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Information visualizations can be regarded as one of the most powerful cognitive tools

to significantly amplify human cognition. However, traditional information visualization

systems have been designed in a manner that does not consider individual user

differences, even though human cognitive abilities and styles have been shown to differ

significantly. In order to address this research gap, novel adaptive systems need to

be developed that are able to (1) infer individual user characteristics and (2) provide

an adaptation mechanism to personalize the system to the inferred characteristic. This

paper presents a first step toward this goal by investigating the extent to which a user’s

cognitive style can be inferred from their behavior with an information visualization system.

In particular, this paper presents a series of experiments that utilize features calculated

from user eye gaze data in order to infer a user’s cognitive style. Several different data and

feature sets are presented, and results overall show that a user’s eye gaze data can be

used successfully to infer a user’s cognitive style during information visualization usage.

Keywords: adaptation, cognitive style, eye-tracking, human-centered computing, personalization, information

visualization

INTRODUCTION

With the proliferation of large quantities of data across all aspects of our daily lives (ranging from
reading news articles to reaching critical business decisions), it has become paramount to research
new paradigms to help users deal with such data efficiently and effectively. One technique that has
generally proven successful in data analysis is to make use of graphical representations of data and
particularly computer-generated representations. A key reason for the success of such information
visualizations is the fact that they are making use of “the highest bandwidth channel from the
computer to the human” (Ware, 2004), namely, the human visual system. As such, information
visualization can be regarded as one of the most powerful cognitive tools to significantly amplify
human cognition (Ware, 2004; Card, 2007; Mazza, 2009).

While information visualization systems have largely been successful in helping humans
perceive and analyze information, they have typically been designed in a non-personalized manner,
i.e., each individual user/viewer is being shown the same visualization in the same form. This
nonadaptive nature of systems assumes that cognitive processing is mostly identical across humans
and, therefore, that all users would equally benefit from the same visualization. However, a large
body of research has found that there are significant differences among humans, particularly in
terms of cognitive abilities and styles. Examples of cognitive abilities include perceptual speed (“a
measure of speed when performing simple perceptual tasks”) and verbal/visual working memory
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(“a measure of storage andmanipulation capacity of verbal/visual
information”). As with cognitive abilities, cognitive style has been
studied extensively in psychology, and a number of different
definitions, models, and tests have been proposed and developed
(Hudson, 1967; Witkin et al., 1975; Kirton and De Ciantis, 1986;
Riding and Cheema, 1991; Riding, 1997, 2001; Kozhevnikov,
2007). In a general sense, cognitive style may refer to “people’s
characteristics and typically preferred modes of processing
information” (Sternberg and Grigorenko, 1997) and can hence be
regarded as more of a preference (“lying at the junction between
cognition and personality” Raptis et al., 2016a) rather than an
ability. In the context of our paper, cognitive style refers to the
field dependence–independence (FD-I) style, which distinguishes
between field-dependent and field-independent people (Witkin
et al., 1975). Specifically, field dependent people are theorized as
having more problems in recognizing details in complex scenes,
while people who are field independent can separate structures
from surrounding visual context with ease (Witkin et al., 1975).

For both cognitive abilities and cognitive styles, individual
differences have been shown to significantly influence
user behaviors with different systems and user interfaces,
including information visualization systems (Toker et al.,
2012; Steichen and Fu, 2019). It can therefore be envisaged
that more personalized systems (rather than the current one-
size-fits-all model) could be of great benefit to information
visualization users.

Besides information visualization, there are many other
research fields that have explored individual user differences
and personalized system designs for decades. Examples range
from personalized search systems (Steichen et al., 2012), to
personalized e-learning (Jameson, 2007), to adaptive Web
systems (Brusilovski et al., 2007). Many of these examples have
taken human-centered design approaches, whereby individual
human differences are taken into account to develop systems that
adapt to each individual person. Specifically, the two main steps
to approach such a design are typically to (1) infer individual
user characteristics and (2) provide an adaptation mechanism
to personalize the system to the inferred characteristic (e.g.,
through recommendations, adaptive interface changes, etc.).
Similar to these examples, there have been several recent efforts
in information visualization to personalize to individual users.
However, such systems have primarily focused on cognitive
abilities (Steichen et al., 2014; Conati et al., 2015; Raptis
et al., 2016a) rather than cognitive style. Since an individual
person’s cognitive style has been shown to have significant
effects on human performance, particularly on the processing
of visual information (i.e., the main interaction mechanism
with visualizations), it is important to further investigate this
characteristic for adaptation.

The overall aim of our work is thus to develop the
first information visualization system that adaptively supports
individual users depending on their cognitive style. Specifically,
this system is envisioned to consist of a two-step process.
The first step is to infer an information visualization user’s
cognitive style based on the user’s exhibited behavior with the
system. The second step will then use the inferred cognitive
style to make a decision on how to best support the user

in a personalized manner either through recommendations of
alternative visualizations or through real-time changes to the
current visualizations (or the recommendation of such changes).

Some aspects of this second step have already been
investigated in prior work. In particular, the prior work in
Steichen and Fu (2019) investigated the idea of “adaptive
overlays,” where visual artifacts would be added to the user’s
current information visualization. Examples of such overlays
included adding grid lines for providing additional structure or
displaying data point values directly on the graph. Additionally,
it was found that different types of overlays were preferred
by individuals with different cognitive styles, hence making a
compelling case for tailoring the adaptation of the visualization
to each user’s style.

Complementing this prior work, this paper focuses specifically
on the first step, by investigating the extent to which a user’s
cognitive style can be inferred from the user’s behavior with an
information visualization system. Given the fact that information
visualizations typically have limited interaction (e.g., using a
mouse or keyboard), the specific user behavior data used for
this inference will be a user’s eye gaze as captured through
eye tracking. This work is a direct extension of Steichen et al.
(2020), with a significantly expanded literature review, additional
experiments that analyze different feature sets (see No Areas
of Interest, Information Searching, and Information Processing
Feature Sets section) and data sets (see Data Set Split Based on
Information Density section), as well as expanded discussions
and conclusions of all of the results.

RELATED WORK

The study of adaptive and personalized interfaces and systems
has featured in a number of different research fields over the
last few decades. In fact, the adaptation to an individual user’s
characteristics, such as the user’s abilities (e.g., cognitive abilities),
preferences (e.g., personal interests), or contexts (e.g., current
task), has become ubiquitous across several types of information
systems, ranging from personalized search systems (Steichen
et al., 2012), to adaptive e-learning systems (Jameson, 2007),
to adaptive Web systems (Brusilovski et al., 2007). To achieve
such personalization, researchers typically first investigate which
user characteristics may have a significant influence on a
user’s system interaction, followed by the development of a
system that can detect behaviors indicative of different levels of
these characteristics. This detection/inference component is then
integrated into a system that adaptively assists an individual user,
for example, through personalized recommendations or adaptive
interface changes.

In the field of information visualization, researchers have
similarly explored the concepts of personalized systems, i.e.,
information visualizations that adapt to individual users and their
behaviors. As part of this work, prior research has first looked
at the influence of several different human characteristics on
information visualization usage (Velez et al., 2005; Green and
Fisher, 2010; Ziemkiewicz et al., 2011; Toker et al., 2012; Carenini
et al., 2014). For example, Toker et al. (2012) explored the
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effect of different cognitive abilities (including perceptual speed
and working memory) and found that they indeed have some
influence on a user’s performance (particularly in terms of time
on task) with different visualizations. Likewise, Ziemkiewicz et al.
(2011) found that the human personality trait of locus of control
had a significant relative influence on different visualizations,
with internal locus of control participants performing worse
when information visualizations employed a containment
metaphor, while external locus of control participants showed
good performance with such systems. More recently, additional
characteristics have been found that influence visualization
comprehension, such as reading proficiencies (Toker et al., 2019)
and visualization literacy (Lallé and Conati, 2019).

Similar to the above studies, the human characteristic of
cognitive style has been studied in terms of its influence on
user performance on different types of interfaces, including
information visualizations (Steichen and Fu, 2019). As
mentioned in the Introduction, cognitive style may generally
be referred to as “people’s preferred modes of processing
information” (Sternberg and Grigorenko, 1997), rather than
an ability. Several different theories and models have been
proposed (Hudson, 1967; Witkin et al., 1975; Kirton and De
Ciantis, 1986; Riding and Cheema, 1991; Riding, 1997, 2001),
and recent work has also attempted to unify several of these
models (Kozhevnikov, 2007). One of the most prominent
models of cognitive styles was introduced by Riding (1997, 2001)
and Riding and Cheema (1991), who proposed that there are
two main continuous dimensions by which a user’s cognitive
style may be defined. Firstly, the “analytic-wholist” dimension
distinguishes between individuals who process information into
its component parts (“analytics”), while others retain or prefer
a global/overall view of information (“wholists”). Secondly,
the “verbal–imagery” dimension distinguished between people
who prefer to represent information through verbal thinking
(“verbalizers”) and those who prefer mental pictures (“imagers”).
By contrast, Kirton’s adaption-innovation theory (Kirton and De
Ciantis, 1986) distinguished individuals on a single continuous
dimension. Specifically, in this theory, some people prefer to
adapt established techniques to solve a problem (“adaptors”),
while others seek innovative techniques and technologies
(“innovators”). Similarly, Hudson’s convergence–divergence
dimension (Hudson, 1967) distinguishes between people who
prefer established and familiar problem solutions (“convergent”)
and individuals who use more creative (“divergent”) techniques
and thinking processes. The FD-I theory (Witkin et al., 1975)
similarly distinguishes individuals on a single continuum.
Specifically, it defines “field-dependent” people in terms of
their reliance on external structures and directions, while
“field-independent” individuals prefer autonomy and tend
to be better at creating their own structure and perform
restructuring. Likewise, field-independent people can visually
separate structures from surrounding visual context with ease,
while field-dependent people have more problems in recognizing
details in complex scenes.

Since information visualizations often consist of multiple
visual artifacts that create a complex overall view of data, the
FD-I theory appears particularly suited for the investigation of

the influence of individual user differences on the user’s behavior
with such systems. Moreover, since FD-I has already been
found to specifically influence people’s preferences with different
information visualization overlays (Steichen and Fu, 2019), we
hypothesize that this type of cognitive style may significantly
influence a user’s processing of information visualizations and
that this difference may be exhibited by the user’s eye gaze.
Moreover, inferring a user’s cognitive style along the FD-
I dimension also represents a great potential for adaptation
to improve system interaction, particularly since the work in
Steichen and Fu (2019) found that users with different styles
along the FD-I dimension may benefit from different kinds of
adaptive help. The work described in this paper therefore focuses
specifically on this model of cognitive style. This focus is also
in line with other human–computer interaction work (e.g., in
gaming or e-commerce), which similarly found that FD-I can
lead to different information processing behaviors and patterns
when interacting with visual interfaces (Mawad et al., 2015;
Raptis et al., 2016b).

In terms of capturing or inferring user characteristics based
on user interactions, prior research has explored several different
kinds of behavioral data. In fields outside of information
visualization, many systems typically employ interaction data
such as mouse clicks or keyboard presses (e.g., result selections
or query inputs in search systems Steichen et al., 2012). Likewise,
if a visualization has interactive elements (e.g., zooming, panning,
etc.), interaction device data can also be used (e.g., as in the
interactive visualizations used in Gotz andWen, 2009). However,
given the fact that the majority of interactions with visualizations
typically entail a user simply looking at a visualization without
using a mouse, keyboard, or other interaction device, researchers
have started to explore alternative ways to capture a user’s
behavior. Most promisingly, eye tracking has been shown to
be a powerful tool for analyzing user attention patterns. For
example, Toker et al. (2013) found several connections between
different users’ eye gaze behaviors and their respective individual
user characteristics. Furthermore, eye gaze data have been used
successfully to infer and predict user and task characteristics
(Steichen et al., 2014; Raptis et al., 2017).

The work described in this paper builds on this prior research
by examining the extent to which eye-tracking data can be used
to infer a user’s cognitive style while the user is interacting with
an information visualization system (i.e., performing a task by
looking at a visualization). This in turn is envisioned to be
integrated into an adaptive information visualization system,
which (1) will be able to determine a user’s cognitive style as the
user is interacting with a visualization and (2) will dynamically
adapt to the user’s cognitive style, e.g., through adaptive overlays
as proposed in Kirton and De Ciantis (1986), or in the form of
alternative visualization recommendations, as presented in Gotz
and Wen (2009).

DATA COLLECTION

In order to collect sufficient data for performing cognitive
style inference experiments, we first conducted an eye-tracking
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user study with 40 participants. Specifically, the study involved
participants performing a series of tasks with the help of simple
information visualizations while their eye gaze was recorded.

Study Visualizations and Tasks
The visualizations used in the study consisted of simple bar
graphs and line graphs (see bar graph and line graph examples
in Figure 1). These graphs were chosen due to their widespread
popularity acrossmultiple domains and diverse user bases, as well
as their use in prior studies involving user differences (Toker
et al., 2012; Steichen et al., 2014). Note that to keep variables
at a minimum, only these two graphs were used, while other
graphs are left for future research. For both types of graphs, we
also devised different “information density” versions, namely,
“low information density” (where only two series were shown)
and “high information density” (where seven or more series
were shown). This variation in graphs was intended to simulate
“simple” and “more complex” graphs.

Each of the graphs depicted one of two datasets fromData.gov,
namely, the Diabetes Data Set1 and the Los Angeles Crime Data
Set2 (e.g., as in Figure 1). The specific tasks devised for the study
were based on these data sets, with participants answering sets
of questions using given visualizations. These questions required
participants to either give a single answer (using radio buttons) or
provide a set of correct answers (using checkboxes). For example,
given a visualization depicting all occurrences of different crimes
for a specific year, a participant may be asked “What crimes
occurred more than vandalism crimes in November?” The types
of tasks were based on the taxonomy provided in Amar et al.
(2005) and consisted of “Retrieve Value,” “Filter,” “Compute
Derived Value,” and “Find Extremum” tasks.

Study Procedure
Participants began by filling out a consent form, followed by a
demographic questionnaire, which included age, gender, as well
as self-reported expertise with different visualizations (i.e., how
frequently they use/work with line and bar graphs).

This was followed by the calibration of the eye tracker (Tobii
X3-120) using a standard 9-point calibration procedure through
the iMotions3 eye-tracking package. Participants then performed
two practice tasks (one with a bar graph, one with a line graph).
These practice tasks provided participants with an opportunity
to learn about the types of tasks, as well as the visualizations
themselves. Participants then proceeded to perform a series of
50 tasks (25 with each visualization; total of 20 high information
density, 30 low information density). To avoid any learning or
ordering effects, all variables were counterbalanced, including
visualization type, task question, and density (i.e., the same tasks
were not always associated with the same graph). A within-
study setup (in terms of all users receiving all visualization types,
tasks questions, and density) was chosen to investigate whether

1https://catalog.data.gov/dataset/diabetes
2https://catalog.data.gov/dataset/crime-data-from-2010-to-present-c7a76
3https://imotions.com

FIGURE 1 | Sample visualizations as used in the study. (A) shows a low

information density bar graph example for the diabetes data set, (B) shows a

high information density bar graph for crime data set, (C) shows a low

information density line graph for the diabetes data set, and (D) shows a high

information density line graph for crime data set.
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FIGURE 2 | Basic eye gaze data, including fixations, saccades, saccade distance (d), absolute saccade angle (x), and relative saccade angle (y).

a system could infer a user’s cognitive style regardless of the
visualization or task type, i.e., whether it would be able to infer
cognitive style on any given visualization/task combination for a
given user.

After all tasks were completed, users performed a test to
determine their cognitive style, specifically an online version of
the Group Embedded Figures Test (GEFT) (Oltman et al., 1971).
This test is a proven and reliable instrument to determine a user’s
field dependence (FD) (on a scale of 0–18, 0 meaning very field
dependent, and 18 meaning very field independent) and has been
used in several of the prior works mentioned in the RelatedWork
section (Mawad et al., 2015; Raptis et al., 2016b). Participants
were compensated with a $20 gift voucher, and each session lasted
∼1 h on average.

Participant Demographics and Gaze Data
The authors advertised the study through several University
mailing lists, with the aim of recruiting a relatively heterogeneous
pool of participants in terms of age, fields of expertise, and
cognitive style. A total of 40 participants was recruited, with an
age range of 18–70 years (mean 28). Among them, 24 participants
were female and 16 were male, while the distribution across
colleges and departments (e.g., arts, engineering, administration)
was relatively balanced. GEFT score evaluations showed a mean
of 13.75 (out of 18, SD = 4.24), which suggests that the
population was slightly leaning toward field independence (FI).
Participants’ prior experience with visualizations (as captured
through self-rated questionnaires) was also well balanced, with
an average of 3.18 out of 5 (SD = 0.93) for simple bar graphs,
2.50 (SD = 1.04) for complex bar graphs, 3.40 (SD = 0.87) for
simple line graphs, and 2.80 (SD= 0.88) for complex line graphs.

As with most studies involving eye-tracking equipment, some
data-recording issues were encountered with some participants,
leaving data from 30 participants to be retained (the majority of
the data for the other 10 participants were invalid). This number
is in line with similar studies for inferring user characteristics
from eye gaze data (e.g., Steichen et al., 2014).

COGNITIVE STYLE INFERENCE
EXPERIMENTS

Using the data collected from the above user study, we devised
a series of experiments aimed at inferring a user’s cognitive
style from the user’s eye gaze data. Specifically, the raw eye

gaze data were first transformed into a series of high-level
gaze features, which were then used as input features for
classification experiments.

Eye-Tracking Data and High-Level
Features
The raw gaze data produced by an eye tracker that consists of
simple data points that denote the exact time, duration (in ms),
and location (in x–y coordinates) of a user’s gaze on a given
screen. These precise moments where a user maintains gaze
for a specified period of time at a specific point on the screen
are referred to as gaze fixations (see Figure 2, which was first
presented in Steichen et al., 2014).

From these fixations, additional basic data can be extracted,
such as the movements/transitions from one fixation to another
(referred to as saccades; see Figure 2), which have a length (in
pixels) and two types of angles (in degrees), namely, a relative
angle (i.e., angle between two consecutive saccades) and an
absolute angle (i.e., angle between a saccade and the horizontal).

Furthermore, such fixation and saccade data can be analyzed
holistically for an entire screen, as well as for particular individual
areas of interest (AOIs), i.e., areas that may be of particular
interest in terms of analyzing the users’ relative attention on
different parts of the screen. For our study, particular AOIs were
the Graph itself, the Legend, the graph Title, the task Question,
the list of task Answers options, as well as the X-axis and Y-
axis (Figure 3). Using these raw gaze measures and AOIs, we
calculated a large set of gaze statistics for each user, including
both fixation- and saccade-based features for the whole screen
and the different AOIs (Table 1). Furthermore, we calculated
each of these features on an individual user task basis (i.e., only
task 1, only task 2, etc.), as well as on a complete user session basis
(i.e., combining all tasks for a user).

Experiment Setup
Using the abovementioned features, we ran a series of
classification experiments to investigate the extent to which a
user’s cognitive style can be inferred based on a user’s eye gaze
data. In particular, the aim of the experiments was to infer
whether a participant was either more inclined toward FD or FI.

A participant’s correct FD-I inclination was based on the
GEFT scores obtained from the user study. Specifically, we
first split participants into two groups using a median split.
In addition, we also ran experiments with participants being
split using a three-way split (as recommended in Cureton,
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FIGURE 3 | Areas of interest.

TABLE 1 | Features calculated from gaze data.

Whole screen features

Fixations: total number

Fixation durations: sum, mean, standard deviation

Saccade length: sum, mean, standard deviation

Saccade-to-fixation ratio

Relative saccade angles: sum, mean, standard deviation

Absolute saccade angles: sum, mean, standard deviation

Area of Interest (AOI) features (per AOI)

Fixations in AOI: total number

Fixation durations in AOI: Sum, mean, standard deviation

Proportion of total number of fixations in AOI

Proportion of sum of fixation durations in AOI

Longest fixation in AOI

1957). Specifically, the three-way split considered the upper
27% of experiment participants as field independent, the lower
27% as field dependent, and the middle participants as neutral
(Cureton, 1957).

In terms of data sets, we ran experiments with each user’s
complete session interaction (i.e., combined gaze features from
all of a user’s tasks), as well as individual user tasks (i.e., inferring
a user’s cognitive style based on a single task interaction).

Furthermore, we ran additional experiments with several
subsets of the gaze features, namely, a feature set without AOI-
related features, a feature set with features that are known to
indicate information searching, a feature set with features known
to indicate information processing. Lastly, we also ran separate
experiments for high information density tasks only, as well as low
information density tasks only.

For model learning and classification, we used the Waikato
Environment for Knowledge Analysis (WEKA)machine learning
toolkit (Hall et al., 2009). Specifically, we used the following
algorithms: logistic regression, support vector machines, neural
networks, as well as the decision tree algorithms J48 (Quinlan,
1993) and RandomForest (Breiman, 2001), using 10-fold cross-
validation. The decision for using these algorithms was based
on their successful use in prior works using eye gaze data (e.g.,
Steichen et al., 2014; Conati et al., 2020). While there may be
other algorithms that may work even better in our scenario, it
should be noted that this work was not meant to be an exhaustive
search for the most accurate model, but rather an investigation
into the general feasibility of using general purpose machine
learning algorithms for cognitive style inference. Likewise, many
of these models may be optimized by modifying different
configurations. However, for the purposes of the experiments, all
default configurations from theWEKA toolkit were used (version
3.8.4). All models were compared to a baseline model (ZeroR),
which always predicts the majority class. With the exception of
Support Vector Machines, all of the tested algorithms generally
performed better than the baseline model. In particular, J48 and
RandomForest performed the best throughout the experiments,
and therefore, the rest of the analysis will be focused on these two
algorithms. As previously mentioned, the default configurations
were used for these algorithms without any additional feature
selection prior to classification and no specification of maximum
depth. The classification output was compared using the standard
measure of accuracy. This measure was chosen due to its equal
focus on both “positive” and “negative” classifications (i.e., FD
vs. FI). Moreover, given that our data sets were reasonably
balanced, accuracy represented the most accurate way of gauging
the extent to which an adaptive system would receive correct
predictions from an inference component. The comparison of
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FIGURE 4 | Accuracies for binary field dependence–independence (FD-I)

classification using the complete feature set.

these algorithms with the baseline model was also tested for
statistical significance using paired t-tests using a significance
level of 0.05 (note that WEKA does not output t scores,
and therefore, they are not reported, similar to prior work,
e.g., Steichen et al., 2014). In order to account for multiple
comparisons, we applied Bonferroni correction within each set
of classification experiments [e.g., for the user session-based
experiment using complete feature sets, the correction accounted
for the multiple (3) comparisons involving the baseline, J48, and
RandomForest algorithms].

RESULTS

The Classifications Using the Complete
Feature Set
As mentioned above, each of the classification results was
compared to a baseline that consisted of a majority classifier
(ZeroR). This baseline for the binary FD-I classification had
accuracies of 63.33 and 53.96% for the complete user session
and individual task data sets, respectively. As shown in Figure 4,
when using all of the calculated eye gaze features, several
algorithms performed better than this baseline (which was found
to be statistically significant, p < 0.05), achieving accuracies of
up to 86%. In particular, two tree-based algorithms (J48 and
RandomForest) always outperformed the baseline classifier with
statistical significance. Similar results were found for both data
sets, i.e., when using a user’s complete session interaction, as
well as when using only data from an individual task, although
the task-based accuracies were overall a little lower (with a top
accuracy of 80%). This slight drop in accuracy is understandable,
however, given the significantly lower amount of data available
for classification.

When splitting users using a three-way split (i.e., FD, middle,
FI), the baseline accuracies were between 46.67 and 55.03%. By
contrast, the models learned that using participants’ eye gaze data
could again achieve significantly better results, with accuracies of
up to 76.67% (Figure 5).

In addition to these accuracy results, we also analyzed
what features contributed the most to these classifications. In
particular, when analyzing the decision rules for the decision

FIGURE 5 | Accuracies for three-way field dependence–independence (FD-I)

classification using the complete feature set.

trees, we found that several features were consistently appearing
as some of the most informative. The top three most important
features, as observed for many of the machine learning models
used, were related to saccade length, as well as features related
to the Graph AOI (Table 2). Specifically, a low value for saccade
length sum indicated FD, while a high value indicated FI.
This may indicate that field-independent participants are able
to traverse a graph in greater strides, whereas field-dependent
people have smaller saccades overall. Likewise, the standard
deviation of saccade lengths was found to be higher for field-
independent participants, which indicates that field-independent
people have both long and short saccade lengths, while field-
dependent people seem to be more restricted in their saccade
lengths. Additionally, a low value for the proportion of fixation
durations in the Graph AOI (i.e., the duration of fixations that
are occurring in the Graph AOI compared to other AOIs)
was indicative of field-independent participants, suggesting that
less attention is required by such participants to perform
tasks. In other words, these results suggest that field-dependent
users need to perform longer fixations to understand graph
elements, while field-independent users may be able to move
more easily around a graph. Since the graph itself elicits the
biggest differences between users, our intuition regarding the
strong influence of cognitive style on visual element processing
appears confirmed. Likewise, the saccade length results may be
a direct consequence of this as well, since many saccades may
occur inside of the Graph AOI. These results should hold across
different types of visualizations (and even if the visualization
is smaller, or if there are multiple visualizations); however, this
would require additional future experiments to focus specifically
on such variations.

No Areas of Interest, Information
Searching, and Information Processing
Feature Sets
In addition to these classifications using the complete feature set,
we also ran several experiments using specific feature subsets.

Firstly, we investigated the extent to which a user’s cognitive
style could be inferred when using only features that are not
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related to any AOIs (i.e., onlywhole screen features). The rationale
for this feature set was to examine the relative information gain
attained from AOI and non-AOI features (particularly since
many of the most informative features in the above experiments
were not related to AOIs). Additionally, this analysis may provide
insights into inferring cognitive style when the inference system
does not have any information about which specific visualization
a user is currently looking at. In particular, if non-AOI features
were shown to be similar to the full feature set, it could be argued
that the non-AOI feature set would ease the requirement for
the inference system to be fully integrated with the visualization
system. This would improve the generalizability of the inference
system, which may hence be added as a third-party application
rather than a fully connected component.

Results for this No AOI feature set showed that classification
accuracies did not drop significantly. As shown in Figure 6, for
each of the different types of classifications (i.e., user-session
vs. task-based and binary vs. three-way classifications), the No
AOI feature set was very comparable to the full feature set. In
fact, when running statistical tests (specifically paired t-tests,

TABLE 2 | Most informative gaze features for predicting cognitive style

(full feature set).

Features Directionality

Saccade length sum Lower value -> FD

Saccade length standard deviation Lower value -> FD

Graph AOI - Proportion of Total Fixation Durations Lower value -> FI

with Bonferroni correction), we did not find any statistically
significant differences in accuracies. This finding confirms that
it may indeed be sufficient to just observe a user’s overall eye gaze
data, as opposed to knowing the exact location of the different
AOIs of the user’s screen. This lies in contrast with previous
studies that investigated different user characteristics, such as
perceptual speed, or visual and verbal working memory (Steichen
et al., 2014), where it was found that the inclusion of AOI features
led to significantly higher accuracies. This may suggest that other
characteristics are more strongly influenced by a variety of AOIs
compared to cognitive style. For example, highly textual AOIs
such as the graph title or the legend were previously found to
strongly influence verbal working memory experiments. Since
the Graph AOI is the most dominant AOI in a visualization
task, and given the previous finding that this AOI most strongly
elicits differences between users with respect to cognitive style,
it appears that the inclusion of fine-grained AOI elements is
not necessary in this case. As with the Complete Feature Set,
we also analyzed the most informative features and again found
features related to saccade length to be prominent (Table 3).
Specifically, a low value for saccade length sum again indicated
FD, while a high value indicated FI. In addition, this classification
showed that a low fixation duration averagewas indicative of field
dependence, meaning that field-dependent users generally have
shorter fixations. Likewise, low saccade absolute angle standard
deviations were indicative of FD, meaning that field-dependent
users have more uniform saccades, whereas field-independent
users are more “flexible” in their movements. This is again in line
with the results above for the complete feature set findings on
saccade lengths.

FIGURE 6 | Accuracies for different feature subsets. (A) User–Session-based binary classification. (B) Task-based binary classification. (C) User–Session-based

three-way classification. (D) Task-based three-way classification.
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TABLE 3 | Most informative gaze features for predicting cognitive style

(No AOI features).

Features Directionality

Saccade length standard deviation Lower value -> FD

Fixation duration average Lower value -> FD

Saccade absolute angle standard deviation Lower value -> FD

In addition to the No AOI feature set, we also investigated the
extent to which cognitive style could be inferred when using only
features that are specifically related to Information Searching, as
well as only features that are specifically related to Information
Processing. As suggested in Goldberg and Kotval (1999), a user’s
information search behavior is related to the efficient traversing
of a visualization in terms of both the speed of finding visual
cues and the number of visual objects that need to be sampled
to complete a task. Therefore, Information Searching may be
conveyed by the number of fixations and saccades generated, as
well as saccadic length features. Similarly, a user’s Information
Processing of a visualization has been linked to the time for a
user to understand the given visual information (Goldberg and
Kotval, 1999). Thus, if a user spends shorter amounts of time
on specific elements, it may be argued that the user had less
issues with the visual processing. Likewise, a user’s saccade–
to–fixation ratio could provide insights into the relative time
spent on searching vs. processing. Therefore, the gaze feature
set for Information Processing included fixation duration and
saccade–to–fixation ratio features only.

As shown in Figure 6, both the Information Searching and
Information Processing features fared very well, and in most
cases, there was no statistically significant difference in accuracies
compared to the Complete Feature Set or the full No AOI
feature set. The fact that both of these feature sets were able
to accurately produce inferences suggests that cognitive style
significantly influences both a user’s information searching and a
user’s information processing behavior when using information
visualization systems. This also confirms the above analysis
of important features, since many Information Searching and
Information Processing features were previously shown to be
informative for classifications. When specifically analyzing the
features used in the information searching subset experiments,
low saccade length standard deviations and saccade length sums
were again indicative of FD (Table 4). In addition, a low
total number of fixations feature was found to indicate FI,
meaning that field-independent users need less fixations to find
the information they are looking for. As shown in Table 5,
information processing features related to fixation durations such
as standard deviation and average were again indicative of FD,
while additionally a low fixation duration sum was indicative of
FI. This is in line with the results for the complete feature set, as
well as the information searching feature set.

Data Set Split Based on Information
Density
Lastly, we performed a series of experiments to evaluate whether
inferences would be comparably easy or difficult depending

TABLE 4 | Most informative gaze features for predicting cognitive style

(Searching features).

Features Directionality

Saccade length standard deviation Lower value -> FD

Saccade length sum Lower value -> FD

Total number of fixations Lower value -> FI

TABLE 5 | Most informative gaze features for predicting cognitive style

(Processing features).

Features Directionality

Fixation duration standard deviation Lower value -> FD

Fixation duration average Lower value -> FD

Fixation duration sum Lower value -> FI

on different information density tasks. To this end, we split
our data set according to information density and ran separate
classification experiments. Our hypothesis was that the higher
information density tasks may be more discriminative, as they
may elicit user differences more strongly.

As shown in Figure 7, the highest accuracies were indeed
achieved when trying to classify users during high information
density tasks (specifically using the RandomForest classifier). In
fact, the accuracies achieved during this task-based classification
were as high as the best user–session-based accuracies reported in
Classifications Using the Complete Feature Set section, namely,
up to 86%. This is particularly impressive considering that these
inferences only used gaze data from a single task. In terms of
feature analysis, the most indicative features were again highly
similar to the above analyses. The differences were found to be
statistically significantly for the three-way classification, but not
the binary classification.

Overall, these results confirm our intuition that cognitive style
has a greater influence as tasks get more complex, or at least
that cognitive style leads users to produce greater differences in
eye gaze behaviors for more complex tasks. This suggests that a
system that attempts to infer a user’s cognitive style should do
so during more complex tasks, as this should lead to the best
possible prediction accuracy.

SUMMARY AND DISCUSSION

Overall, the results from the gaze-based inference experiments
have proven that it is feasible to determine a user’s cognitive style
with relatively high accuracy while a user is simply engaged in
a typical information visualization task. In fact, the accuracies
achieved are comparable to prior work (e.g., Raptis et al., 2017),
where user tasks had been specifically designed with the purpose
of inferring cognitive styles. Moreover, compared to cognitive
ability inference experiments (e.g., Steichen et al., 2014), the
accuracies found are generally higher, suggesting that cognitive
style may have a stronger influence during visualization tasks
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FIGURE 7 | Accuracies for classifications using only high or only low information density tasks. (A) Binary classification. (B) Three-way classification.

than cognitive abilities, or at least influence eye gaze behavior
more strongly.

High accuracies were found across different sets of gaze
features, including a Complete feature set, aNo AOI feature set, as
well as Information Searching and Information Processing feature
sets. The fact that the No AOI feature set performed almost as
well as the Complete feature set shows that the most important
differences between field-dependent and field-independent users
can be found at an overall interaction level, rather than within
individual AOIs. This result is very encouraging in light of
building systems that are added on to information visualization
systems, rather than fully integrated systems that need to be fully
aware of the exact location of individual graph components.

The more detailed analyses of the classification features
revealed that saccade lengths, saccade angles, and fixation
durations were the most informative. Specifically, it was found
that field-dependent users typically have more “uniform” gaze
trajectories (e.g., lower standard deviations of saccade lengths
or fixation durations), while field-independent users seem to
have greater adaptability. In addition, the fact that most of
these informative features are typically associated with both
Information Searching and Information Processing explains why
the two additional feature subsets each fared relatively well
compared to the Complete feature set. This finding also suggests
that cognitive style influences both Information Searching
and Information Processing of users when interacting with
information visualization systems.

Our findings also suggested that higher information density
tasks elicited stronger differences between users, meaning that an
adaptive system is more likely to correctly infer a user’s cognitive
style if the user’s task at hand is more complex. Most notably, for
high information density tasks, accuracies achieved using task-
based classifications (i.e., classifying a user based on only a single
task interaction) were even on par with classifications that used a
user’s full session data. However, knowing the exact task, or at
least the complexity/density of the graph, would again require
a very tight coupling of the inference system with the actual
visualization system, which may not always be practical.

Combined with the findings in Steichen and Fu (2019),
namely, that users with different cognitive styles may benefit

from different types of overlay aids (e.g., dynamically overlaying
data values within a graph, overlaying horizontal/vertical grids,
etc.), the overall results from this paper therefore suggest that
an integrated adaptive information visualization system may
be feasible. In particular, the system would first infer a user’s
cognitive style using the models presented above, followed by a
personalized adaptation of the graph. However, further research
needs to be conducted in terms of when and how to deliver
such personalized assistance, as well as measuring the actual
perceived and objective benefit of such assistance. Specifically, if a
system were to provide adaptive personalization without a user’s
intervention, the disruption caused by the system may be greater
than the achieved benefits. Therefore, great care needs to be taken
in terms of the adaptive delivery, which may for example take the
form of system-driven support to customization, as proposed in
Lallé and Conati (2019).

Moreover, while the inference experiments in this work have
been largely successful, they have so far been limited to two
types of graphs, namely, bar graphs and line graphs, and a pool
of 40 participants. Further research needs to be conducted to
see whether other visualizations, particularly more complex ones
or ones that differ in terms of other visualization modalities,
will lead to similar results and whether an increased number of
participants may even increase the accuracies achieved. Likewise,
future research would be needed to investigate whether other
types of user interfaces would also elicit such differences between
users. In particular, since it was found that the graph itself elicited
the biggest differences, it may be hypothesized that it may not
necessarily also be possible to perform inferences with other
interfaces. However, given prior research on the influence of
cognitive style on many different visual tasks, it may nonetheless
be possible to do so, and it is worth studying the extent of this.

Lastly, while this research was conducted using research-grade
equipment, such eye-tracking technology has so far not been fully
integrated into general-purpose desktop and mobile computers.
However, recent outlooks continue to suggest significant growth
in the deployment and adoption of eye-tracking equipment
(Eye Tracking Global Forecast to 2025, 2020), and lower-cost
devices are already starting to be sold either as stand-alone
equipment or even integrated into mobile and AR/VR devices.
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While it is difficult to estimate the ultimate penetration rate
of such equipment, it is conceivable that the production and
procurement costs of this technology will reduce sufficiently
to allow large-scale deployment within the next decade. In
addition, several successful efforts have demonstrated that eye
tracking may even be performed using standard cameras (e.g.,
as found on laptops and phones) (Papoutsaki et al., 2016, 2017),
and we are currently in the planning stages for a follow-up
study that will investigate the feasibility of our approach using
such technology.

CONCLUSIONS AND FUTURE WORK

This paper has presented an initial step toward building
information visualization systems that can adaptively support
users based on their individual cognitive style. In particular, this
paper has shown that it is possible to infer a user’s cognitive
style using only the user’s eye gaze information while performing
simple information visualization tasks. Several different feature
sets have been shown to provide sufficient informative features
to accurately infirm cognitive style, revealing that detailed
information on the actual visualization shown (e.g., through
detailed AOI information) is not necessary. In addition, it was
found that more complex tasks elicited bigger differences in
terms of eye gaze behaviors.

Our next steps are to integrate the inference models with
adaptation mechanisms in order to study a fully working
personalized information visualization system. In particular,
Steichen and Fu (2019) had found that different visualization
overlays were preferred by users with different cognitive styles,
for example, added data values being particularly preferred
by field-dependent users, and our inference system could be

combined with such overlays to dynamically change the current
visualization to best suit individual users. As part of this future
work, several different adaptation delivery methods will also
be studied, including fully automated, as well as system-driven
support to customization mechanisms. In addition, we will
conduct further studies to expand on the set of information
visualizations beyond simple bar and line graphs, as well as
additional adaptation methods beyond the overlays proposed in
Steichen and Fu (2019) (e.g., recommending entirely different
visualizations). Lastly, we will run additional studies investigating
the extent to which the results in this paper may be replicated
using standard camera technology, as opposed to research-grade
eye trackers.
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