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Smart maintenance offers a promising potential to increase efficiency of the maintenance

process, leading to a reduction of machine downtime and thus an overall productivity

increase in industrial manufacturing. By applying fault detection and prediction algorithms

to machine and sensor data, maintenance measures (i.e., planning of human resources,

materials and spare parts) can be better planned and thus machine stoppage can

be prevented. While many examples of Predictive Maintenance (PdM) have been proven

successful and commercial solutions are offered by machine and part manufacturers,

wide-spread implementation of Smart Maintenance solutions and processes in industrial

production is still not observed. In this work, we present a case study motivated by

a typical maintenance activity in an industrial plant. The paper focuses on the crucial

aspects of each phase of the PdM implementation and deployment process, toward the

holistic integration of the solution within a company. A concept is derived for the model

transfer to a different factory. This is illustrated by practical examples from a lighthouse

factory within the BOOST 4.0 project. The quantitative impact of the deployed solutions

is described. Based on empirical results, best practices are derived in the domain and

data understanding, the implementation, integration and model transfer phases.

Keywords: smart maintenance, predictive analytics, model transfer, industrial data science, best practices

1. INTRODUCTION

1.1. Process Models for Implementation of Predictive
Maintenance
A range of process models describe the software development and implementation process. A
widely used process model for the domain of data analytics is the cross-industry standard process
for data mining (CRISP-DM, Shearer, 2000). It describes an iterative process starting with domain
and data understanding, data preparation, modeling, evaluation, and deployment. It has already
been subjected to adaptions and advancement, especially in the context of Industrial Data Science,
e.g., by (Reinhart, 2016).

When implementing Predictive Maintenance (PdM) solutions, an important consideration is
the overall use case context in which data analytics is integrated. For example, the fault prediction
of an electric engine is embedded into a manufacturing process where the electric engine serves a
certain function (e.g., driving a belt for transport of material), the malfunction is accompanied by
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effects (e.g., stop of material transport), as well as consecutive
maintenance processes (e.g., repair of the engine). While this
may be covered by the domain understanding, an explicit use
case analysis and definition phase is necessary for a benefit-
and business-driven selection of a use case and its further
development. In addition to the original deployment of a PdM
solution, a transfer to similar scenarios and other plants is desired
(e.g., fault prediction for the engines of other transport belts).

Figure 1 summarizes our proposed overall business-driven
process for the implementation of predictive analytics. It can
be divided into three main phases: Use Case Analysis, Proof of
Concept, and Deployment. Next to the process-oriented view,
the implementation can be divided into four interdisciplinary,
functional layers of data analytics according to Kühn et al. (2018).
It offers different views of the implementation process, covering
the Use Case, Data Analytics, Data Pools, and Data Sources view.
The process steps are integrated into the layer model in Figure 2.

In this article, we analyze the PdM implementation process
with a strong real-world application and business-oriented focus.
This process originates from the implementation experiences
of the lighthouse factory of BENTELER Automotive within the
BOOST 4.0—Big Data for Factories project. The BOOST 4.0
project is an EU-funded Innovation Action aiming to improve
the competitiveness of the European manufacturing industry, to
introduce Industry 4.0 technologies and to provide the necessary
tools for obtaining the maximum benefit of Big Data.

We have gathered and grouped the best practices derived from
the followed process. It should be mentioned that our goal is to
take advantage of these observations, in our effort to bridge the
gap between research work and industrial application.

The article is divided into four main sections, covering the
domain understanding and use case definition (section 2), data
infrastructure (section 3), data understanding and modeling
(section 4), as well as the process integration and transfer

FIGURE 1 | Overall process for the implementation of predictive analytics.

of models (section 5). We summarize the best practices and
conclude our observations in sections 6 and 7, respectively.

1.2. State of the Art
In recent years, technologies for big data management and
processing as well as algorithms for fault and anomaly detection
have matured to allow industry-grade application of smart
maintenance. While smart maintenance features are offered
by individual component providers of production systems,

FIGURE 2 | Integration of process steps into the layer model for development

of data analytics applications and overview of the best practice contributions in

this paper.
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widespread adoption of smart maintenance in manufacturing
is still limited. Many companies cannot identify good business
cases. High initial investments, as well as insufficient availability
of mature or ready-to-use solutions, keep companies from the
holistic integration of smart maintenance within the company.
A stream-lined implementation and deployment process, along
with easily transferable prediction models are key to the wide-
spread application of smart maintenance within a company.
It allows the transfer of a solution to different factories or
different parts of a company, or even to other companies with
similar settings.

The two-part study by Bokrantz et al. (2020b) and
Bokrantz et al. (2020a) acknowledges the lack of empirically
driven, conceptual work for smart maintenance. By means
of an empirical study, it conceptualizes four main smart
maintenance dimensions: data-driven decision making, human
capital resources, internal integration and external integration.
The conceptual framework offered by Zheng et al. (2018) ranges
from sensors, data collection, and analytics to decision making.
These framework dimensions are viewed in context of real-world
scenarios, naming it as an important research aspect in Industry
4.0. It does not offer a specific guidance for smart maintenance.

Moens et al. (2020) offer an Industrial Internet of Things
(IIoT) framework, in which smart maintenance solutions are
embedded. They expose robustness and scalability of solutions
as well as the availability of well-trained machine learning
models for fault recognition as major challenges to be addressed.
Bumblauskas et al. (2017) describe a decision support system as a
smart maintenance framework. It is based on corporate big data
analytics with integrated anomaly and fault detection methods.
In Uhlmann et al. (2019), the process integration aspect of
smart maintenance is focused. The authors propose an assistance
systems, which helps to embed smart maintenance solutions
integrally into service processes.

In summary, a range of recent work has focused on concepts
for implementation of smart maintenance, rather than entirely
technically-driven work. Dimensions that need to be addressed
range from sensor data, data infrastructure to analytics and
process integration of smart maintenance.

2. DOMAIN UNDERSTANDING AND USE
CASE DEFINITION

The practical examples presented in this work are obtained
from real industrial use cases of the BENTELER automotive
lighthouse factory of the BOOST4.0 project. BENTELER
produces and distributes safety-relevant products, serving
customers in automotive technology, the energy sector and
mechanical engineering. The production of such plants employs
complex machinery to a large extent with several mechanical
and hydraulic systems, which entail frequent and/or periodic
maintenance. A thorough understanding of the problem domain
is precondition to defining valuable use cases, data understanding
and successful modeling and process integration. These steps are
detailed in the following paragraphs.

2.1. Domain Understanding
The understanding of the application domain is of equal
importance as the development of the actual smart maintenance
solution. The domain and business understanding is a multi-
phase iterative process, comprised by interviews with the
maintenance engineers, interviews with the industrial IT and
automation experts and knowledge transfer.

Initially, organizing interviews with the domain experts, i.e.,
maintenance engineers, is a necessary prerequisite in order to
understand the underlying systems and behavior of signals,
which are later considered in data cleaning, data pre-processing
and algorithm development. Semi-formalized methods such as
CONSENS (Conceptual Design Specification Technique for the
Engineering of Complex Systems, Gausemeier et al., 2009) have
been used in our use cases, giving effective structure diagrams for
the machinery under consideration. For the use case of the scrap
belt, an example of the effective structure of the scrap belt is given
in Figure 3.

Understanding of Data and Infrastructure has been
accomplished via interviews with industrial IT and industrial
automation experts, as a necessary prerequisite in order to
understand details of data collection, which directly affect
data properties. This includes knowledge about data collection
at OPC-UA level from industrial automation experts, which
affects e.g., naming of measurements, timing of acquisition,
etc. Also, knowledge from industrial IT experts allows a better
understanding of data transfer to databases and resulting
effects, e.g., generation and synchronization time stamps, data
quantization. This information is important for correct selection
and parameterization of algorithms for data pre-processing and
filtering. Insights from data understanding and data preparation
have been fed back to the domain and business understanding in
weekly meetings with maintenance and IT experts.

In various workshops and online conferences, the domain,
business and data understanding has been transferred between
the end users and the technology providers. For the technology
providers, a profound technical understanding of the production
line at BENTELER is essential to allow goal-driven algorithm
development. This is accelerated by proper documentation of
domain understanding. The effective structure as shown in
Figure 3, allows for successful transfer of domain and business
know-how. For example, an observation of a maintenance
incident is unambiguously assigned to a system component
(red dot in Figure 3). Root Causes can be traced within the
system and relevant data sources can be identified and located
(white dot Figure 3). Preliminary algorithm results can be
interpreted directly during their development, leading to quicker
iterations. However, regular feedback from domain experts is still
necessary. Weekly meetings of the core partners have allowed
for continuous identification of bottlenecks in the knowledge
transfer process.

2.2. Use Case Selection and Definition
In order for a Smart Maintenance solution to be evaluated and,
if suitable, adopted in production line to the optimal degree,
the costs and benefits need to be considered. The baseline
cost is composed by the installation and operation of the IT
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FIGURE 3 | Structure of the scrap belt.

infrastructure (hardware and software for Big Data storage and
processing). This represents a significant investment, which also
facilitates a wide range of possible subsequent benefits, it is thus
a mostly strategic decision. Operative decision-making focuses
cost-benefit considerations on a use case basis. The necessary
steps are use case identification, use case selection and use
case definition.

For use case identification, we propose a workshop-based
approach with domain experts, that can be held in conjunction
with the collection of domain understanding. A high-level
overview of the systems is used as a guide for the identification
process. This can be a schematic, floor-plan or domain-specific
descriptions as wiring diagrams or hydraulic plans. The effective
structure as shown in Figure 3 is useful, as it can be easily
understood by various stake holders. In Figure 4, we show how
two possible use cases for data analytics, the prediction of spikes
in motor current and the correlation of machine outage and
product number, are identified alongside the effective structure.
Additionally, details about the use cases can be directly recorded
on a plot (e.g., typical failures and failure propagation, aremarked
in red on Figure 4). Other systematic approaches can also be
exploited for use case identification, e.g., FailureMode and Effects
Analysis (FMEA).

The use case selection is based on a qualitative assessment
of use cases. For each identified use case, two dimensions are
considered: strategic value and possible benefit and simplicity
of implementation and realization. As shown in Figure 5, this

allows a simple overview and selection of most relevant use
cases. The two use cases “oil leakage at hydraulic press” and
“outage of scrap belt” have been identified for the BENTELER
automotive lighthouse factory, as they rank high in both observed
dimensions. Furthermore, a clustering allows the identification
of neighboring use cases that be considered subsequently. In
the example shown, a Machine-Health-Index is an overarching
application scenario for several use cases.

Lastly, in the use case definition a more detailed but concise
description is created, which allows the definition of the subject
for further planning or a quantitative cost-benefit calculation.
This work focuses on two practical use cases dealing with the
hydraulic system of press and a conveyor belt moving scrap
produced by presses. This step by step process has been adopted,
in order to provide of a Proof of Value (POV) approach,
which is necessary before considering an overarching Smart
Maintenance solution, spanning more machines and failures of
production lines.

2.2.1. The Scrap Belt Use Case
The scrap belt is connected to several lines and runs underground
the BENTELER factory hall. Any scrapmetal accumulated during
the production process is placed onto the scrap belt. Scrap metal
parts are then transported from the production line to a scrap
metal container, and then to recycling. The proper functionality
of the scrap belt is crucial to production, since a halt of the scrap
belt means a potential halt of several production lines.
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FIGURE 4 | Identification of Use Cases along the machine structure.

FIGURE 5 | Selection of Use Cases with a portfolio. Colored boxes represent Use Cases (partly anonymized), where similar colors represent logic groups of Use

Cases. Additionally, clusters can be found (e.g., all Use Cases contribute to “Machine-Health-index,” marked green). The two example Use Cases “oil leakage at

hydraulic press” and “outage of scrap belt” are located in the upper right quadrant, thus being most simple to implement, yet yielding most benefit.

The focus of our study is to early detect pile-up of scrap metal
and, thus, allow for time to take counter-measures in order to
prevent a halt of the scrap metal belt. Even in the case of a

complete halt, maintenance can be triggered much faster due
to the continuous condition monitoring. In addition, diagnostic
algorithms can provide maintenance or repair advice, suggesting
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FIGURE 6 | Hot forming press process step.

possible causes of the failure. This significantly limits the manual
fault diagnosis in the underground tunnel and allows a faster
restoring of the regular belt functionality.

2.2.2. The Hydraulic Press Use Case
The hydraulic press use case is a complex hot forming line
consisting of five consecutive process steps as presented in
Figure 6. Its main task is the stamping of a sheet metal into a
three-dimensional shape. The metal is heated before stamping
and rapidly cooled down during stamping. This causes the
material to be hardened, which is important for structural
components for the automobile industry.

Our study focuses on the early detection of oil leakage
occurrences. Despite the fact that, typically, oil is mostly stored in
large tanks equipped with oil level sensors, oil leakage detection
is a challenging problem due to the continuous movement of oil
across the machinery equipment parts. Such movement results
in frequent increases and decreases of oil level. Therefore, and
somehow counter-intuitively, simply monitoring the oil level is
not adequate to provide concrete evidence about oil leakage.

This business process is heavily affected by the installment of
predictive and smart maintenance processes. The main objective
of smart maintenance algorithms is the detection (condition
monitoring) and prediction of oil leakages. Based on our results,
maintenance processes can be triggered much faster or even in
advance. Maintenance and repair activities can be planned more
efficiently, and manual diagnosis is prevented.

2.3. Best Practices
It has been verified by the current work that domain
understanding is important in order to build goal driven
solutions. Interviews with domain experts (i.e., maintenance
engineers, industrial IT, automation experts) are the most direct
means for knowledge transfer. Semi-formalized methods like
CONSENS assist the knowledge transfer process providing
visualizations (effective structure diagrams) of the machinery.

The utilization of reactive (i.e., fault detection) and proactive
(i.e., failure prediction) monitoring approaches can potentially
increase the speed of reaction to crucial maintenance issues,
enabling the prescriptive maintenance in which the maintenance
and repair activities can be planned a priory.

3. DATA INFRASTRUCTURE

Efficient data handling is a crucial factor on the application of the
smart maintenance approaches and on the model and knowledge
transfer processes. The amount of sensor and production data
produced on the BENTELER plants on daily basis is of the size of
Big Data. In order to allow the analysis of this massive amount of

data BENTELER is deploying a common policy of data handling
for all distinct plants.

Each plant has a local time series database infrastructure,
where through OPC-UA and other proprietary tools and
protocols, all the produced data are persisted. For the
development and testing of new smart maintenance solutions,
BENTELER has created a remotely hosted cluster infrastructure,
orchestrated by a containerized applications management
software, called Developers Space. On this containerized
infrastructure, the data of each distinct BENTELER plant can
be mirrored on a local time series database, Figure 7, using an
advanced distributed data streaming platform.

Deploying a smart maintenance solution in the Developers
Space virtually deploys the same solution in all the connected
with the Developers Space plants. If the deployed solution
satisfies specific quality and performance aspects it can either
remain deployed in the Developers Space, or if it is necessary it
can be deployed on a local containerized infrastructure in one of
the plants, in order to place the solutions closer to the use case
that it monitors.

The components of our smart maintenance platform as
deployed in the Developers Space are presented in Figure 7. The
platform uses a micro-service architecture, where all the micro-
services communicate with each other through a common event
bus. ADashboard allows the user to instantiate the services and to
visualize the results. Themain components of the platform are:

• DataProvider: Responsible to communicate with the time
series database in order to fetch the latest sensorial data.

• Detection: A Fault Detection service to detect anomalies is the
sensor measurements.

• Prediction: A Failure Prediction service to predict prominent
failures based on the current sensor measurements.

• Fusion: Responsible to combine the output from multiple
either Detection or Prediction services into a single result
based on a pre-specified strategy.

• Reporter: Reports the results of the data analytics services, for
further processing and visualization.

The utilized micro-service architecture enables the distributed
deployment of the platform into decoupled entities, which are
developed and evolve independently to each other providing a
flexible smart maintenance solution.

3.1. Best Practices
A central data infrastructure, as the one presented in this section
(i.e., Developers Space), enables the faster testing of prototypes
in a wider range of use cases. After the successful evaluation
phase in the sandboxed environment, the application may be
moved closer to the application scenario using fog computing
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FIGURE 7 | BENTELER data infrastructure for smart maintenance.

and edge devices in order to achieve faster data transfer for
critical cases. If the requirement for instant data transfer is
relaxed, then the application may continue being deployed in the
central infrastructure facilitating its maintenance.

A containerized environment in the central infrastructure
assists the deployment of multiple solutions utilizing the
minimum hardware resources. Another advantage is that if a
solution tested to work in the central data infrastructure like in
our case, it is also going to work on premises in other BENTELER
plants in containerized environments.

The micro-service architecture of the software solution is the
most appropriate for containerized environments, as it allows the
distribution of the work among different containers providing
the same functionality. Critical parts of the software solution that
demand instant data transfer rates can be deployed on premises
in fog nodes (i.e., node of fog computing), while the software
components that need more computation resources and allow
more relaxed data transfer rates can be deployed in a remote
location like the Developers Space.

4. DATA UNDERSTANDING AND
MODELING

4.1. Data Inventory and Semantics
In industrial applications, availability of data is a concern. Data
may be produced within old machinery or legacy system. In

industrial manufacturing, a numerous range of heterogeneous
data sources and IT systems of different types can be found,
spanning various areas and processes along the enterprise.
Commonly, machine data is collected from programmable logic
controllers (PLC). However additional measurements can be
added by retrofitting sensors to existing systems. Various control
systems can be in place that facilitate acquisition of machine
data, known as SCADA systems (supervisory control and data
acquisition). A various range of protocols, e.g., OPC/UA or
MQTT, are common in industrial automation and can be
operated in parallel for several subsystems of one plant. Higher
order systems also collect or provide relevant machine and
process data, e.g., MES (manufacturing execution systems),
ERP (enterprise resource planning), or CAQ systems (computer
aided quality).

When planning a smart maintenance solution, it is necessary
to get an overview of various data sources and systems within
production, their availability and context. References to data
sources can be made on different levels:

• Reference to availability within data infrastructure
• Reference to the machine function and operation
• Reference to the manufacturing and maintenance process.

The main purpose of a data inventory is to identify relevant
data sources within the production and maintenance context.
It is a prerequisite to integrate data sources and to make them
available for smart maintenance solutions. A data inventory is
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FIGURE 8 | Data Map for the visualization of data sources and data flow along the manufacturing process.

built by interviewing stakeholders relevant to producing data
(e.g., automation experts, production planners, shift leaders,
maintenance experts) and using existing documentation.

The structure models built within the domain understanding
can be enhanced by adding references to data sources. In
Figure 4, circles denote points of measurement at system
elements. By back-tracing possible failures through the energy
or information flow within the system (red arrows in Figure 4),
signals can be found that are possible indicators for impeding
failure (red circles in Figure 4). This gives data scientists
important information about the data points and their relation to
a machine function and operation and is also used for the design
of models for smartmaintenance.

Within a data map as described by Joppen et al. (2019), the
identified data sources are shown in context of themanufacturing
and maintenance processes. The interconnection of data sources,
as well as data flows between IT systems and production
resources are given. The data map is based on the data inventory
and gives context to the process information collected during
domain understanding. It aids the project team and especially
data scientists with the overall design of a smart maintenance
solution and its embedding into the maintenance process from
a use case point of view.We have enhanced the data map (Joppen
et al., 2019) by improving the visibility of data flow in various data
bases and IT systems. An example of our proposed enhanced data
map is given in Figure 8, where the information is given in three
lanes. The top lane shows a simplified view of production and
maintenance process steps. In the middle lane, documents and
databases are visualized that affect each process step. Documents

and databases are structured by IT-Systems (colored rows). The
bottom lane lists the data sources by their identifiers underneath
the respective document or database. In the middle and lower
lane, lines are used to visualize data flows.

The above-mentioned models for data inventory, structure
models, and data map, are used for informal or semi-
formal information gathering. They are informal means for
semantic data modeling. The main intention is to enable
the communication between different stakeholders in the
manufacturing and maintenance domain, automation, IT
systems, management and data analysts. The utilization of
expert’s knowledge is an important factor to implement efficient
solutions, as it broadens the understanding of the analysts
for the mechanical equipment of interest. These methods are
assisting the knowledge transfer and, thus, the design of smart
maintenance solutions from data and machine learning models
to use case design.

Semantic data models also support the transfer to other plants.
The equipment and the production process might differ between
plants. However, the type of the machines used in the shop-
floor in most of the cases is common, as the context of the
production is the same (i.e., automotive parts). In addition to
the informal and semi-formal models, formal semantic data
models based on ontologies can be built. Especially in the case
of common context, e.g., hot/cold-forming presses, scrap-belts,
this semantic model can be a common dictionary of ontologies,
offered to semantically describe each aspect of the production
of each distinct plant, applying a uniform approach. Deploying
smart maintenance solutions developed to process the data based
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on their semantics, increases the agility and the portability of the
deployment, ameliorating multiple model transfer issues. Formal
semantic models are also an important step toward automated
setup and adaption of smart maintenance models, since they
allow to overcome the problems of heterogeneous, unstructured
data sources by giving context. However, the increased degree
of formalization comes with an increased effort for building the
respective semantic model. Hence, the semantic model and its
degree of formalization (e.g., basic data inventory vs. a fully
modeled ontology) should be decided based on cost and benefit
considerations. Strategic arguments should be also considered,
since a semantic model is also relevant in the context of building a
digital twin of the production, which offers application scenarios
and benefits.

4.2. Data Understanding
Data understanding is required in order to build detailed
data models tailored to each specific use case. In BENTELER
case, we have applied two monitoring approaches, a failure
prediction and a fault detection one. For the current analysis,
the difference between failures and faults is that, the former
are serious equipment malfunctions that stop the production
potentially for several hours, while the latter can cause minor
deviations from the normal behavior for the equipment that
usually affect the quality of the end product and might lead
to a failure.

Both monitoring approaches are applied on preprocessed
data in order to filter out noisy values usually encountered
at the beginning or at the end of the production batches, or
during idle periods of the equipment (e.g., applying maintenance
actions, replacing specific equipment artifacts for the production
of the next batch), or idle periods caused by bottlenecks in the
production chain. A characteristic example is the scrap-belt use
case, where the electrical current of the motors moving the belt is
instantly increased in abnormal levels on every cold start and it
drops to zero when the belt is not moving.

There are also monitoring policies that apply on the idle state
of the equipment that consider the values obtained during the
normal functionality as noise. An example is the monitoring of
the hydraulic oil level of the hot-forming press use case. The
oil tank of the hydraulic system is attached on the press, hence
during the normal functionality of the press there are serious
deviations in the oil level measurement due to the movement of
the stamper of the press. In this specific use case we apply two
policies, one that monitors the oil level at the highest pressure
applied from the press (i.e., during the production of an item)
and one that monitors the oil level when the press is idle.

4.3. Data Modeling
Each distinct monitoring policy uses a different data model to
identify when the press is moving or not. The failure prediction
monitoring approach uses a motif detection algorithm (Yeh et al.,
2017), to map sets of sensor measurements to artificial events,
in order to apply algorithms for event-based prediction inspired
by the aviation industry, like the one proposed in Korvesis et al.
(2018). The reasoning behind themeasurement to eventmapping
is that, before a major failure in the equipment, there might be
indications in the form of repeating events (e.g., minor faults,

anomaly behavior), which, if be identified early, can potentially
predict the upcoming failure. These repeating events along with
historical information regarding major failures, are used to train
Random Forests models for failure prediction.

The fault detection approach is used to complement the
prediction approach as it can be used on cold start with some
basic parameterization. The detection is based on an ensemble
of unsupervised monitoring approaches. As the nature of the
faults (i.e., the sensor measurements footprint) might differ
between different fault types, a single monitoring approach
would not be enough to cover all the cases. For example, a
fault might have a footprint with spikes on the measurements,
hence an approach that monitors the trend of the measurements,
would not be able to detect it. Our proposed fault detection
approach uses (i) a distance-based outlier detection algorithm
on streaming data (Georgiadis et al., 2013), to detect abnormal
values (including spikes) in the measurements, (ii) a linear
regression algorithm combined with lower-upper thresholds for
detection based on the trend of the measurements and (iii) a
simple threshold-based approach as a fail-safe mechanism if all
the other approaches fail to identify a fault.

4.4. Best Practices
The semantic representation of each aspect of the production
enhances the uniformity toward the model transfer goal. When
deciding for the needed degree of formalization for a semantic
representation, cost-benefit and strategic considerations
should be considered. In the example of BENTELER, graphic
system structured models have been selected in lieu of full-
fledged ontology models, since it followed a more hands-on
approach and straight exploitation in the design of a smart
maintenance solution.

The understanding of the data based on the obtained domain
knowledge is important, in order to identify the relevant data
sources and to select, filter, transform and combine the most
appropriate features in each use case. The latter preprocessing
steps need to take place in isolation from the actual data
processing for fault detection and failure prediction, in order to
provide context agnostic solutions toward the utilization of the
full spectrum of the capabilities that the semantic representation
can offer.

5. PROCESS INTEGRATION AND
TRANSFER

5.1. Process Integration
The data infrastructure presented in section 3, offers a
containerized applications management system for the
automation of the deployment and the handling of the scaling
in the BENTELER Developers Space. It offers a web interface,
on which developers can upload configuration files for the
deployment of the docker containers. The same configuration
files are used to deploy multiple containers, supporting different
instances of the same micro-services, upon request, for scenarios
where the availability of the service is crucial or when the
incoming throughput of sensorial measurements is above
the capacity of a single container. Developers also provide
configuration files for deployment using the docker-compose
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FIGURE 9 | Process integration scenario.

tool outside the provided container management environment
of the Developers Space, in order to support the deployment
on BENTELER plants that might not communicate with the
Developers Space or they do not have a local Developers
Space infrastructure.

The platform offers a batch run feature, where configuration
files are uploaded, containing information regarding the tasks
that need to be started and their configuration. A single file can
be constructed by the data scientists, either per use case, or per
BENTELER plant containing multiple use cases, which includes
the required information to deploy the tasks in the platform with
minimum effort. For the monitoring and handling of the running
tasks, the platform offers a web interface, where the user can
start, stop or get details (i.e., parameterization) regarding each
running task.

Figure 9 presents a process integration scenario depicting
the communication between the different components in order
to obtain the data, analyze them, provide the results to the
maintenance engineers and receive their feedback. The figure is
divided into two areas, the Developers Space and the Shop floor.
We consider that the developers and the data scientists act in the
Developers Space, while the maintenance engineers in the Shop
floor interacting with the respective components of the system.

The first step of the process is the Data Collection, where
appropriate bridges are built to transfer the data from the Shop
floor to the Data Analysis components. The data are analyzed,
and the results are sent to the Results Reporting component,
which is responsible for the circulation of the results. In the
presented scenario the results are stored in a time series database
and sent to a Decision Support System (DSS).

The smart maintenance platform encapsulates a Grafana
platform1 for the visualization of the results. Grafana uses
the time series database of the Developers Space as a data
source, hence it can visualize both the analysis results and the
persisted sensorial measurements. Multiple Grafana dashboards
are provided visualizing valuable information for both the data
scientists and the maintenance engineers. The data scientists can

1https://grafana.com/

visually assess the sensitivity of the different parameterizations
of the data analysis tasks, inspecting the number of reports per
task, in combination with information from the maintenance
logs. The maintenance engineers can set automated rules in
Grafana, in order to get alerted inside the Grafana platform
when a plotted measurement satisfies specific criteria, e.g.,
when two or more detection monitoring tasks with different
parameterizations report that something is going wrong on the
same sensorial input.

Apart from the Grafana dashboards, maintenance engineers
are equipped with mobile devices with a notification’s application
installed, which directly communicates with the DSS. Whenever
a data analysis result arrives in the DSS, a set of pre-defined
rules is activated, in order to apply an initial assessment of the
situation and, if deemed necessary, to notify the appropriate
maintenance engineers. The engineers apply the final assessment
and the required actions based on the provided information.
A feedback mechanism is also deployed, which allows the
engineers to evaluate the analysis results providing a rating and
a free text comment. The rating information can be directly
used for the retraining of the failure prediction models or
the reconfiguration of the fault detection tasks. The provided
comments can be manually processed by the data scientist in
order to extract knowledge.

5.2. Transfer of Models
The aforementioned phases from domain understanding to data
modeling and process integration have been described in context
of a single production line in one plant. However, the solution can
be transferred to similar production lines, as well as other plants,
thus reducing the overall development cost for one deployed
smart maintenance solution. A successful transfer requires the
transfer of detection or prediction models and must consider the
underlying data models, infrastructure, as well as the specifics
of the use case, i.e., details about machines together with the
specific production and maintenance processes at the plant
under consideration.

A solution pattern combines all necessary technical
components, as well as supporting documentation for
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FIGURE 10 | Components of a smart maintenance solution pattern.

deployment and application of the solution. As a reusable
pattern, it facilitates the adaption and deployment on new
infrastructure. It thus covers the following items of a smart
maintenance solution:

• Program code or container of the implemented
detection/prediction model,

• Program code or container for the visualization or dashboard,
• End-user manual for the deployed dashboard or visualization

and its application within the production and maintenance
process, e.g., how to handle alerts,

• Guide to parameterization of the model according to specific
machines and sensors, e.g., how to set thresholds,

• Guide to technical configuration according to specific
data infrastructure, e.g., local service architecture, data
base schemes.

A solution pattern is preceded by a scenario description. It
is a short briefing describing the scope and the requirements
to the solution and allows a quick selection and decision for
a fitting solution to a problem at hand. In Figure 10, the
technical components, as well as documentation components
constituting a solution pattern are summarized. It is important
that guides and manuals are kept concise and consistent between
various solutions. This reduces documentation effort during
development and implementation effort during deployment at
the same time.

The modular description of the solution pattern ensures a
clear distinction between general-purpose parts of a solution
and individual parts. Even if use case specific implementation
may be necessary for an individual smart maintenance solution,
the modular description still allows the efficient reuse of tested
components of solution patterns. Overall, using pre-tested

and evaluated components not only allows the transfer
of functionality, but it also increases acceptance of smart
maintenance among different plants and users.

In a next maturation level, an automated configuration and
parameterization can be developed based on the documentation.
A good data quality and the availability of formal and semantic
data models based on a common vocabulary are required, in
order to allow a profound automation. Automated solutions
simplify the application in other plants and push toward a
commoditization and servitization of smart maintenance, e.g., in
the form of a smart maintenance app store.

However, most current real-world scenarios, even within a
corporation like BENTELER, are characterized by individual
specificities and preconditions. The development effort for
unified and standardized infrastructure and/or common
semantic models needs to be justified, to proceed to such an
investment. The aforementioned solution patterns thus offer a
good balance between individual adaption efforts and general-
purpose development efforts. They are a prerequisite to fully
automated deployment, and thus a practical and useful solution
for most current use cases.

5.3. Best Practices
Containerization solutions facilitate the deployment of the
solutions enhancing ITS transfer capability to other plants.
Maintenance engineers should focus on the results of the data
analysis and not on the parameterization and the configuration
of the analysis. Hence, it is important to automate to the possible
extend the configuration or provide a set of pre-configured
tasks. Clean and user-friendly interfaces should be provided
for the results presentation and visualizations provide a safe
option as they clearly depict the issue and allow its tracing
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FIGURE 11 | Summary of best practices for successful implementation and deployment of a smart maintenance solution in industrial manufacturing.

through the plotting of historical information. A mobile device-
based notifications mechanism is also useful, to make sure
that the engineers are informed on time for the detected or
predicted faults.

The utilization of solution patterns, facilitates the adaption
and deployment of the PdM solution on new infrastructure, by
reducing the documentation and implementation effort during
the development and deployment phases, respectively.

6. EMPIRICAL RESULTS AND BEST
PRACTICES

This section, provides an outline of the best practices and the
proposed tools and methods, presented in the previous sections.
As Figure 11 depicts, the communication between the domain
experts, the data scientists and the developers, is important
in order to achieve the knowledge transfer for the domain
understanding and the use case definition. The process can be
supported by semi-formalized methods.

In the process integration phase, the focus should be on the
maintenance issues and the results of the models. Automated or
assisted configuration of the software solution and user-friendly
interfaces are proposed, to avoid distracting the maintenance
experts’ attention from the actual maintenance issue and the
guidelines for its mitigation. The adoption of a solution pattern
aids the transfer of the software implementation to similar use
cases providing a holistic PdM solution to the company.

The data infrastructure contributes significantly to the
implementation and model transfer phases. A centralized

infrastructure offering a containerized environment eases the
development of a micro-service based PdM solution offering
flexibility and easy distribution of the workload.

The context awareness is important for the domain and
data understanding, which in turn are important for the data
modeling. However, the end solution should be context agnostic
in order to be easily transferable to a wider range of use cases.
The utilization of semantic models and semi-formalized methods
strengthen the agnostic nature of the PdM solution.

For the scrap belt use case, a fault detector could be developed
rapidly using the presented methodology. Already within the
observed period of roughly 1 year, four alarms have been given
for respective incidents by the fault detector. The mean time to
repair (MTTR) has thus been reduced from 6 to 4 h, and the
mean time between failure (MTBF) has increased from 30 to 180
days. With further improvement of the fault detector, a higher
sensitivity or even prediction is expected to increase the number
of predicted incidents to 11 per year, thus resulting in an expected
further reduction of MTTR to 2 h and increase of MTBF to
365 days.

Fault detection and maintenance dashboards have been
transferred to multiple sites, thus leveraging the benefit for
BENTELER even further.

7. CONCLUSION

This work highlights the crucial aspects of the PdM
implementation process, toward the integration of a smart
maintenance solution within a company. Through practical
examples, which are derived from a lighthouse factory (i.e.,
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BENTELER plant) within the BOOST 4.0 project, a business-
driven process for the implementation of predictive analytics
is proposed.

The process is divided into three main phases Use Case
Analysis, Proof of Concept, and Deployment, while four main
aspects need to be considered in each phase: Analytics Use
Case, Data Sources, Data Infrastructure and Data Analysis. The
first process phase, Use Case Analysis, includes the domain
understanding and the use case analytics sub-phases, which
enable the Use Case definition. The Proof of Concept phase is
comprised by the data acquisition, data fusion and data pre-
processing sub-phases, which facilitate the data understanding
and modeling. The final phase, i.e., Deployment, includes the
process integration, the roll-out and the scale-up sub-phases,
providing a holistic solution to the company.

In order to effectively address the PdM implementation
process, the work presents a set of best-practices, proposed tools
and methods for each one of the Domain Understanding and
Use Case Definition, Data infrastructure, Data Understanding
and Modeling and Process Integration and Transfer of
Models sub-processes.

The proposed methodology has been successfully applied to
multiple BENTELER plants, leading to reduced mean time to
repair and significantly increased mean time between failure.
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