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Verbal communication is an expanding field in robotics showing a significant increase in
both the industrial and research field. The application of verbal communication in
robotics aims to reach a natural human-like interaction with robots. In this study, we
investigated how salient terms related to verbal communication in robotics have
evolved over the years, what are the topics that recur in the related literature, and
what are their trends. The study is based on a computational linguistic analysis
conducted on a database of 7,435 scientific publications over the last 2 decades.
This comprehensive dataset was extracted from the Scopus database using specific
key-words. Our results show how relevant terms of verbal communication evolved,
which are the main coherent topics and how they have changed over the years. We
highlighted positive and negative trends for the most coherent topics and the
distribution over the years for the most significant ones. In particular, verbal
communication resulted in being highly relevant for social robotics. Potentially,
achieving natural verbal communication with a robot can have a great impact on
the scientific, societal, and economic role of robotics in the future.
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INTRODUCTION

Robots are becoming increasingly pervasive in our everyday life, entering our homes (Abdi et al.,
2018; Van Patten et al., 2020), places of work (Robla-Gómez et al., 2017), hospitals (Azeta et al.,
2017), and schools (Belpaeme et al., 2018). Since humans need to communicate and cooperate with
these machines, and because we are accustomed to communicating with other people, the same social
norms and kind of communication that apply to humans might also apply to robots. As Nass and
colleagues demonstrated in their book “The Media Equation” (Reeves and Nass, 1996), people often
respond socially to computers in ways similar to how they would interact socially with other people.
Therefore, the need to develop a robot that can behave socially has pushed researchers to incorporate
a form of communication similar to what humans use in the design, such as the non-verbal
communication (Breazeal et al., 2005; Brooks and Arkin, 2007; Mutlu et al., 2009; Cominelli et al.,
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2018), as well as the verbal one (Nakamura and Sawada, 2006;
Crowelly et al., 2009; Niculescu et al., 2013).

Although the role of non-verbal behaviors (Burgoon et al.,
2016) is of undeniable importance, verbal communication has a
primary role in human-human interaction. Indeed, the voice is
one of the most powerful tools that mankind uses to convey
emotions and intentions (Cowen et al., 2019) and language allows
people to convey meaningful messages encoded in written or
spoken words (Krauss, 2002). Therefore, developing
conversational agents that can interact using natural language,
be it for entertainment, controlled, or actioned, is of great interest.
Moreover, spoken natural language interaction has some
advantages compared to non-verbal language. It makes
human-robot communication natural, accurate and efficient
(Liu and Zhang, 2017) allowing for the possibility of the robot
to cooperate, to be trained from non-expert humans, and to
efficiently behave in a social environment (Mavridis, 2015).

Nevertheless, it is not yet possible to naturally communicate with
a robot just as we do with other humans. There are several
challenges which need to be addressed both from a technological
and scientific point of view. For instance, robots still have difficulties
in correctly capturing sound from distant speakers (Kumatani et al.,
2012), dealing with environmental noise (Jensen et al., 2005),
managing speech interruption from the user (i.e., barge-in
problem (Huang et al., 2001)) and identifying the talking person
whenmultiple users are present (Gomez et al., 2014). Moreover, the
age of a user can also be considered to be an issue as there is a lack of
speech recognition systems for children due to their pitch
characteristics and speech disfluencies (Kennedy et al., 2017)
and, elderly people might have dysarthria which might impair a
regular communication flow (Kumar and Kumar, 2016).

Beyond the current technical limits of developing and improving
this type of communication, there is an undeniable and significant
increase of interest in verbal communication, testified by the last
decade’s increase of publications related to the use of the voice in
robots (Figure 1). A significant increasing trend is also observed in
the industrial area. According to the International Federation of
Robotics (IFR) figures, fields that are experiencing considerable
growth are public relation robots and entertainment and leisure

robots (IFR, 2018). The incorporation of speech recognition and
speech generation abilities in robots have obtained encouraging
results in several research fields such as educational robotics
(Budiharto et al., 2017), collaborative robotics (Huang and Mutlu,
2016; Gustavsson et al., 2017), surgical robotics (Zinchenko et al.,
2017), assistive robotics (Wu et al., 2014; Zhou et al., 2018), robot
therapy (Barakova et al., 2015; Ramamurthy and Li, 2018), humanoid
robotics (Ding and Shi, 2017), and navigation robotics (Draper et al.,
2013; Schulz et al., 2015).

The increasing number of publications has made it more
difficult to understand and track advances in the field
(Landhuis, 2016; Altbach and de Wit, 2019). Thus, the aim of
this work is to discover promising trends in the verbal
communication field by performing a deep and systematic
analysis of the research literature. To avoid any bias and
author subjectivity, different text mining techniques were used
in a bottom-up approach to retrieve research fields and keywords
from scientific publications. As observed from previous work,
bibliometric techniques leverage statistics to successfully extract
useful information such as the identification of the fundamental
“pillars” that support a research theme (Buter and Van Raan,
2013), the discovery of promising trends in the robotics field
(Goeldner et al., 2015; Mejia and Kajikawa, 2017), of topics in
conversational content (Yeh et al., 2016) and of relationships
between social and technology issues (Ittipanuvat et al., 2014).

Investigating the emergent topics and keywords from thousands
of publications belonging to verbal communication in robotics
throughout the last decades can reveal important hidden topics
or technology domains. This information can be extremely valuable
to drive future research to applications where technology and needs
intersect. In particular, we address the following questions:

1. How did the salient terms related to verbal communication in
robotics evolve?

2. Are there any specific applications that involved the use of
verbal communication?

3. Do they have any noteworthy trends in the last decade?
4. If they do, what can these trends reveal?

The paper is structured as follows. In Section 1, the criteria used
to select publications are introduced. In Section 2, the contrastive
analysis is described. In Section 3, the pre-processing step is
explained. In Section 4, it is illustrated how topics are modeled.
Section 5 reports the model evaluation. Section 6 shows the topics
evaluation. In the last sections (7, 8), we summarize the results and
discuss possible future scenarios.

1 SELECTION CRITERIA

Publications related to the verbal communication in robotics
were retrieved from Scopus using the following query: “TITLE-
ABS-KEY ((voice OR speech OR verbal OR talk OR dialogue OR
spoken OR conversation) AND robot) AND PUBYEAR >1999”.
Since the main focus is on current trends and topics, the research
was restricted only to works published from the year 2000. A total
of 7,435 articles (titles and abstracts) were extracted on February

FIGURE 1 | The annual amount of verbal communication robot-related
publications since the year 2000. In the past 18 years, the number of
publications gradually increased, reaching a maximum in current time.
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20, 2019. The framework of the natural language processing
(NLP) tools used in this research is shown in Figure 2. The
dataset can be accessed from the following GitHub repository
https://github.com/vargas95/nlp_social_robotics.

2 CONTRAST ANALYSIS

All publications were divided into four groups based on the
publication year. Intervals range from 2000 to 2004, from 2005 to
2009, from 2010 to 2014, and from 2015 to 2019. In this way, specific
keywords that are representative for a certain interval of time can be
identified. The extraction of domain-specific terms denoting domain
entities was performed using the NLP tool T2K (Sagri et al., 2019). By
default, the automatically POS–tagged and lemmatized text is
searched for candidate domain-specific terms, expressed by either
single nominal terms or complex nominal structures with modifiers
(adjectival and prepositional modifiers). To select the terms
representative for a certain interval of time, a contrastive analysis
was performed: the list of extracted terms was ranked with respect to
the variation of the term frequency inverse document frequency (tf-
idf) scores (Salton and Buckley, 1988) calculated for two different
intervals of time. Two different contrastive analyses were performed:
the analyzed interval of time 1) vs all other intervals and 2) only vs the
past intervals. The contrastive analysis was performed for each group
keeping only the first 19 main words. Results are displayed in Tables

1–4. It is worth noting that the contrast against past or all intervals is
the same for the range 2015−2019 and that the contrast against the
past cannot be applied to the range 2000−2004. Bold words
(highlighted in the tables) are the ones that belong to both the
contrasts; consequently, those words might define a specific
technology or device that has mainly been cited only in that
group. While there is only “fuzzy voice” in the 2005−2009 group,
words underlined in group 2010−2014 are “wireless sensor”,
“multimodal language”, “word correct rate” and “vocal cues”.
Although the contrast analysis allows us to retrieve specific
keywords to describe an interval of time, it was not informative
regarding topics and trends. Therefore, we decided to proceed with a
deeper analysis considering single years.

3 PRE-PROCESSING

A series of pre-processing steps were applied to convert the text in a
specific structure to subsequently perform text mining analysis.
Specifically, texts are transformed into a document-term matrix,
where each row represents one document, each column represents
a term, and the associated value defines the term’s frequency. Then,
the text was subjected to lemmatization, i.e., an algorithm to convert
the word to its lemma based on its intended meaning. In particular,
lemmatization represents a better choice compared to stemming for
topic modeling as it tries to correctly identify the intended part of

FIGURE 2 | Research framework.
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speech and meaning of a word in a sentence or in a document. After
that, the raw text was converted in a corpus on which other common
transformations were applied, such as tokenization, conversion to
lower case, and the removal of numbers, punctuation and stop words.
Lastly, once the corpus was converted into a document-termmatrix, it
was filtered using the tf-idf measure. In particular, this operation
allows us to weight each word based on the following formulas:

(tf )i,j � Num. of occurrency of term i
Total num. of terms in doc. j

(idf )i � ln( Total num. of docs
Num. of docs that contains term i

)
(tf − idf )i,j � (tf )i,j · (idf )i

(1)

The weight of a term is directly proportional to the number of
times a term occurs within a document, but it is inversely
proportional with the frequency of the term among the
collection. In this way, tf-idf measures the importance of a term
among a collection of documents. To further constrain the number
of words, a threshold on the weights has been applied equal to the
median of the tf-idf scores (Silge and Robinson, 2017).

The difference between non-filtered text and the one filtered
with tf-idf is highlighted in Figure 3 and Figure 4, are the
wordclouds displaying the most frequent words. It is clearly
visible how words that are frequent in the non-filtered text such
as “robot”, “human” and “system” become of secondary importance
when text is filtered with tf-idf and more informative words such as
“emotion”, “agent” and “dialogue” become relevant.

TABLE 1 | Contrastive analysis: range 2000–2004.

Against all

Japanese vowels
Attention expression
Facial colors
Human-robot mutual communication
Interactive actor
Average speech spectrum
Inexplicit utterances
Closing training
Pet-type robot
Active direction-pass filter
Desired distant signals
Human vocal movement
Vocal movement
Distant-talking speech
Certainty factors
Action model
Subtle expressivity
Consonant sounds
Joint attention mechanism

TABLE 2 | Contrastive analysis: range 2005–2009.

Against all Against past

Fuzzy voice Computer science
Blind source Autonomous mobile
Statistical machine Assistive robot
Pervasive computing PEM fuel cell
Fuzzy coach-player system Human robot
Relational learning Fuzzy voice
Improved linearity Web service
User interface model Partner robot
Interactive education software Fuzzy linguistic information
Teaching mathematics Speech signal
Grid application Speech emotion
Computational grids Hidden markov
Remote database Multiple sound source
Simplified robot Speech emotion recognition
IMS networks Multimodal human-robot interaction
Fault slip Robot platform
Ceramic tiles Acoustic feature
Sigma methodology Security system
Controller design Machine learning

TABLE 3 | Contrastive analysis: range 2010–2014.

Against all Against past

Wireless sensor Smart phone
Small force Wireless sensor
Support vector Robot partner
Multimodal language Telepresence robot
Word correct rate Small force
Encoder module Vocal cues
Speech collisions Structured space
Vocal cues Support vector
Android system Human robot
Dual-arms space-based robot Multimodal language
Robotic scrub nurse Open platform
Word form Nao robot
Dialogue moods Ego noise
Bayes tree Social media
Grounded language Voice coil
Wireless RF module Artificial subtle expression
Joint space Word correct rate
Japanese wikipedia Encoder module
Space-based robot Voice module

TABLE 4 | Contrastive analysis: range 2015–2019.

Against past

Deep learning
Automatic speech

Deep neural network
Raspberry pi

Pupil response
Convolutional neural networks

Rubber band
Remote sender

Robot tutor
Facial landmarks
Hidden markov
Mobile service
Hug behavior
Soft robots

Privacy policies
Motion language
Uncertain terms
NL instructions
Cloud robotics
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4 TOPIC MODELING

We retrieved topics using the Latent Dirichlet Allocation (LDA)
method (Blei et al., 2003), which is a generative probabilistic
model of a corpus. This algorithm takes advantage of the fact that
every document is a mixture of latent topics and that each topic is
characterized by a distribution over words. Although LDA is a
generative process, it can be inverted using the Bayes rule in order
to estimate a model’s parameters. From the document level, LDA
can backtrack the topics that are likely to have generated the
corpus thereby estimating the parameters’ uncertainty. The
method is based on three main steps:

1. Randomly assign to each word in each document one of the K
topics;

2. For each document d:

• Assume that all topics assignment, except this one, are correct;
• Compute the probability of the topic given that

document: p(topic∣∣∣∣document);
• Compute the probability that the word belongs to a

topic: p(word∣∣∣∣topic);
• Multiply these two probabilities and assign to the

word a new topic based on that probability:
p(word∣∣∣∣topic) · p(topic∣∣∣∣document);

3. Continue until a steady state is reached.

The algorithm used in this work is the LDA method
implemented in the R software, part of the “topicmodels”
package (Hornik and Grün, 2011). As a sampling method, we
selected the Gibbs method to infer unknowns from the data.
Results of the LDA model consists of the a posteriori
distributions:

• The probability β that a term belongs to each topic;
• The topic distribution Θ for each document.

5 MODEL EVALUATION

One limitation of the model is that it needs a priori the K number
of topics. In order to find a “correct” number, four different
metrics, which represent the goodness of the fit, can be visualized
using the “ldatuning” package (Nikita, 2016). In particular, two
categories of metrics can be distinguished. Then, the number of
topics is selected as the one that:

• minimize the following measures:
• Arun 2010 (Arun et al., 2010)
• CaoJuan 2009 (Cao et al., 2009)
• maximize the following measures:

FIGURE 3 | Wordcloud of most frequent words for the non-filtered text.
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• Deveaud 2014 (Deveaud et al., 2014)
• Griffiths 2004 (Griffiths and Steyvers, 2004)

These measures select the best number of topics using a
symmetric KL-divergence of salient distributions which are
derived from the factorization of the document-term matrix.
A graphic visualization of the metrics’ variation with respect
to the number of topics is shown in Figure 5. It can be
observed that the Deveaud2014 metric is not informative.
Therefore, by analyzing the remaining three metrics, the
correct number of topics might be located in the range
between 60 and 150 topics. We selected, as a reasonable
number, 60 topics which is the point where two of three
metrics converge to their minimum or maximum point.
Moreover, selecting the lower number of topics might
avoid possible over-fitting.

6 TOPICS EVALUATION

The LDAmodel is a powerful way to extract topics from a corpus
of documents in an unsupervized way. However, topics might not
be clearly explicable, therefore topic coherence can be used as a

measure to evaluate the topic quality (coherence implementation
in R (Denny, 2018)). The topic coherence metric considers the co-
occurrences of words within the documents and it is defined as:

C(t;V(t)) � ∑M
m�2

∑m−1

l�1
log

D(v(t)m , v(t)l ) + 1

D(v(t)l ) (2)

where V(t) � (v1(t), . . . , vM(t)) is the list of the M most
probable words in a topic, D(v) the frequency of the term v
within the document d and D(v, v′) represents the co-occurrence
of word v and v′ within documents. The measure assumes
negative values: the closer the value is to zero, the stronger the
topic coherence will be.

The topic coherence has been evaluated on the 60 topics
extracted, by considering the top 10 terms for each topic and
setting a user-defined threshold on the coherence value to -145.
Consequently, 26 topics have been identified as top topics,
which are displayed in Figure 6. The three top terms for each
topic are highlighted, i.e., words which have the largest
probabilities to belong to that topic. A qualitative analysis of
the keywords allows us to partition topics in five supra-
categories: control, application, language, interaction, signal,
and hardware.

FIGURE 4 | Wordcloud of most frequent words for the text filtered with tf-idf.
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The trend of each topic was evaluated considering the
distribution of topics among each document θ over the years.
Each distribution was fitted with a linear regression and the slope
was evaluated to extract the main trends. Table 5 displays the
slope values computed, highlighting the statistically significant
ones. A non-significant trend means that the distribution
fluctuates over the years, therefore no conclusions can be
drawn about their future development.

To carry out a more detailed and high-resolution analysis, we
evaluated the probability of topics over the years and the
normalized frequency of the significant trends, highlighting
those topics which can be defined as the most frequent and
significant. Results are illustrated in Figure 7. Although “child,
autism and therapy” and “elderly, care and assistance” have both
significant positive trends, the normalized frequency of the
former is larger compared to the latter thereby suggesting that
they are more important. Consequently, topics can be narrowed
again focusing only on the ones that have a higher normalized
frequency such as “child, autism and therapy” and “emotion,
emotional and affective” for the positive significant trends and on
“sound, vocal and anthropometric” and “surgical, surgery and
surgeon” for the negative significant ones.

7 RESULTS AND DISCUSSION

The various steps of the computational linguistic analysis
conducted in the presented study led to meaningful answers to
the questions we posed in the introduction. In this section, we
outline the results that emerged from the data analysis. Not only
does the analysis provide a complete overview about the past and
the present of verbal communication in robotics, but it also
provides an idea of what future scenarios and most promising
applications might be.

(1) How did the salient terms related to verbal communication in
robotics evolve?

Results from our study show that this field seems to be highly
technology-driven. In particular, the contrastive analysis
highlights devices or technology that define a specific interval
of time. Starting with the 2000−2004 interval, the keywords in
Table 1 mainly focus on the social interaction aspects. In the
following years (2005−2009, Table 2), the analysis shows that
“fuzzy voice” is the most used key-word in the scientific
literature. While the 2010−2014 range (Table 3) focuses
more on the vocal aspects, and the last few years
(2015−2019) show the rise of deep learning in the verbal
communication field (Table 4). Looking at the table
carefully, there are also other technologies that proved to be
a driving factor for the evolution of verbal communication in
robotics. For instance, every technology that was helpful in
providing attention mechanisms started appearing in
2000−2004, emotions related to speech started in 2005−2009,
the use of smartphones with verbal abilities started in 2010−
2014 and soft robotics, and cloud robotics started in 2015−2019.
From this first analysis, it is clear, for example, that studies in the
immediate future will include deep learning algorithms, likely
merged with cloud computing.

(2) Are there any specific applications that involved the use
of verbal communication?

A deeper analysis was performed taking advantage of the LDA
model. In this way, main coherent topics and keywords were
retrieved, specifically, each topic is defined with three keywords
(Figure 6). A qualitative analysis allows us to interpret the topics
and to further partition them in five supra-categories, i.e., control,
application, language, interaction, signal and hardware.

FIGURE 5 | Variation of four metrics with respect to the number of topics. On the top, Arun2010 and CaoJuan2009 metrics have to be minimized. On the bottom,
Deveaud2014 and Griffiths2004 have to be maximized. They define a range where the correct number of topics should be located.
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(3) Do they have any trend in the last decade?

The overall trends of the topics were evaluated distinguishing
the significant upward and downward ones (Table 5). The main
topics with upward trends are related to social robotics and its
applications, whereas downward topics are more related with the
technological aspects and the use of voice as a controller.
Significant trends were also analyzed with single-year resolution
and their frequency was normalized with respect to the overall
number of words per year. In this way, among the topics with a
significant trend, the more frequent ones can be distinguished.
Specifically, the upward significant and more frequent topics are
“child”, “autism”, “therapy” and “emotion”, “emotional” and
“affective”. On the other hand, there are “sound”, “vocal”,
“anthropometric” and “surgical”, “surgery” and “surgeon”. This
data suggests that verbal communication appears to be more
successful as a communication channel to socially interact with
a robot, rather than a tool, or an interface for controlling the latter.

(4) If they do, what can these trends reveal?

Two categories have been identified as promising ones: autism
therapy and affective interaction. Looking into the literature, the
use of robots in the teaching procedure for children with autism
spectrum disorder seems to be effective in enhancing specific
social and communication behaviors which are not achieved by

FIGURE 6 | Top topics. For each topic, the three top terms are displayed. beta represent the probability that the term belongs to that specific topic.

TABLE 5 | Trends evaluation.

Slope p-value Topic top terms

0.0005861* 0.0000007 “child”, “autism”, “therapy”
0.0003637* 0.0003866 “elderly”, “care”, “assistive”
0.0003431* 0.0007799 “android”, “smart”, “phone”
0.0003373* 0.0002577 “emotion”, “emotional”, “affective”
0.0002383* 0.0000237 “student”, “teacher”, “tutor”
0.0002042* 0.0001786 “cultural”, “book”, “editor”
0.0001842* 0.0253939 “corpus”, “sentence”, “Chinese”
0.0000972 0.2693160 “fuzzy”, “traffic”, “particle”
0.0000941 0.2831514 “head”, “gaze”, “eye”
0.0000753 0.0994647 “color”, “label”, “segmentation”
0.0000462 0.4298608 “music”, “alignment”, “dance”
0.0000219 0.7879786 “speaker”, “identification”, “classifier”
−0.0000008 0.1229337 “synthesis”, “character”, “expressive”
−0.0000761 0.9895290 “force”, “actuator”, “rehabilitation”
−0.0000729 0.4462344 “bayesian”, “probabilistic”, “topic”
−0.0000684 0.4191220 “modal”, “mission”, “unman”
−0.0000619 0.4944658 “noise”, “acustic”, “asr”
−0.0000484 0.2566593 “reference”, “situate”, “entity”
−0.0001042 0.4363416 “memory”, “business”, “educational”
−0.0001382 0.1836940 “arm”, “unknown”, “dof”
−0.0001412 0.0692353 “guide”, “visitor”, “museum”

−0.0001764 0.4647355 “patient”, “surgery”, “cancer”
−0.0004455* 0.0191116 “remote”, “operator”, “telepresence”
−0.0005645* 0.0061496 “sound”, “localization”, “auditory”
−0.0007511* 0.0000007 “sound”, “vocal”, “anthropometric”
−0.0009079* 0.0001325 “surgical”, “surgery”, “surgeon”

*Significant (p < 0.05).
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humans (Fachantidis et al., 2018). Moreover, children displayed
more expression when interacting with a robot capable of
performing affective interaction, i.e., to convey emotions and
to adapt its behavior (Niculescu et al., 2013). While autism
therapy reached a peak in 2017, the affective interaction had a
steady increase over the years. On the other hand, applications
which were shown to have a significant downward trend concerns

the use of anthropometric sounds and vocalization and the use of
verbal communication related to surgical activities. One
limitation that might explain the downward trend of the first
topic is that human realism of a character’s face and voice can
evoke feelings of eeriness (Mitchell et al., 2011), especially if not
accompanied by an equal level of realism in the cognitive part of
the robot, and thus, its behavior. Regarding the trend of the

FIGURE 7 | Key–words trends of significant top topics normalized and compared to the overall number of words in the collection of document for each year.
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second topic, an issue might be related to the uncertainty that
might arise when using the voice command for controlling tasks
that require very high precision and accuracy such as surgical
operations.

8 CONCLUSIONS

The presented study revealed that verbal communication is a
research field that is continuously expanding in different areas of
robotics. This increasing interest is driven by the desire of a natural
human-like interaction with a robot. More than 7,000 scientific
publications about the verbal communication field in robotics were
analyzed by means of a contrastive analysis and topic mining
technique with a related trend analysis. One of the most notable
results was the identification of different topics describing the verbal
communication field. Specifically, they resulted in being partitioned
in five supra-categories: control, application, language, interaction,
signal, and hardware. Another main result was that verbal
communication for robotics proved to be highly technology-
driven, and that several technologies, associated to specific time
intervals, emerged as significant for its development. Moreover, two
promising research fields related to social robotics were identified:
autism therapy and affective interaction. While autism therapy
reached a peak in 2017, the affective interaction had a steady
increase over the years. On the other hand, the two most
significant downward trends identified were vocal interaction
and vocal control in surgical robotics. Reasons can be identified
in themismatch between human-like esthetic vs. behavioral realism,
and in the uncertainty related to a voice command for precise and
accurate tasks such as surgical operations. These findings show that
verbal communication is expanding in the robotics field, finding
different applications that can have a future translation in the
market. Potentially, achieving a natural verbal communication
with a robot can have a great impact in the scientific, societal

and economic role of robotics in future. Nonetheless, due to the
current technical limitations, it is confirmed that the use of voice is
accepted and gladly applied in robotics if used for a social affective
interactionwith a robot, but it is not well liked, or is evenmistrusted,
when it must be used for applications in which human health or
security are in danger. This scenario will probably change only if
new technologies are proven to be highly secure, and those still have
to be found or introduced in this field.

Although we tried to avoid any biases by implementing a
computational pipeline that can extract topics and trends in a
rigorous way, those might eventually emerge in some parts of the
work. For instance, the query to retrieve the dataset, which is
inevitably based on our knowledge. Moreover, this study
presented the application of one computational linguistic
method. A more extensive analysis could be carried out by
comparing different methodologies together with different
metrics.
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