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Extraction of complex temporal patterns, such as human behaviors, from time series

data is a challenging yet important problem. The double articulation analyzer has been

previously proposed by Taniguchi et al. to discover a hierarchical structure that leads to

complex temporal patterns. It segments time series into hierarchical state subsequences,

with the higher level and the lower level analogous to words and phonemes, respectively.

The double articulation analyzer approximates the sequences in the lower level by linear

functions. However, it is not suitable to model real behaviors since such a linear function is

too simple to represent their non-linearity even after the segmentation. Thus, we propose

a new method that models the lower segments by fitting autoregressive functions that

allows for more complex dynamics, and discovers a hierarchical structure based on

these dynamics. To achieve this goal, we propose a method that integrates the beta

process—autoregressive hidden Markov model and the double articulation by nested

Pitman-Yor language model. Our results showed that the proposed method extracted

temporal patterns in both low and high levels from synthesized datasets and a motion

capture dataset with smaller errors than those of the double articulation analyzer.

Keywords: behavioral pattern, non-parametric Bayesian approach, segmentation, hierarchical structure,

dynamics

1. INTRODUCTION

In the big data era, we can easily collect information-rich time series thanks to the advancements
in sensing technologies. However, such time series data are not segmented and hence difficult to
apply recent machine learning techniques. To segment such data, extraction of temporal patterns
in an unsupervised manner is necessary. This has become an active topic in several research fields,
such as health care (Zeger et al., 2006), biology (Saeedi et al., 2016), speech recognition (Taniguchi
et al., 2016), natural language processing (Heller et al., 2009), and motion analysis (Barbič et al.,
2004). Although many methods have been proposed to extract temporal patterns (Keogh et al.,
2004), there exists a problem that the number of existing patterns (and consequently, the number of
segments) is generally unknown beforehand. To solve this issue, non-parametric Bayesian methods
are used to determine the number of patterns (Fox et al., 2008b). Specifically, non-parametric
Bayesian methods based on switching AR models, such as the beta process—autoregressive hidden
Markovmodel (BP-AR-HMM) (Fox et al., 2009, 2014), can be used to identify the temporal patterns
without specifying the number of patterns beforehand.
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Although conventional methods can discover the temporal
patterns to segment a time-series sequence, some sequences
have a hierarchical structure that makes the segmentation more
complex. Motion data, for example, can be seen as a sequence
of semantic actions, where each action can be decomposed as
a series of motion primitives (Viviani and Cenzato, 1985; Zhou
et al., 2013; Grigore and Scassellati, 2017). Similarly, speech
data consist of words, where each word consists of phonemes.
With such a hierarchical structure, usual methods involving
switching dynamical systems may not be sufficient since they
do not assume the existence of the hierarchical structure. Time
series sequences like the examples above should then be analyzed
using hierarchical models. Non-parametric Bayesian methods
for hierarchical models include the hierarchical hidden Markov
model (HHMM) (Fine et al., 1998), the nested Pitman-Yor
language model (NPYLM) for sentences (Mochihashi et al.,
2009), and the double articulation analyzer (DAA) (Taniguchi
andNagasaka, 2011). However, they are not suitable for analyzing
the dynamic patterns. For example, DAA only modeled the time
series sequences by fitting segment-wise linear functions to the
lower level of the structure. Complex dynamics in the lower
level has not been considered in the previous method, despite
motion primitives being usually modeled as non-linear functions
(Williams et al., 2007; Bruno et al., 2012).

From these backgrounds, it is necessary to develop a method
that considers both dynamics and hierarchical structure to extract
temporal patterns. To realize such a method, we naively applied
BP-AR-HMM and NPYLM in order to model hierarchically-
structured sequences with dynamical systems in our previous
study (Briones et al., 2018).

In this work, we propose a model that integrates BP-AR-
HMM and NPYLM as a unified model. Our method can capture
the hierarchical structure of the time series by NPYLM and
use dynamical systems (specifically, switching AR models in
BP-AR-HMM) to represent the dynamic pattern in the lower
level sequences. Also, BP-AR-HMM allows for asynchronous
switching of segments across the multiple time series data
considered thanks to the beta process in BP-AR-HMM.
Compared to our previous two-step approach, the proposed
integrated approach is expected to improve segmentation and
estimation accuracy. In this study, we tested our method with
toy dataset and sequences generated from real motion capture
(mocap) sequences with two interacting agents. Such motion
sequences are suitable to test the segmentation performance of
our method, since interaction switches from time to time (Ryoo
and Aggarwal, 2009; Alazrai et al., 2015).

The rest of this paper is organized as follows: section 2
shows our proposed method, with a brief introduction of
basic algorithms. Sections 3 and 4 outline the details of the
synthetic experiments carried out using two datasets and their
corresponding results. Finally, section 5 gives some discussion of
the results, including the conclusions.

2. PROPOSED METHOD

We propose to use a hierarchical non-parametric Bayesian
approach to extract hierarchical temporal patterns from time
series data. Specifically, we use an unsupervised segmentation

method, where the extracted segments are used to define the
temporal patterns. Our method consists of two non-parametric
Bayesian models: BP-AR-HMM (Fox et al., 2009) and NPYLM
(Mochihashi et al., 2009) (Figure 1).

In the first step, BP-AR-HMM is applied to time series data,
to discover low-level temporal patterns or elemental behaviors
(EB), which correspond to the motion primitives in the motion
analysis. Segmentation is indicated by assigning EB labels at
each time step. The obtained EB label sequences for each time
series are then summarized, before being used as an input for
the second step. In the second step, NPYLM is applied to the
(summarized) sequence of EB labels, to detect unit behaviors
(UB). Subsequences of EB labels with recurring patterns are
grouped together and assigned UB labels. As a consequence, the
method outputs a sequence of UBs, each of which is a sequence of
EBs represented by ARmodels. Then, these two steps are iterated
a fixed number of times, with the resulting UB labels from the
NPYLM step used as initial EB labels for the BP-AR-HMM step
of the next iteration.

In the following, we introduce the components of our method:
BP-AR-HMM and NPYLM.

2.1. BP-AR-HMM
BP-AR-HMM is an extension of hidden Markov model where
each discrete latent variable zt has an AR model of order r with
parameter θzt = {Azt ,6zt } (Figure 2), and the observed variable
yt is represented as an ARmodel with lag order r. This model is a
non-parametric Bayesian model with a beta process prior, where
an indicator vector over the set of EBs, fi, is drawn. The EB zt , the
state transition matrix π

(i)
j , and the AR coefficient matrix Ak are

drawn according to fi, a gamma prior, and a matrix normal prior,
respectively (Figure 2).

2.1.1. Beta Process (BP)
A beta process prior is placed on the EB indicator vector. This
makes it possible to not specify the number of EBs beforehand,
and thus allow us to use an infinite-dimensional EB indicator
vector f. A beta process is a completely random measure,
denoted by

B | c,B0 ∼ BP (c,B0) , (1)

B =

∞
∑

k=1

ωkδθk , with α = B0 (2) , (2)

where B0 is a base measure, c the concentration parameter, and α

the mass parameter. The number of active EBs, including which
EBs are active, for time series i is determined by a realization of
the indicator vector fi | B ∼ BeP(B), given by

fi =
∑

k

fikδθk , with fik ∼ Be (ωk) . (3)

Here, fik = 1 if the kth EB is active for time series i, i = 1, . . . N.

2.1.2. AR-HMM
The D-dimensional observation vector yt is described by an
autoregressive hidden Markov model (AR-HMM), with order
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FIGURE 1 | Illustration of processing steps in our proposed method. Each time step is assigned both an EB label (line color) and UB label (background color). The

summarized sequence of EB labels (shown as numbers above the lines) obtained from BP-AR-HMM are then grouped together (indicated by the square brackets)

using NPYLM.

r, latent variable (state sequences) zt , and transition probability
matrix πk. That is,

zt | zt−1 ∼ πzt−1 , (4)

yt | zt ∼ N
(

Azt ỹt ,6zt

)

, (5)

yt =

r
∑

l=1

Al,ztyt−l + et(zt), with et(zt) ∼ N
(

0,6zt

)

(6)

For the kth EB, the corresponding AR-HMM parameters are
denoted as θk = {Ak,6k}, while the transition probabilities are
denoted by πk. Since active EBs vary for each sequence, feature-
constrained transition distributions (Fox et al., 2009) are used.
That is, given fi,

π
(i)
kj

=

{

0 fij = 0

P
(

z
(i)
t = j | z

(i)
t−1 = k

)

fij = 1
,

with
∑

j

π
(i)
kj

= 1. (7)

A gamma prior would be placed on the transition matrix, with

ηjk | γ , κ ∼ Gamma
(

γ + κδj,k, 1
)

, (8)

π
(i)
j =

η
(i)
j ⊗ fi

∑

k|fik=1 η
(i)
jk

, (9)

where γ , κ are the transition and transition sticky parameter,
respectively. Moreover, δj,k is the Kronecker delta function, and
⊗ is the Hadamard (or element-wise) vector product.

Moreover, matrix normal priors would be placed on the
dynamic parameters. That is,

6k | n0, S0 ∼ IW (S0, n0) , (10)

Ak | 6k,M, L ∼ MN (Ak;M,6k, L) , (11)

where n0 is the degrees of freedom, S0 a scale matrix,M the mean
dynamic matrix, and L,6k defines covariance of Ak.

2.1.3. Posterior Inference
Samples are generated from the posterior distribution using
Markov chain Monte Carlo (MCMC) algorithm. To be specific,
the samples to be produced are the EB indicator vector f given
θ , η, state sequences z given f, θ , η, and variables θ , η given f

and z. The hyperparameters α, c, κ , γ would also be sampled.
Basically, MCMC alternates between sampling f|y, θ and θ |y, f,
with the hyperparameters sampled in between the cycles. To
generate unique EB vectors, birth-death reversible jump MCMC
sampling (Fox et al., 2009) and split-merge techniques (Hughes
et al., 2012) would be utilized. These samples would then be used
to carry out posterior inference.

2.1.4. Advantages
Using this model provides several advantages over the sticky
hierarchical Dirichlet process—HMM (sticky HDP-HMM) (Fox
et al., 2008a) used in DAA. First, we can segment multiple time
series, and discover common and unique behaviors from these
sequences, thanks to the BP prior. This would not be possible if
we use stickyHDP-HMM since it would require all the time series
sequences to share exactly the same behaviors (and not just a
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FIGURE 2 | Graphical representations of the non-parametric Bayesian models. (Top) BP-AR-HMM. (Bottom) NPYLM.

subset of it). The difference between BP and HDP is most evident
on the transition probability matrices used for each sequence.
HDP in HDP-HMM assigns a state to each time step according
to a transition matrix shared by all time series, while BP in BP-
AR-HMM assigns a state according to transition matrix specific
to each sequence.

Furthermore, using an AR model also allows us to discover
the dynamic properties of the data. This is again not present in
DAA. Specifically, BP-AR-HMM fits AR models for the given
time series {yt}. Hence, the interactions among the variables are
expressed in its AR coefficient matrix Ak (Harrison et al., 2003;
Gilson et al., 2017), making our method suitable for subsequent
interaction analysis.

2.2. NPYLM
NPYLM is originally proposed as a hierarchical language model
where both letters and words are modeled by hierarchical
Pitman-Yor processes (Mochihashi et al., 2009; Neubig et al.,
2010). In each layer of the hierarchical model, words and letters
are modeled as n-grams, which are produced by Pitman-Yor

processes. In general, words can be considered as high-level unit
segments (UB in this study), while letters as low-level sub-unit
segments (EB in this study). Similar to how words are made up
of letters, these high-level unit segments are also composed of
low-level sub-unit segments.

2.2.1. Pitman-Yor Process
Pitman-Yor (PY) process is a stochastic process that generates
probability distributionG that is similar to a base distributionG0.
This is denoted by

G | G0, θ , d ∼ PY(G0, θ , d) (12)

where G0 is a base measure, θ the concentration parameter, and
d the discount parameter.

2.2.2. Hierarchical Pitman-Yor Language Model
Given a unigram distribution GW

1 , we can generate a bigram
distribution GW

2 such that this distribution will be similar
GW
1 , especially for the high-frequency units. That is, GW

2 ∼

PY(GW
1 , θ , d). Similarly, a trigram distribution can also be
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FIGURE 3 | Plot of the first four dimensions of the input data and an example of segmentation results for both EB and UB steps. (Top) Toy data. (Bottom) CMU motion

data.

generated similar to the bigram distribution, such that GW
3 ∼

PY(GW
2 , θ , d). In general, then, the n-gram model is Pitman-

Yor distributed with base measure from the (n − 1)-gram
model, and the base measure of the unigram model being GW

0 .
This hierarchical structure of n-gram models is referred to as
hierarchical Pitman-Yor language model (HPYLM).

Specifically, for the unit n-gram model, the probability of a
unit w = wt given a context h = wt−n . . .wt−1 is calculated
recursively as

p
(

w | h
)

=
c
(

w | h
)

− d · thw

θ + c(h)
+

θ + d · th

θ + c(h)
p
(

w | h′
)

, (13)

where h′ = wt−n−1 . . .wt−1 is the shorter (n − 1)-gram
context, c

(

w | h
)

is a count of w under context h, and
c
(

h
)

=
∑

w c
(

w | h
)

. Here, p
(

w | h′
)

can be considered as a
prior probability of w. On the other hand, thw is a count
under the context h′, while th =

∑

w thw is a count under
the context h. Finally, d, θ are the discount and concentration
parameters, respectively.

To define the base measure GW
0 for the unit unigram model

(and consequently define p
(

w | h′
)

for GW
1 ), NPYLM uses a sub-

unit n-gram model GC
n as the aforementioned base measure.

This sub-unit n-gram model GC
n also uses hierarchical Pitman-

Yor processes, and is structured similarly to the unit n-gram
model GW

n . Moreover, the probability for the sub-unit n-gram
is also calculated recursively using Equation (13), where G0, d

∗,
θ∗ are the base measure, discount parameter, and concentration
parameter for sub-unit unigram model, respectively. As a result,

an HPYLM (in this case, the sub-unit n-gram) is actually
embedded inside another HPYLM (the unit n-gram), resulting
to the “nested” part of NPYLM.

2.2.3. Posterior Inference
Samples are generated from the posterior distribution using
Gibbs sampling and forward filtering-backward sampling
(Mochihashi et al., 2009; Neubig et al., 2010; Taniguchi and
Nagasaka, 2011). To be specific, a unit is removed from the
current unit n-gram model, then a “new” unit is sampled by
generating a new segmentation of the sequence of sub-units.
The “new” unit is then added to the unit n-gram model,
thereby updating the said model. This process of blocked
Gibbs sampling is repeated several times, with forward filtering-
backward sampling used to generate new segmentation.

2.2.4. Advantages
This model assumes that the input sequence has a hierarchical
structure. Thanks to this hierarchical structure, NPYLM is
suitable to model motion data composed of a sequence of UBs,
each of which is composed of a sequence of EBs. This second
step allows us to have high-level semantic, more meaningful
behaviors, rather than the low-level short, simple behaviors (akin
to motion primitives).

Moreover, since NPYLM is an unsupervised language model,
using this model in the second step enables us to do segmentation
without having an existing dictionary. In addition, using blocked
Gibbs sampler significantly reduces computational time for the
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FIGURE 4 | Confusion matrices for an example of segmentation results for both EB and UB steps. Numbers normalized per column. (Top) Toy data. (Bottom) CMU

motion data.

sampling procedure (Mochihashi et al., 2009; Taniguchi and
Nagasaka, 2011).

3. SYNTHETIC EXPERIMENTS

We carried out experiments with two datasets to check the
performance of our method and compare it with that of DAA.
One was a toy dataset synthesized from known AR models to
evaluate the estimation accuracy for segments using the ground
truth. Using this dataset, we also investigated the effects of
complexity (AR order) of the time series.

3.1. Toy Data
To evaluate the estimation accuracy, three subdatasets, Lm

(m = 1, 2, 3), were generated from switching m-th lag order AR
models with hierarchical structure. UBs were randomly chosen
from a library of four UBs (based on predefined transition
probability matrices), to form sequences of concatenated UBs.
Each UB consists of several EBs, where each EB has sparse
AR(m) coefficient matrices, generated independently for each
subdataset. Elements of the AR coefficient matrices were set
within the range (−1, 1). EBs under the same UB share the same
sparsity structure for their respective AR coefficient matrices.

Finally, each subdataset Lm (m = 1, 2, 3) has four time series
sequences of four dimensions each.

Our method with r-th AR (r = 1, 2, 3) was then applied to
each subdataset Lm (m = 1, 2, 3). We carried out our proposed
segmentation method for thirty runs, where each run had ten
different chains of sampling. In each chain, the UB labels
obtained from the prior iteration were used as the initial EB labels
of the next one, with the first chain having all time steps (across
all sequences) assigned the same initial EB label.

The hyperparameter setting of BP-AR-HMM and NPYLM
were based on the values used in Fox et al. (2014) (for BP-
AR-HMM) and Neubig et al. (2010) (for NPYLM), respectively.
The parameters of BP-AR-HMM were set as follows: the
concentration parameter c = 3, the mass parameter α = 2,
both with Gamma(1, 1) prior, for the beta process; the transition
parameter γ = 1, the transition sticky parameter κ = 25,
with Gamma(1, 1) and Gamma(100, 1) prior, respectively, for
the transition matrix. The first 5,000 samples of the MCMC
algorithm were discarded as burn-in, and the following 5,000
samples were used. The state sequences were summarized in each
of the thirty runs, where states with associated time shorter than
1% of the total time were discarded. These were then forwarded
to NPYLM. Settings for NPYLM were as follows: the discount
parameter d = 0.5 with Beta(1.5, 1) prior; the concentration
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FIGURE 5 | Evaluation of model accuracy. (Left) Average normalized Hamming distances. Bars: 1 SE. Lower value is better. (Right) Average adjusted Rand index.

Bars: 1 SE. Higher value is better.

parameter θ = 0.1 with Gamma(10, 0.1) prior. The first 5,000
samples of the blocked Gibbs sampling were discarded as burn-
in, and the following 5,000 samples were used. Posterior inference
for BP-AR-HMM was carried out using the codes developed by
Hughes (2016), while the codes developed by Neubig (2016) were
used to carry out posterior inference for NPYLM.

Finally, our method was also compared with DAA. For DAA,
state sequences were also summarized in each of the thirty runs
of each subdataset Lm (m = 1, 2, 3). The parameters of DAAwere
set so that they were comparable to those of ourmethod. As sticky
HDP-HMM is usually for single time series sequences, the time
series were concatenated into one long time series before being
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FIGURE 6 | Boxplots of the joint log probabilities P (y,F, z) of the EB step. Red line: median. Edges of blue box: first and third quartiles. Whiskers: most extreme data

points except outliers.

applied to the first step of DAA. The EB labels were then split back
and summarized afterward, where states with associated time
shorter than 1% of the total time discarded. DAA was carried out
using the codes recommended in http://daa.tanichu.com/code.

3.1.1. Large-Scale Toy Data
We generated three additional subdatasets, Ts (s = 10, 20, 100),
to explore how our proposed method would fair on a large-
scale simulation. The subdatasets were generated from switching
AR(1) models, using the same parameter settings described
earlier, but with s (s = 10, 20, 100) time series sequences
instead. Our method with AR(1) was applied to subdataset
Ts (s = 10, 20, 100), using the same settings described above, but
with ten, ten, and three runs forT10,T20, andT100, respectively,
where each run still had ten different chains of sampling.

3.2. Evaluation With Toy Data
The result of ourmethod with AR(r) applied to the toy subdataset
Lm was denoted by Lm-ARr, while the result of DAA was
denoted by Lm-DAA. Our method segmented time series with
high accuracy (with respect to both EBs and UBs), and had
better accuracy than DAA. The top panel of Figure 3 shows
a visualization example of segmentation results. In the panel,
the background color of the top row indicates its own EB.

UBs are represented by sequential patterns consisting of sets of
EBs. The second and third rows show the estimated EBs and
UBs, respectively. Their boundaries show high consistency to the
ground truth.

Confusion matrices for the EB labels (left) and UB labels
(right) of an example segmentation results are also illustrated
in Figure 4. Here, the correspondence between true labels and
estimated labels is represented with the values normalized per
column, to allow one-to-many correspondence from a true label
to estimated labels. Columns with entries close to 1 indicate that
corresponding estimated labels are assigned with high specificity,
while rows with multiple entries close to 1 indicate multiple
estimated labels correspond to one true label.

Next, we evaluated the effects of model mismatch to
segmentation, using the resulting average normalized Hamming
distances between the true EBs and the estimated EBs (EBHDist).
Hamming distances were computed as the total number of time
steps where the estimated label was different from the ground
truth in a given sequence, then summed for all time series
sequences in each run. Then, normalization was done by dividing
the Hamming distance by the total number of time steps of the
given sequence The EB HDist were smallest when the true AR
order was used. For example, EB HDist of L1-AR1 were smaller
than those of L1-AR2 and L1-AR3, as seen in Figure 5. Similar
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FIGURE 7 | Switching characteristics of estimated labels. (Left) Average number of discovered EBs and UBs for each experiment. Bars: 1 SD. (Right) Average number

of switches in all time series sequences for each experiment. Bars: 1 SD.

results were observed in the cases of Sets L2 and L3. Note that
this tendency was also observed in their respective adjusted Rand
index (ARI) (right figures in Figure 5) and joint log probabilities
of data and sample variables (Figure 6). The joint log probability
P

(

y, F, z
)

is available even without the ground truth. Thus, the

joint log probability can be a potential criterion for selecting the
model with cross-validation.

Finally, when we compared the normalized HDist of our
method (selected using the joint log probabilities) with that of
DAA, ourmethod generally had better results thanDAA. L2-AR2

Frontiers in Computer Science | www.frontiersin.org 9 October 2020 | Volume 2 | Article 546917

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Briones et al. Extraction of Hierarchical Behavior Patterns

FIGURE 8 | Plot of the first four dimensions of the input data and example segmentation results using our proposed method, obtained from two different runs. (Top)

Toy data, with result from L2-AR1. (Bottom) CMU motion data, with result from CMU-AR1.

and L3-AR3, which have the highest joint log probability among
used models, have smaller EB HDist and UB HDist than L2-

DAA and L3-DAA, respectively. In the case of L1, L1-AR1 shows
smaller EB HDist than L1-DAA, but larger UB HDist. Even in
this case, L1-AR2 shows better performance than L1-DAA. In
summary, these results indicate the superiority of our method to
DAA (Figure 5).

Aside from having better results compared to DAA, our
method has other advantages. First, we note that the second
step of our method reduces the error observed (left figures
in Figure 5). Except for the results of L1-AR1, UB HDist are
generally smaller than EB HDist. Even when segmentation in
the EB level is wrong, correct segmentation in UB level is
still possible, provided that the wrong pattern extraction of EB
is reproduced for segments of same UBs. Second, it was also
seen that the number of discovered EBs, including the EBs
and the resulting segmentation, for each run varied (Figure 8).

Despite this, the segmentation results at the UB step were
more or less similar, as seen in the computed UB HDist. This
observation indicates our method can identify the same UBs
despite discovering different EBs. In other words, ourmethod can
absorb the difference of estimated EBs among different runs.

3.2.1. Large-Scale Toy Data
Results from subdataset Ts (s = 10, 20, 100) suggest that using
our proposed method on larger datasets would yield more
discovered EB labels (13.90, 17.70, 21.33) and formed UB labels
(21.00, 19.70, 39.33). This then causes multiple discovered labels
to correspond to the same ‘true’ label. Adjusting for this when
computing for EB and UB HDist, the computed EB HDist are
0.6112, 0.6759, and 0.7086 for T10, T20, and T100, respectively,
while the corresponding UB HDist are 0.1096, 0.1633, and
0.1864, respectively. These results are consistent with our earlier
observation that the second step of our method reduces observed
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errors in the first step. That is, correct segmentation in UB level
is possible despite having errors in EB level segmentation, and
regardless of the number of time series sequences considered.

4. MOTION DATA EXPERIMENTS

Aside from synthetic experiments, motion data was also used
in segmentation experiments. This is to see the applicability of
proposed method to segment actual motion sequences.

4.1. Real Motion Data
To determine the effectiveness of our method with real motion
data, one dataset was generated using the motion capture
sequences of the actions of Subjects 18–23 in CMU Graphics
Lab—Motion Capture Library (CMU, 2009). The dataset has four
time series sequences of 16 dimensions that correspond to 8 joint

angles of 2 individuals. The time series
{

y
(i)
t

}

(i = 1, 2, 3, 4) were

generated by concatenating UBs randomly chosen from six fixed
types. The six UBs were the following actions: (1) walk toward
each other than shake hands, (2) linked arms while walking,
(3) synchronized walking, (4) alternating squats, (5) alternating
jumping jacks, and (6) synchronized jumping jacks.

To evaluate the applicability of our method to real motion
data, our method with AR orders (r = 1, 2, 3) was applied to the
dataset. The parameters in our method were set in the same way
as the previous section 3.1, but with κ = 200. Similar to toy data,
our method was also compared with DAA using CMU dataset.
State sequences were processed similar to the toy data, but with
no states being discarded, as the states switched frequently in the
first step of DAA.

4.2. Real Motion Data Applicability
Similar to the experiments in the previous section, the result of
our method with AR(r) applied to the CMU dataset was denoted
by CMU-ARr, while CMU-DAA was used to denote results from
DAA. In terms of the average normalized UB HDist, CMU-

AR1 had the smallest error when compared with CMU-AR2 and
CMU-AR3 (Figure 5). However, CMU-AR2 and CMU-AR3 had
higher log probability than CMU-AR1 (Figure 5). The optimal
AR order could not be determined from the joint log probabilities
in this case. Another criterion is needed to choose an optimal
AR order. There is no existing available criterion, because our
method is a highly complex singular model.

Comparing with the results of DAA, our method again had
better performance than DAA.CMU-AR1 had smaller UB HDist
(0.1815) compared to CMU-DAA (0.2080) (Figure 5). Similarly,
CMU-AR1 had higher UB ARI (0.6847) compared to CMU-

DAA (0.6384) (Figure 5). Unlike the obtained results from our
proposed method, DAA had more UBs and switches, due to
oversegmentation (Figure 7).

Finally, similar to the toy dataset results, the number of
discovered EBs and the EB labels still varied for each run.
However, the segmentation results of the UB step were quite
similar (for example, see Figure 8). Here, the UB [1 8 1] refers to
the alternating jumping jacks motion. In another segmentation,
the same UB label corresponds to [D E], with the component EBs
referring to completely different behaviors. Despite the difference

in component EBs, both [1 8 1] and [D E] refer to the same true
UB. Our method can thus identify the same semantic behaviors
even from real motion data.

5. DISCUSSION

To discover complex temporal patterns from the time series
data via segmentation, we proposed a hierarchical non-
parametric Bayesian approach. We combined the BP-AR-HMM
and the double articulation by NPYLM to segment time series
sequences under the assumption that they are generated from
hierarchically-structured dynamical systems. In our results,
we found that our method has better accuracy to discover
temporal patterns than DAA for both the toy and real motion
datasets. It may mean the necessity of dynamics to model
local temporal patterns in time series data. Also, double
articulation structure of our method would be suitable to extract
semantic unit behaviors from unsegmented human motion
sequences similar to DAA. In addition, our proposed method has
another advantageous property over DAA.Our proposedmethod
allows for asynchronous switching of segments, unlike DAA. It
should be beneficial to extract temporal patterns from natural
observation without any intervention, since we cannot expect
consistent switching of behaviors under the natural observation.
Despite these benefits, it should be noted that our proposed
method is limited by its computational complexity. Furthermore,
should the assumption of the sequence having a hierarchical
structure not be met, our proposed method could not necessarily
be appropriate to use.

Future directions are as follows: (1) using the estimated AR
coefficients for interaction analysis and causality analysis, (2)
a semi-supervised extension of the proposed method, and (3)
automatic determination of AR order. Some methods of the
causality analysis, e.g., Granger causality, are based on the AR
models in their mathematical formulations. Therefore, we can
use the estimated AR coefficient matrix to connect our method
to causality analysis. With this combined approach, it will be
possible to analyze switching causality. Next, it is usually difficult
to have categorical labels for the entire dataset, but partial
labels are easier to have. In this case, using semi-supervised
segmentation could help improve the interpretability of results
since some of the discovered components or states would
correspond to the known categories. These labeled instances may
also improve the identification of distribution of corresponding
categories. A semi-supervised extension of our approach would
thus be more effective to discover behavioral patterns. Finally,
although we tried multiple settings of the AR order to select
a model, automatic determination of AR order will solve this
model selection problem.

We then conclude that our method can extract temporal
patterns from multiple time series sequences by segmenting
these sequences into low-level and high-level segments.
Our method showed superior performance to a method
called double articulation analyzer. Moreover, even when
it discovered different low-level segments, our method can
absorb such variation, and properly and consistently identify
high-level segments.
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