section
Preliminary Study), prior to our main study of interest (section
Main Study).

Broadly the current study aims to determine whether and
how map-based decisions under different conditions (without
and under time pressure; with and without uncertainty)
affect decision-making processes. To this end, we combine
multiple measurements (accuracy, decision strategy, response
time, decision confidence, self-assessed stress, eye-tracking)
in order to determine where trade-offs occur in a search-
and-rescue decision-making scenario and gain more targeted
insights into how individuals process, perceive, and decide
when viewing uncertainty visualizations. In order to achieve
this goal, we propose the following research questions and
associated hypotheses:

(1) How does uncertainty visualization affect complex map-
based decisions made with and without time pressure?

H1a: Uncertainty visualizations will influence map-based
decisions regardless of time pressure. This hypothesis is based
on the previously mentioned research showing that uncertainty
visualizations have an influence on map-based decisions without
time pressure (e.g., Wilkening and Fabrikant, 2011; Hullman
et al., 2018). In order to test this hypothesis, the results of
complex map-based decisions are assessed both objectively
(accuracy, response time) and subjectively (decision confidence).
We expect uncertainty to be treated differently than certain data
irrespective of time pressure due to its well-documented effects
on decision-making. Specifically, we expect individuals to have
less confidence in uncertainty information, take longer to answer
due to more effortful decision-making and be less accurate than
without uncertainty information.

A competing hypothesis, H1b, is that time pressure
systematically changes the effect of uncertainty on decisions.
This hypothesis based on the idea that uncertainty visualization
comprehension is more effortful (type II decisions; Padilla et al.,
2018). If this is the case, we would expect that time pressure will
result in more errors with uncertainty, since time pressure would
constrain the additional time necessary to arrive at an accurate
decision. At the same time, we would expect that the control
group takes more time to view uncertainty visualizations, relying
less on fast heuristics, thus resulting in equal performance with
and without uncertainty in the control group.

(2) How do uncertainty visualizations affect decision-making
processes, such as visual search, with or without time pressure?

H2: Uncertainty visualizations influence the decision-making
processes that precede decisions regardless of time pressure. Any
effect of uncertainty on decision outcomes may be attributable
to changes in the decision-making processes. The current
hypothesis is based on the fact that decision research has shown
that heuristics are used for decisions under uncertainties, which
is why the decision-making process changes (Kahneman, 2011;

Padilla et al., 2015; Ruginski et al., 2016). Eye tracking and
decision strategies will be used to answer research question 2
and to test the related hypothesis. Specifically, we will determine
whether gaze time for areas of interest (AOIs) in the display
changes based on uncertainty and time pressure, and whether
response strategy changes based on uncertainty or time pressure.

(3) How does decision-making with or without time
pressure differ?

H3: Decisions made with time pressure will be faster, but less
accurate, compared to decisions made without time pressure.
This hypothesis is based on decision research, which has shown
that time pressure can have negative effects on decisions when
it induces stress in participants. In addition, it was shown that
under time pressure very specific decision-making strategies are
applied, which is why it is assumed that the decision-making
processes differ. To test the hypothesis, we will utilize decision
accuracy, response time, and eye tracker data. Specifically, we
think that individuals with time pressure will answer more
quickly, but less accurately, showing a classic speed-accuracy
trade-off, compared to individuals making decisions without
time pressure.

PRELIMINARY STUDY

Prior to the main study, a preliminary online study was
completed to determine: (1) the method of uncertainty
visualization utilized for the main study and (2) the decision time
limit for the experimental time pressure group. In our maps,
uncertainties are communicated qualitatively, and past research
suggests that extrinsic methods are better suited for depicting
qualitative uncertainty information (Kunz et al., 2011). In
addition, some researchers recommend using extrinsic methods
when the primary information is of great variability (Kinkeldey
et al., 2013, 2014). Our preliminary study sought to determine
the most effective extrinsic depiction of uncertainty out of a
few options.

Materials and Methods
The first part of the study consisted of a personality
questionnaire, the second part consisted of eight map-based
decision tasks, and the third part consisted of questions about
the scenario and uncertainty visualizations.

Preliminary Study Stimuli
Eight map stimuli were shown to participants (further details on
map production can be found in the main study methods, section
3.1.1). In two of these eight maps, no uncertainties are shown,
and in each of three maps the uncertainties are visualized with
one of two chosen methods. The first uncertainty visualization
method is a black-and-white stitched texture developed by
MacEachren et al. (1998) (see Figure 1, left). This method should
be particularly suitable if the primary data are visualized with
a diverging color scale (Brewer, 2016; Johannsen et al., 2018),
which is the case here. The second visualization technique is
a point texture that was used by Retchless and Brewer (2016),
for example (see Figure 1, right). While Retchless and Brewer
(2016) varied the arrangement and color of the dots, the dots
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FIGURE 1 | The two extrinsic uncertainty visualization methods used in the preliminary study. Left: black and white stitched method according to MacEachren et al.

(1998), right: dotted method according to Retchless and Brewer (2016) and Brewer (2016).

FIGURE 2 | Distributions of preliminary study decision times, grouped by

visualization method.

in the current study’s stimuli are always black and in the
same arrangement.

Measures
The primary measure of interest for the preliminary study
was decision time in order to determine the time limit for
the time pressure condition in the main study. We also asked
participants about their preferences and thoughts on each of
the two uncertainty visualization methods as a follow-up after
the experiment.

Participants
Eleven individuals took part in the online preliminary study (6
female, 5 male). The average age of the pre-study participants is
34.8 years, ranging from 23 to 58 years.

Results
Participants answered dot stimuli the fastest [mean (M) = 33.9,
standard deviation (SD) = 10.0], no uncertainty stimuli less
fast (M = 36.1, SD = 10.6), and hatch stimuli the slowest (see
Figure 2,M = 42.9, SD= 14.5).

Nested non-parametric Wilcoxon-Mann-Whitney tests for
group differences using 10,000 sample Monte Carlo distribution
approximations implemented with the coin package in R (Zeileis
et al., 2008) showed that the mean values were not significantly
different between dots and hatches (z = −1.94, p = 0.05),
between dots and no uncertainty (z = −0.72, p = 0.48), or
between hatches and no uncertainty (z = 1.5, p = 0.13). Still,
the dots method was chosen for the primary study given the
fastest mean response time, lowest variability in response time,
and more positive feedback in the written follow-up amongst
all visualizations.

MAIN STUDY

Materials and Methods
Stimuli
Map stimuli were based on randomly chosen and anonymized
locations in Switzerland with mountainous terrain (see
Supplementary Material for further detail on stimuli
generation). Most of the operations are performed using
ESRI’s ArcMap 10.4.1 software, with the exception of uncertainty
calculations, which are performed using Monte Carlo simulation
in Java. The Java code used for calculating uncertainty is
available for use with attribution on an Open Science Framework
repository (available at https://osf.io/yz2s6/). The procedure and
parameters for the code are described in further detail on the
repository and in section Decision-Making With Time-Pressure
of the Supplementary Material of this manuscript.

We systematically controlled four criteria that needed to be
considered by decision-makers: (1) slope categories (◦), including
slope uncertainty, (2) distance (m) to an air navigation obstacle,
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FIGURE 3 | Example map stimuli (region: San Bernardino). Participants viewed the map key in German, but the keys have been translated to English for readers’

convenience. An example map without uncertainty is illustrated in the top figure. An example map with uncertainty is illustrated in the bottom figure. Note how the

map with uncertainty is a rotation and reflection of the same map without uncertainty above. Each map also features the same locations (with shuffled letterings).

FOCA indicates the Federal Office for Civil Aviation in Switzerland.

(3) distance (m) to a ski lift, and (4) distance (m) to the person to
be rescued. The person to be rescued was always marked near the
center of the map, in a zone unsuitable for landing a helicopter.

We developed eight map stimuli, and a ninth for a practice
trial (see Figure 3). To increase the map set, we additionally
rotated and mirrored the eight original maps to generate 16 map
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stimuli in total. We randomized the labeling of the potential
landing spots, to avoid potential response bias.

To present stimuli, we utilized a 23-inch, 1,920× 1,080 display
and Onlineumfragen1 for all participants.

Experimental Design
The experimental design was a mixed factorial (2 × 2) design,
with a within-subject factor of uncertainty (with vs. without
uncertainty) and a between-subject factor of time pressure (with
vs. without time pressure). Repeated trials were presented for
generalizability of study results to various decision contexts (see
section Materials and Methods), resulting in 16 total trails (eight
with uncertainty, eight without uncertainty).

The time limit for time pressure decisions was determined
using the results from the preliminary study (described in section
Preliminary Study). The method of Ordóñez and Benson (1997)
is used to determine the time limit, and calculated as follows:

Time limit = M − 1∗ SD

Assuming that the decision times are normally distributed, this
time limit would mean that about 84% of all participants would
have to reach a decision faster than average (Ordóñez and
Benson, 1997). It is therefore a rather short or strict time limit.
Using the above equation (M decision time = 34.8 s, SD = 8.8),
we calculated the time limit as 25.98. This was rounded to 25
to select a whole, even value, as two pilot participants reported
confusion with a time limit of 26 s. Only 18.2% of preliminary
study participants took on average <25 s to make decisions, so
81.8% of the pre-study participants with this time limit would
have had to decide faster than their actual decisions, suggesting
the time limit will result in pressure to decide more quickly than
usual. The time limit was displayed as a countdown in the upper
left corner of the map, which has been previously validated in
map usability research (e.g., Wilkening and Fabrikant, 2011).

Decision Task
The scenario used for the decision tasks is a helicopter
search and rescue scenario. The task was originally developed
by Wilkening (2012) but adapted for the current study to
consider multiple decision-criteria, whereas, Wilkening (2012)
only required consideration of slope inclination information. The
aim is for the participants to imagine themselves as helicopter
pilots with Rega (Swiss Air Rescue). With the help of a map,
participants decide between six marked landing places in order
to rescue a person in an emergency whose position is also
noted on the map. Some rules have to be observed, because off-
field landings [definition: landings of aircraft outside of airports;
AuLaV (Foreign Land Ordinance), 2014] are only possible
under certain conditions. These conditions were presented to
participants as decision criteria with a series of instructions.
Note that the scenario descriptions of the experimental groups
are not identical because the time pressure aspect was already
introduced in the description of the time pressure group. All text

1https://www.onlineumfragen.com/

passages that were not present in the description of the no time
pressure group, but were added in the description of the time
pressure group, are written in italics in the following scenario
description. In both groups, however, particularly important
aspects were written in bold in the description, presented below
(presented to participants in German, translated to English here
for convenience):

“Imagine you are a helicopter pilot at Rega and have to land
in a mountainous area with no fixed mountain landing sites in
order to rescue a person from an emergency situation as quickly
as possible.

As a decision aid, you have a map of the area where you have
to land. In this map, your inexperienced co-pilot has already
drawn in six places which he proposes as landing sites. However,
some of these places are completely unsuitable for a helicopter
landing, on the others a landing is theoretically possible. It is
your task to decide as quickly as possible where you want to
land, because the sooner you are with the person in distress, the
sooner he can be helped. Since safety comes first, you should
always choose the position you think is best, not just any site that
would be theoretically suitable. If several places are theoretically
suitable, the site closest to the person in distress is the best
possible site.

The map is a slope map with additional elements relevant for
the landing. A slope map shows the slope of the terrain in degrees
(◦). The slope is classified into a total of six classes, so that themap
shows six differently colored gradient classes.

The additional elements are, on the one hand, air navigation
obstacles (teleferics, cables, cable railway, aerial railway, power
lines). All air navigation obstacles are recorded, managed, and
communicated to pilots by the Federal Office of Civil Aviation
(FOCA). In mountainous areas they are at least 25m high. Other
additional elements are ski lifts that are <25m high, but are also
important for a helicopter landing.

(1) The slope should ideally be between 0 and 8◦, between 8
and 15◦ a landing is a bit more difficult but still feasible,
slopes above 15◦ are too steep for landings. Summarized: slope
inclination > 10◦ ideal, 10–15◦ acceptable, >15◦ unsuitable.

(2) The distance to air navigation obstacles (single and group
obstacles, cableways, cables, teleferics) must be at least 100 m.

(3) The distance to ski lifts must be at least 200m, as there can
be large crowds outside.

If several positions meet all three criteria, the position with the
closest distance to the person in distress shall be selected.

Since you should decide as quickly as possible, the time available
to you for your decision is limited by a timer. Decide on a landing
site before time runs out.”

Because the participants do not necessarily have an intuitive
understanding of uncertainties as in many other studies [e.g.,
those of Kübler (2016) or McKenzie et al. (2016)], but should
make decisions with a knowledge of how uncertainties arise and
what effects they can have, the participants read a description
of the concept of uncertainties in digital elevation maps in the
introduction to the decision tasks, similar to Scholz and Lu (2014)
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TABLE 1 | Suitability of the different slope categories for landing.

Slope in ◦ No uncertainty Suitable for With uncertainty Suitable for

landings? landings?

0.0–10.0 Ideal Yes Ideal, acceptable Yes

10.1–15.0 Acceptable Yes Ideal, acceptable,

bad

Maybe

15.1–20.0 Bad No Acceptable, bad,

very bad

Maybe

>20.1 Very bad No Bad, very bad No

(presented to participants in German, translated to English here
for convenience):

“The slope gradient values in the slope gradient map you
will be using have been calculated from elevation data. Altitude
values cannot be measured exactly for every point in Switzerland.
Therefore, precise measurements are carried out at selected
locations and the elevation values for the whole of Switzerland
are calculated on this basis.

This procedure has the consequence that there are
uncertainties in the area-wide height data. This means
that the specified value may differ from the actual value.
Consequently, there are also uncertainties in the slope inclination
values calculated from this. In regions with particularly high
uncertainties, the actual slope gradient may deviate to such an
extent that it falls into a different slope class than that indicated
on the slope gradient map.

In some of the maps you will see, these regions are now
marked with particularly high uncertainty in the slope inclination
values in addition to the other elements. The actual slope
inclination value in regions with marked uncertainties may
deviate by more than 5◦ from the indicated value, which may
result in the value being in the previous or next class.

The decision task that you have to solve, as well as all
criteria for it, remain exactly the same even on maps with
marked uncertainty.”

This training ensures that everyone has similar prior
knowledge about uncertainties, regardless of their background.
In addition, the uncertainty is noted in the legend of the map (see
Figure 1).

Measures of decision-making
Accuracy and response time were our two measures of decision-
making. Accuracy was determined by a complex decision analysis
based on the decision criteria provided to participants. Similar
to Kübler (2016), the landing sites are categorized so that the
decisions for the different categories can be compared. Overall,
we classified landing-site decisions into “very wrong,” “wrong,”
and “correct” based on a combination of slope inclination and
obstacle proximity. A summary of slope suitability for landing is
presented in Table 1.

The reason for differences in classification between no
uncertainty and uncertainty is because the slope may
have differed from the category depicted by one unit. Our
classifications of suitability for landing thus reflect this ambiguity
in information. Of nine possible combinations of slopes and

TABLE 2 | Categorization of the landing sites into eight categories (short: cat.) for

the analysis of decisions.

Cat. Slope Distance to Distance Correct Potential change

inclination obstacles to answer? in correctness

target with

uncertainty?

1 Bad/Very bad 1 good and 1

too close

Very wrong No

2 Acceptable 2 × too close Very wrong No

3 Ideal 2 × too close Very wrong No

4 Acceptable 1 good and 1 ×

too close

Wrong Yes

5 Ideal 1 good and 1 ×

too close

Wrong No

6 Bad/Very bad 2 × good Wrong Yes

7 Ideal 2 × good 7 > 8 Correct No

8 Acceptable 2 × good 8 < 7 Correct Yes

The fifth column indicates how the decision for the respective category is evaluated in the

case of a decision without uncertainties. The sixth and last column indicate whether there

might be a change in this assessment if uncertainties are visualized.

obstacles, a total of eight combinations occur in the maps (a
“bad/very bad” slope inclination in combination with “2 × too
close” distance to the obstacles does not occur), which is why
there are a total of eight categories. These categories are listed
together with the characteristic values in Table 2.

To summarize, landing site categories 1, 2, and 3 are regarded
as “Very wrong”; categories 4, 5, and 6 as “wrong”; and categories
7 and 8 as correct.

Response time was calculated as the time to make a decision
in seconds. If participants in the time pressure group did not
make a decision within the maximum time limit (25 s), this trial
was considered missing and not included in analyses (for both
decision accuracy and response time).

Eye tracking
To obtain information about participant’s decision-making
process, the eye movements of the participants were recorded
with the aid of an eye tracker. We utilized the Tobii TX3008
model, which has a recording rate of 300Hz and an accuracy of
0.4◦ of visual angle. The Eye Tracker was used with Tobii Studio
3.4.7 software.

In order to examine the decision times of the two decision
types in more detail using the eye tracker data, the map stimuli
were divided into different AOIs. AOIs are regions in the
stimulus in which the researcher is particularly interested. The
seven AOIs include (1) the map, (2) the scale, (3) the legend
for the slope inclination, (4) the legend for the obstacles, (5) the
legend for the landing sites, (6) the six selection options, and (7)
the answer button (Figure 4). The AOIs are exactly the same for
maps with and without uncertainty, with the exception of a more
detailed legend of slope inclination for maps with uncertainty,
resulting in a slightly larger AOI for this legend compared with
maps without uncertainty.

Visit Count and Total Visit Duration (in seconds) were
calculated for each trial, participant, and AOI using Tobii
Studio 3.4.7.
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FIGURE 4 | Subdivision of the view into seven different AOIs, numbered and labeled in red (example region: San Bernadino). The AOIs are shaded in pink, aside from

the map. (1) the map, (2) the slope legend, (3) the landing site legend, (4) the distance legend, (5) the obstacle legend, (6) the six selection options, and (7) the answer

button.

Assessment of spatial ability: paper-folding test
Spatial ability was assessed using the paper-folding test (Ekstrom
et al., 1976) and was collected to ensure that experimental groups
were homogenous with respect to spatial ability.

Assessment of stress: short-state stress questionnaire (SSSQ)
Because an imposed time limit does not mean that a person
is necessarily stressed, a measure is needed to quantify the
extent to which the time limit used in this study puts
the participants group under stress. The SSSQ measures
the current emotional state of the participants using 24
questions (Helton, 2004). The questionnaire measures three
dimensions of subjective stress perception: (1) Task Engagement,
(2) Distress, and (3) Worry. The task engagement factor
describes feelings that are related to the commitment that is
applied to a task. These include the sensations of motivation
and concentration. The distress factor includes uncomfortable
feelings such as tension or cognitive interference. Worry
is a cognitive factor that is mainly derived from self-
attention, self-esteem, and cognitive interference (Helton,
2004).

In order to detect a change in emotions using the SSSQ, we
utilized the SSSQ before and after the main decision-making
tasks in the study. Each question is answered using a five-part
Likert scale, where 1 means “not true at all” and 5 means “fully
true.” Due to a procedural error, all participants answered only

23 of the 24 questions. The missing question is question 12
(part of the task engagement factor) and was excluded from
all analyses.

Procedure
The first part of the main study consisted of the Pre-SSSQ
(Helton, 2004) and a paper-folding test that measured spatial
thinking ability (Ekstrom et al., 1976). The first questionnaire
was conducted using the survey tool Onlineumfragen, and the
paper-folding test was solved on paper. After the SSSQ pre-test,
participants received training, completed the decision task, and
took an SSSQ post-test.

Participants
Thirty-four participants (17 with time pressure, 17 without
time pressure) were recruited broadly without any specific
background relevant to the decision-making scenario and
volunteered to participate in the study. Of the 34 participants, 18
were female and 16male. The gender distribution was the same in
both experimental groups (9 female, 8 male). The average age of
all participants together was 27.7 years (SD= 10.2; time pressure
M = 27.5, time pressure SD = 10.3; No time pressure M = 27.9,
SD= 10.5).

Participants were randomly assigned to the time-pressure
and control groups. A non-parametric Exact Wilcoxon-Mann-
Whitney Test from the coin package in R revealed that
participants did not differ in spatial ability assessed with the
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paper-folding test (see section Decision Making Results) between
the experimental groups (z =−0.36, p= 0.72).

Results
Data Analyses
Given the non-normal nature of the data, all basic group
comparisons reported in the following sections were completed
using non-parametric Exact Wilcoxon-Mann-Whitney Tests
from the coin package in R version 3.6.

Analyses and hypothesis testing related to decision-making
and response time were completed using multilevel models.
Multilevel modeling is a generalized form of regression
appropriate for nested study designs (multiple trials and
uncertainty groups nested within participants, in this case;
Gelman and Hill, 2006). Multilevel models were implemented
using the lme4 package and marginal effects plotted using sjPlot
and ggplot2 in R version 3.6 (Wickham, 2011; Bates et al., 2015;
Lüdecke, 2020). We utilized the following multilevel model:

Yij = β00 + β01 ∗ TimePressurej + β10 ∗ Uncertaintyi + β11

∗ TimePressurej ∗ Uncertaintyi + u0j + rij

where i represents trials, and j represents individuals. This
model was adapted as appropriate dependent on distributions
of outcomes, but predictors remained the same throughout
all models.

The mixed two-level regression model tested whether the
effect of uncertainty (level 1, within person), varied as a function
of time pressure (level 2, between person). Groups were contrast
coded such that −0.5 corresponded to no uncertainty trials and
0.5 to uncertainty trials, while −0.5 corresponded to the control
group and 0.5 to the time pressure group. With these codings,
hypothesis tests reflect whether the difference between variables
is different than 0 (e.g., Is the time pressure group mean minus
the control group mean significantly different from 0?). Note that
the accuracy effects (β) are reported using odds-ratios in the text
for easier interpretation. Odds are defined as the ratio of correct
responses to incorrect responses, and an odds-ratio is calculated
as the ratio of the odds of two groups. An odds-ratio of 1 indicates
the same odds of answering correctly between the groups, an
odds-ratio below 1 indicates that the group coded 0.5 has lesser
odds of answering correctly, and an odds-ratio above 1 indicates
that the group coded 0.5 has greater odds of answering correctly.

Prior to running the accuracymodel (sectionDecisionMaking
Results), we noted that the percentage of very wrong (6.8%) and
wrong (3.9%) decisions was very small in comparison to the
percentage of correct answers (89.3%). Because of this, we treated
very wrong and wrong decisions as the same (total wrong =

10.9%) in accuracy analyses, coding correct answers as 1 and
wrong answers as 0. We thus analyzed the effects of decision
accuracy using a multilevel logistic regressionmodel, appropriate
for binary data (correct vs. incorrect).

We analyzed decision response time (section Eye Tracking
Results) using a multilevel model with a Gaussian distribution.
Participants were included as random effects in all models. The
full output of our models is available in Supplemental Materials,
along with the associated data and code.

Overall, the participants of the time pressure group were not
able to decide on a landing site before the timer expired for
28 decision tasks (10.29%). Each participant did this at least
once, but not more than four times. In addition, we noted that
participants tookmuch longer to complete trial 1 than other trials
(M response time= 37, SD= 21.8, compared toM response time
= 23, avg SD = 13 for all other trials). During experimentation,
we noted that this was due to participants becoming familiar with
the task and interface, and thus considered this an additional
practice trial rather than experimental trial. Uniquely, trial 1 was
always the same for all participants, even though the remainder of
trials were presented randomly. For these reasons, this first trial
was removed from the data prior to analyses. Consequently, the
following analyses are not based on 544 but on 488 decisions (255
of the no pressure group and 233 of the time pressure group).

Time Pressure Manipulation Check
We found that the experimental groups did not self-report
changes in their worry (z = 1.8, p = 0.08), distress (z = −0.9,
p = 0.40), or engagement (z = 0.7, p = 0.49) as a result of the
time pressure manipulation (see Figure 5).

Decision-Making Results

Decision accuracy and strategy
We found that neither uncertainty (Odds ratio = 0.8, p = 0.46,
95% CI = 0.43, 1.46) or time pressure (Odds ratio = 0.8, p =

0.63, 95%CI= 0.30, 2.07) affected participants’ decision accuracy
(see Figure 6A). Further, we found that the effect of uncertainty
on accuracy did not interact with time pressure condition (Odds
ratio= 0.7, p= 0.63, 95% CI= 0.20, 2.32).

Though there were no accuracy differences based on
uncertainty or time pressure, we noticed that the majority of
participants answers were either Category 7 or 8 (89.3% of
answers), as can be noted by the relatively high mean accuracies
for all participants (M accuracy = 89.3%, SD = 30.8). However,
not all correct answers are based on the same information. For
Category 7 landing sites, the slope inclinations are “ideal” and for
Category 8 landing sites, slope inclinations are only “acceptable.”
At the same time, Category 7 landing sites are further away
from the target than Category 8 landing sites (see Table 1).
This is particularly important considering that uncertainty
information affected slope but not distance information in the
maps. Therefore, we completed a follow-up analysis that analyzed
whether time pressure and uncertainty affected the likelihood of
choosing a landing site that was further away, but had better slope
conditions (choosing landing site 7 over landing site 8).

A follow-up multilevel model showed that uncertainty
significantly increased the likelihood of choosing a landing site
that was further away, but had better slope conditions (see
Figure 6B;Odds ratio= 3.9, p< 0.001, 95%CI= 2.56, 5.86). This
effect was consistent regardless of time pressure, as there was no
significant interaction with time pressure (Odds ratio = 1.3, p =
0.52, 95% CI = 0.58, 2.95). Further, time pressure did not affect
the likelihood of choosing a landing site that was further away
(Odds ratio = 1.15, p = 0.59, 95% CI = 0.70, 1.88), suggesting a
unique effect of uncertainty.
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FIGURE 5 | Pre-post experiment difference in self-reported worry [(A), left], distress [(B), center], and engagement [(C), right]. No significant differences were

observed in any of these emotional factors due to time pressure.

FIGURE 6 | Decision-making results. (A) (left) depicts decision accuracy, (B) (center) depicts decision strategy for correct answers, and (C) (right) depicts decision

response time. Error bars indicate bootstrapped 95% confidence intervals from multilevel model estimated marginal effects.

Decision response time
We found that both uncertainty (B = 2.19, SE = 0.84, p = 0.01,
95% CI= 0.54, 3.83) and time pressure (B=−11.61, SE= 2.78, p
< 0.001, 95% CI = 0.54, 3.83) significantly affected participants’

response times. Uncertainty trials resulted in 2.19 s more to
respond on average compared to trials without uncertainty.
The control group took 11.6 more s on average to respond
across all trials compared to the time pressure group. However,
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FIGURE 7 | Effect of uncertainty on decision confidence. Error bars indicate bootstrapped 95% confidence intervals from multilevel model estimated marginal effects.

this effect was driven by the control group taking longer to
respond when presented with uncertainty, as we observed a
significant interaction between uncertainty and time pressure
such that the effect of uncertainty changed based on the time
pressure group (B = −4.01, SE = 1.68, p = 0.02, 95% CI
= −7.31, −0.73). Post-hoc simple slopes analyses (available in
Supplementary Materials) revealed that this interaction was
driven by individuals in the control group taking more time to

answer for uncertainty trials than individuals in the time pressure
group (see Figure 6C).

Decision confidence
We found that uncertainty (B = −0.23, SE = 0.08, p = 0.003,
95% CI = −0.38, −0.08) resulted in lesser self-reported decision
confidence overall than decisions made without uncertainty. The
effect was small overall, however, and was only approximately
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FIGURE 8 | Effect of uncertainty and time pressure on eye gaze duration across display AOIs. Note that y-axis scales differ to show varying mean levels of attention

given to each area of interest. Each panel is ordered by mean visit duration in seconds from top left to bottom right. Error bars indicate bootstrapped 95% confidence

intervals from raw data.

TABLE 3 | Effects of uncertainty and time pressure on visit duration by area of interest.

Area of interest Different with uncertainty? Different with time pressure? Interaction?

Map More time with uncertainty Less time with pressure Yes. More time with uncertainty in control group

Landing site selection No Less time with pressure No

Slope legend More time with uncertainty Less time with pressure Yes. More time with uncertainty in control group

Answer button No No No

Distance legend Less time with uncertainty Less time with pressure No

Obstacle legend Less time with uncertainty No Yes. Less time with uncertainty in control group

Landing site legend No No No

Full results from multilevel models are available in Supplementary Materials.

one-quarter of one confidence category on our scale (e.g.,
certain to neutral; see Figure 7). Time pressure did not affect
decision confidence (B = −0.21, SE = 0.23, p = 0.36, 95%
CI = −0.67, 0.25), and there was no interaction between
uncertainty and time pressure on decision confidence (B = 0.16,
SE = 0.15, p = 0.29, 95% CI = −0.14, 0.46). On average,

participants reported being between neutral and certain about
their decisions.

Eye-Tracking Results
Eye-tracking measures were intended to provide qualitative
strategy insights to supplement behavioral measures. Using
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TABLE 4 | Descriptive statistics for key measurements of decision-making

(accuracy, strategy, and response time) by experimental group and map type.

Experimental Mean accuracy Mean likelihood Mean response

group and map (SD) of choosing further time (SD)

type distance (SD)

Uncertainty 88.5% (32.0) 61.7% (48.7) 24.1 (14.8)

No uncertainty 90.4% (29.6) 30.6% (46.2) 21.9 (11.5)

Time pressure 88.0% (32.6) 48.8% (50.1) 16.9 (4.7)

No time pressure 90.6% (29.3) 45.5% (49.9) 28.7 (16.1)

Uncertainty, time

pressure

86.3% (34.5) 65.4% (47.8) 16.9 (4.9)

Uncertainty, no

time pressure

90.4% (29.5) 58.5% (49.5) 30.6 (17.6)

No uncertainty,

time pressure

89.9% (30.3) 30.6% (46.3) 16.9 (4.5)

No uncertainty, no

time pressure

90.8% (29.1) 30.6% (46.3) 26.4 (13.9)

SDs presented in parentheses for each mean.

the rmcorr package in R to calculate a bootstrapped (nrep
= 5,000) repeated measures correlation coefficient (Bakdash
and Marusich, 2017), we found that visit duration and
visit count were extremely highly correlated (r = 0.92,
p < 0.001, 95% CI = 0.90, 0.93), and thus measured
very similar attentional processes. Because of this, we solely
focused on analyzing visit duration. We examined how
long participants looked at different AOIs on the display
during the task (areas shown in Figure 4). We conducted
multilevel models for each AOI to determine if time spent
looking at each area differed based on uncertainty, time
pressure, and their interaction (full model results available in
Supplementary Materials). Results are presented in Figure 8

and summarized in Table 3.

Summary of Results and Descriptive Statistics
Overall, we found limited effects of time pressure on accuracy
and decision strategy. Individuals with time pressure spent
less time overall on the decision task, which is not surprising
considering time constraints. Eye tracking revealed that
specifically individuals under time pressure spent less time
looking at the map, the landing site decision selection, the
slope legend, and the distance legend than individuals in the
control group. We found much stronger effects of uncertainty
overall on decision strategy, but not accuracy, irrespective of
time pressure. Interestingly, we found that individuals without
time pressure spent much more time looking at maps that
contained uncertainty, but with no benefit to their task accuracy
or meaningful change in decision strategy. Descriptive statistics
summarizing results can be found in Table 4.

DISCUSSION

Do our results offer support of our hypotheses? We briefly revisit
each in turn below.

We found extremely limited support for H1a: Uncertainty
visualizations will influence map-based decisions regardless of
time pressure. Since uncertainty affected decision strategy rather
than accuracy, this suggests a potential shift in participants
decision-making process more than in “objective” decision
outcomes, such as accuracy.While decision confidence was lower
with uncertainty than without uncertainty, the effect was fairly
small, and participants reported neutral to confident responses
on average across all trials. We found no support for H1b, that
time pressure systematically changes the effect of uncertainty on
decisions. While individuals without time pressure took longer
to view uncertainty visualizations, this did not change decision
strategy or accuracy.

We found partial support for H2: Uncertainty visualizations
influence the decision processes that precede decisions regardless
of time pressure. We found that uncertainty reliably and largely
affected decision strategy, as participants made decisions that
weighted distance information as more important than slope
information faced with two equally correct landing sites. We
interpret this result consistent with loss aversion (see section
Decision Accuracy and Strategy: Loss Aversion as a StrategyWith
Uncertain Data for more).

Further, we found that individuals changed how they allocated
their visual attention when presented with uncertainty, spending
more time looking at the map and slope legend with uncertainty,
but less time looking at the distance and obstacle legends. Often,
however, the effect of uncertainty depended on the time pressure
condition, contrary to our hypothesis. Specifically, when viewing
uncertainty visualizations without time pressure, individuals
allocated more attention to the map and the slope legend, but
less time to the obstacle legend. This suggests that individuals
utilized extra time to gather more information about the nature
of uncertainty and its surrounding map context.

We found very limited support for H3: Decisions made with
time pressure will be faster, but less accurate, compared to
decisions made without time pressure. Time pressure did not
alter decision accuracy or strategy. Though time pressure did
alter response time, this is not surprising, as we imposed this task
constraint on participants in our experimental design. It is telling,
though, that individuals without time pressure did not seem to
benefit from the additional time spent on each decision, at least
measured in terms of decision accuracy. Therefore, time pressure
resulted in individuals coming to equally accurate conclusions
much faster than the control group. Time pressure did alter how
participants chose to spend their more limited time looking at the
display, as time pressure resulted in less time looking at the map,
selecting a landing site, looking at the slope legend, and looking
at the distance legend.

Decision Accuracy and Strategy: Loss
Aversion as a Strategy With Uncertain Data
Without depiction of slope uncertainty, participants selected
landing spots that were closer to the person to be rescued, but not
necessarily at locations with ideal slope conditions. For decisions
supported by visualized slope uncertainty, participants opted for
the safer landing location, but further away as necessary from the
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person to be rescued. Safer in this case means that participants
who were not under time constraints chose to land the helicopter
at a location, which they knew with more certainty would be
suitable for landing.

From a theoretical point of view, the choice of Category 8
landing sites was not a bad decision even with uncertainty. Since
uncertainties meant that the slope gradients could be in the
previous or next class, participants had to assume that the slope
gradients would be or remain unchanged in the previous or next
class with a probability of 33.3%. For the Category 8 landing
sites, this means that the slope inclinations with uncertainties of
33.3% each are “bad,” “acceptable,” or “ideal.” The probability that
the slope inclination of a Category 8 landing site is suitable for
landing despite uncertainties is therefore 66.6%, which is greater
than the probability that the landing site is unsuitable. Since site
8 is closer to the target person than the landing sites of Category
7, it would be a marginally equal choice to the landing site of
Category 7, which had a probability of 100%, depending on how
participants weighted information. Nevertheless, the participants
more often chose the landing sites of Category 7 for decisions
when uncertainty was present in the maps.

We argue that this decision strategy can be explained by the
phenomenon of loss aversion. This decision strategy originated
from a study by Kahneman and Tversky (1979), which shows
that in a bet with the same chance of loss and profit, the
participants suffer more from loss than rejoice over the profit,
which is why they reject the bet. Since we observed this strategy
when participants were confronted with uncertainty regardless
of time pressure, it could be that uncertainty leads to loss
aversion decisions more broadly and could be a defining feature
of decisions made with uncertainty. Is there other evidence that
uncertainty provokes these kinds of decisions?

Loss aversion was observed by Hope and Hunter (2007b), in
which the participants had to decide on a new airport location
based on a soil suitability map. In this study, participants tended
to avoid choosing areas with greater uncertainty, since they
viewed potentially low land suitability as a greater loss than
the potential gain of high land suitability. Therefore, uncertain
locations were viewed as risky and avoided more frequency. In
addition to Hope and Hunter (2007b), Cheong et al. (2016) also
noted that loss aversion probably played a role in forest fire
evacuation decisions. Kübler (2016) shows, however, that loss
aversion does not play a role in all decisions with uncertainty
visualizations. In her study, the participants more frequently
chose houses in insecure regions and thus, according to Kübler
(2016), estimated the possible profit of a house in a zone with
uncertainties higher than the possible loss, contrary to the
concept of loss aversion.

Why might loss aversion play a role in some decisions with
uncertainty visualizations, but not others? It is conceivable that
the risk attitude of the participants may have an influence on
whether they estimate possible gains from uncertainties to be less
than possible losses. It is also possible that the decision scenario
and the nature of the risks will determine whether decision-
makers overestimate the potential losses due to uncertainties.
Minimizing losses of life (evacuation) and maximizing profits
(real estate) are two very different contexts with different stakes.

More work should be done determining which specific data
domain contexts this effect occurs (such as evacuation, real
estate, population, epidemiology, etc.; see section Limitations and
Future Directions for more).

Uncertainty Led to Longer Decision Times,
but Not Accuracy. Why?
Since uncertainty visualizations affect decisions without time
pressure, we expected uncertainty to affect decision accuracy
irrespective of time pressure (Deitrick and Edsall, 2006; Riveiro
et al., 2014; Kinkeldey et al., 2015a). Still, we considered the
alternative hypothesis that decisions with uncertainty might
change dependent on time pressure (Padilla et al., 2018). We
found that the uncertainty visualizations led to the participants of
the control group taking significantly longer to reach a decision,
even though it did not benefit their accuracy. This result could
be due to the high accuracy overall across all experimental
conditions (89%) suggesting that the task may have not required
the cognitive effort necessary to provoke type II decision-making,
even if decisions were made more slowly (Padilla et al., 2018).
Future work could further investigate this effect by introducing
a dual-task—such as remembering a sequence of numbers or
words—which more directly manipulates cognitive workload
(Padilla et al., 2019). This result could also be due to the fact
that time pressure did not seem to result in additional stress (see
section Limitations and Future Directions for more).

This finding is not necessarily supported by past literature—in
many cases uncertainty visualizations do not influence decision
time (Leitner and Buttenfield, 2000; Riveiro et al., 2014; Kübler,
2016). In one case, uncertainty visualizations even led to shorter
decision times (Andre and Cutler, 1998). In the current study,
the participants had to solve multi-criteria decision tasks, similar
to Riveiro et al. (2014) and Kübler (2016). The discrepancy
between the results here and those from the literature thus likely
have a different reason than the complexity of the decision-
making tasks.

Hope and Hunter (2007a) noted that uncertainty visualization
techniques can have an extremely significant influence on
decisions. Kübler (2016) was also able to demonstrate that
different uncertainty visualization techniques can lead to
significantly different decision-making times. It is therefore
conceivable that the discrepancy to the existing literature is due
to the uncertainty visualization technique applied here, because
none of the authors mentioned used only a texture as uncertainty
visualization, as it was done in this study. Kübler (2016) used
three different techniques, one of which was texture based.
In this study, however, blurring led to longer decision times,
but not texture. As explained in the research context, Cheong
et al. (2016) compared the influence of six different uncertainty
visualization techniques on decisions. One of these techniques
was a point-based texture (Johannsen et al., 2018). They found
that participants with the texture and two other techniques
took slightly longer to reach a decision than with the other
three visualization techniques. In the existing literature, there is
therefore no clear evidence that mainly texture-based uncertainty
visualizations lead to longer decision times, which is why the
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extended decision time in this study is not clearly attributable to
the uncertainty visualization technique used. We still hope future
work assesses similar decision tasks using alternative encodings
of uncertainty (see section Limitations and Future Directions
for more).

Our eye-tracking results provide some insight into how
participants utilize extra time during decision-making with
uncertainty. Specifically, participants tend to look at the map
and decision-relevant map legend more often. It appears that
slope classifications were looked at more often during decisions
with uncertainty and especially when there was no time pressure.
This took away from time to lookup legend information that
was decision-relevant, but certain, such as the distance and
obstacle information. Since eye tracking has hardly been applied
in research on spatial uncertainty visualizations as in research on
general information visualization (e.g., Goldberg and Helfman,
2010, 2011; Toker et al., 2017), it is difficult to place these results
into a larger context. To our knowledge, Brus et al. (2012) are
among the very few who also used the eye-tracking method
to investigate how participants make decisions with uncertainty
maps. They found that the legend of uncertainty visualizations in
particular attracted the attention of the participants, which is why
they came to the conclusion that it is particularly important to
depict the uncertainties in a legend. This phenomenon was also
observed in our study. But since the additional gaze time with
these areas during uncertainty was not associated with greater
decision accuracy (individuals with time pressure performed
equally well), participants may have gained the information
necessary to make an informed decision by a certain timepoint.
Another interpretation is that individuals became more efficient
with their visual search behavior under time pressure, or perhaps
implemented strategies to make faster decisions by memorizing
the map legends in advance of the task. Additional research
is necessary to further disentangle how changes in attentional
processes affect visualization decision outcomes.

Limitations and Future Directions
As shown in section Time Pressure Manipulation Check, the
SSSQ did not reveal any significant changes in self-assessed
worry, stress, or engagement during the decision task. This can
imply two things. On the one hand, this result could mean that
the time limit used did not result in stress; on the other hand, it
could be that the participants felt very well-stressed and under
time pressure, but the SSSQ was not the appropriate means to
measure this stress. Since time pressure only exists when a time
limit triggers a feeling of stress (Ordóñez and Benson, 1997),
it is important that our study induced stress in participants.
Several studies have shown that the SSSQ is a sensitive indicator
of changes in personal sensation and responds sensitively to a
wide range of stressors (such as the time limit in the current
study) and changes in task complexity (Helton, 2004; Helton
and Näswall, 2015). Given that time pressure resulted in equal
accuracy and decision strategies and did not affect SSSQ scores,
we believe it is likely that participants simply did not feel stressed
as a result of the manipulation, or that the task was too easy
given a possible ceiling effect of accuracy.We suggest future work
that constrains time limits further and implements converging

measures of emotional response, such as skin conductance and
pupillometry (Bradley et al., 2008). Another approach to make
the scenario more realistic or stressful could include providing
explicit feedback to participants or “gamifying” the task, which
affect engagement, arousal, and performance (Hamari et al., 2014;
FeldmanHall et al., 2016; Wichary et al., 2016). This is especially
important to address since stress can change risk and reward
salience (Mather and Lighthall, 2012). Further work should
explore adding explicit feedback to uncertainty visualization
decisions under stress.

Further, while our study sought to make claims about
uncertainty visualization generally, we only studied one type
of uncertainty visualization (texture), which was overlaid on
slope data binned according to color hue. There is an entire
line of research devoted to color choice and the benefits
and pitfalls of binning color hue, saturation, and contrast in
visualizations (Iliinsky and Steele, 2011; Padilla et al., 2016;
Bujack et al., 2017; Szafir, 2017). For example, some have argued
for utilizing value-suppressing methods of depicting uncertainty,
where uncertainty constraints both color hue and saturation, as
opposed to a separately overlaid texture or bivariate color map
(Correll et al., 2018). Therefore, we cannot necessarily generalize
our results to other non-texture, non-color-based methods of
data and uncertainty visualization, or methods of uncertainty
that are depicted using gradients, rather than a binary yes/no
classification. We hope that future research explores how the
effects of uncertainty on decision-making differ in scenarios
where uncertainty is depicted with color only, texture only, and
other combinations of visual encoding channels (e.g., where hue
encodes data value and saturation encodes uncertainty around
that value).

We did not test our display with experts familiar with our
display, such as helicopter pilots, who likely utilize existing
knowledge to inform their decisions and may have completed
the task differently from non-experts. In addition, to make the
task manageable, we did not include all possible variables that
may have affected pilot decisions, such as visibility. Future work
should assess these displays with experts and include all relevant
decision variables to determine if these results are generalizable
to actual use contexts.

Similarly, our study was limited to a cartographic display
in order to simulate a stressful decision-making scenario
with geographic data. However, work shows that contextual
variables, such as narrative framings and data domain, can
affect visualization interpretation (Hullman and Diakopoulos,
2011; Correll and Gleicher, 2014; Hullman et al., 2018). These
contexts have also been shown to affect behavior and decision-
making under conditions of risk and uncertainty (Kübler
et al., 2019). Further, the effectiveness of visualizations can
differ based on the task, such as simple value extraction,
value comparison, or comparison based on multiple data
sources with uncertainty, as was the case in our study (Padilla
et al., 2016; Kim and Heer, 2018; Dimara et al., 2020). We
therefore implore researchers to further examine decision-
making with geographic uncertainty data, including studies that
directly compare the same underlying map data with different
task framings.
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Last, uncertainty can have many meanings and we only
provided brief training with uncertainty to non-experts, which
may have limited individuals understanding of uncertainty.
Different types of uncertainty result in differing interpretations
andmisinterpretations (Hullman, 2016). For example, inferential
uncertainty from statistical models depicted with confidence
intervals can lead to overestimations of effects compared
to outcome uncertainty depicted with prediction intervals
(Hofman et al., 2020). One potential solution to minimizing
uncertainty misinterpretations in 2D data is by presenting
hypothetical outcome plots, which explicitly depict uncertainty
in a frequency framework (Kale et al., 2019). Others have
argued that raising user awareness of uncertainty can reduce
trust in the data, especially if the source of uncertainty is
unclear. Reduced trust may also explain the loss aversion
strategy (Sacha et al., 2015). Future work should utilize
different definitions, types, and framings of uncertainty to
further assess the generalizability of our results, and determine
whether shifts in awareness or trust change how users utilize
uncertainty information.

CONCLUSIONS AND IMPLICATIONS

Overall, our study found that texture-based uncertainty affects
decision-making with geographic data, but not in the way
we expected. Even when users took additional time to view
uncertainty visualizations in the control condition, this did
not benefit accuracy, suggesting a potential accuracy ceiling
effect in our task. However, one unexpected result was
that uncertainty systematically altered decision strategy and
changed how participants weighed uncertainty vs. more certain
Supplementary Data, which were also essential to inform
decision-making. When presented with two equally correct
potential answers with an uncertainty visualization, participants
tended to choose an answer that was less risky, but clearly
involved a trade-off where other decision-relevant data were
deprioritized. In our case, a search-and-rescue task, individuals
chose to land a helicopter at a further distance away at a steeper,
more certain slope, rather than closer with an uncertain slope.
This effect was quite large (30% shift in strategy with uncertainty
vs. without), and thus of practical significance. Importantly,
this shift in strategy held with uncertainty irrespective of time
pressure, showing that the strategy was not based on a singular
use context.

Further, our study adds additional evidence that uncertainty
visualization evaluations should include multiple converging
measurements of decision-making and decision-relevant
attentional processes, similar to other researchers who have
called for multiple measurements (Hullman et al., 2018; Padilla
et al., 2020). If we had not assessed decision strategy, it may
have appeared that uncertainty had no effect on decision-
making. This suggests that accuracy and performance are
not sufficient to gain complete insights into decision-making
with visualizations, though we still believe they are necessary
and important.

The primary take-home message of our study is that loss
aversion plays a role in decisions made with uncertainty
visualizations when there is additional information available
that also has to be considered as part of a complex,
multicriteria decision with many data sources. In these
cases, participants may attempt to minimize losses by
putting less weight on uncertain information and more
weight on certain information. Therefore, visualization
practitioners should take extra care when visualizing
uncertainty where multiple data sources inform the
decision-making process, especially when there is spatial
variability in uncertainty. Future research should further
assess when decision strategy shifts occur with uncertainty
visualizations across a variety of visualization types and
decision contexts.
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