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Modern and flexible application-level software platforms increase the attack surface of
connected vehicles and thereby require automotive engineers to adopt additional security
control techniques. These techniques encompass host-based intrusion detection systems
(HIDSs) that detect suspicious activities in application contexts. Such application-aware
HIDSs originate in information and communications technology systems and have a great
potential to deal with the flexible nature of application-level software platforms. However,
the elementary characteristics of known application-aware HIDS approaches and thereby
the implications for their transfer to the automotive sector are unclear. In previous work, we
presented a systematic literature review (SLR) covering the state of the art of application-
aware HIDS approaches. We synthesized our findings by means of a fine-grained
classification for each approach specified through a feature model and corresponding
variant models. These models represent the approaches’ elementary characteristics.
Furthermore, we summarized key findings and inferred implications for the transfer of
application-aware HIDSs to the automotive sector. In this article, we extend the previous
work by several aspects. We adjust the quality evaluation process within the SLR to be able
to consider high quality conference publications, which results in an extended final pool of
publications. For supporting HIDS developers on the task of configuring HIDS analysis
techniques based on machine learning, we report on initial results on the applicability of
AutoML. Furthermore, we present lessons learned regarding the application of the feature
and variant model approach for SLRs. Finally, we more thoroughly describe the SLR study
design.
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1 INTRODUCTION

Nowadays, the market demands of the automotive sector are more and more driven by digital
natives. This induces a transition from traditional automobiles with deeply embedded electronic
control units to connected, digital systems that involve concepts from information and
communications technology (ICT) systems (KPMG, 2017). Such connected digital systems
require more flexible platforms like AUTOSAR Adaptive or Automotive Grade Linux. Both
have in common that they allow dynamic installation and update of user-level applications by
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providing services and resources that can be requested
dynamically. The functionality of the applications
(infotainment involving user devices, V2X, etc.,) inherently
requires connectivity with remote and in-vehicle entities.

On the downside, the increasing connectivity extends the
attack surface of the vehicle. This implies the need for
additional security control techniques, which encompass
intrusion detection systems (IDSs) known from the ICT
system development. In order to detect suspicious activities in
application contexts (e.g., code injections), certain host-based
intrusion detection systems (HIDSs) (Scarfone and Mell, 2007)
can be employed. This particular class of HIDSs monitors and
analyzes events within applications or data that is relatable to
applications or processes, focusing on software behavior.
Extending the definition of Bace and Mell (2001), we call such
HIDSs application-aware HIDSs. In contrast to system-wide
IDSs, application-aware HIDSs have a great potential to deal
with the flexible nature of adaptive automotive software
platforms. This is due to the potential presence of multiple
versions and configurations of different applications in such
platforms, which application-aware HIDSs can cope with. For
example, when installing or updating only one concrete
application, a system-wide IDS potentially has to update its
complete reference model of benign and malicious system-
behavior. In contrast to this, an application-aware HIDSs only
have to add or update that part of the reference model that relates
to the application under consideration, thus being more modular
than system-wide IDS. Furthermore, developers can tailor
application-aware HIDSs to the particularities of the
corresponding applications, which has the potential of a better
detection performance compared with more general system-wide
approaches. Please note that application-aware HIDSs and
system-wide IDS can also be used in conjunction.

Today, the elementary characteristics of application-aware
HIDSs are unclear, which impedes their development and
application in practice. Current surveys focus on IDSs in
general but not on application-aware ones. Moreover, these
surveys cover almost no application-aware HIDSs in the
automotive sector.

In order to provide an overview and thorough classification of
state-of-the-art application-aware HIDSs approaches, we
presented in previous work (Schubert et al., 2019) a systematic
literature review (SLR) on such approaches as an introduction
into the topic. The target audience are researchers and
practitioners with an automotive background that are
interested in current application-aware HIDS technology. We
synthesized our findings using the formalism of a feature model
and corresponding variant models resulting in a classification of
each approach along 140 different features, which represent the
approaches’ elementary characteristics. In comparison with other
surveys or SLRs on IDS approaches, our research questions focus
on application-aware HIDSs. Furthermore, we summarize our
key findings and infer implications for transferring application-
aware HIDSs to the automotive sector.

In this follow-up article, we extend the previous work (Schubert
et al., 2019) by several aspects. We adjust the quality evaluation
process within the SLR to be able to consider high quality

conference publications, which results in an extended final pool
of publications. Furthermore, one of the main findings of the
previous work was that the configuration of application-aware
HIDSs is mostly driven by expert knowledge. This is a manual and,
hence, a cumbersome and time-consuming task. Particularly, this
applies to the configuration of analysis techniques based on
machine learning (ML). In order to provide information about
possible frameworks for the automation of ML approaches to
support HIDS developers, we conducted experiments on the
applicability of automated machine learning (AutoML) (Hutter
et al., 2019) and report on initial results. Furthermore, we present
lessons learned regarding the application of the feature and variant
model approach for SLRs and we round out the paper by more
thoroughly describing the SLR study design. Finally, for readers
who want to examine the topic more closely, we updated our
supplementary material which provides summaries of all classified
publications, the search documentation, an overview of the
classification, and additional information regarding the AutoML
experiments.

We introduce related work in the Section 2 and explain our
study design in Section 3. We present its detailed results in
Section 4 before summarizing the key findings and inferring
implications for the automotive sector in Section 5. Section 6
elaborates on our first experiments of using AutoML in the
context of IDSs. Furthermore, Section 7 discusses the usage of
feature models in SLRs. Finally, we conclude this paper and
outline future work in Section 8.

2 RELATED WORK

Research on IDSs can be dated back to the early 1980s (Bruneau,
2001). This resulted in a extensive body of publications that
encompasses surveys, taxonomies, or general overviews, e.g.,
Lazarevic et al. (2005), Scarfone and Mell (2007), or Viljanen
(2005). All of these publications differ from this paper in at least
one of the following points. 1) None of the publications focuses
on application-aware HIDSs, and particularly not on implications
for the automotive sector. 2) Most of the publications do not
follow clearly structured review procedures like the one of this
SLR. 3) Some of the approaches are simply too old to capture the
current state-of-the-art. In the following, we briefly recap recent
publications that are complementary to our study.

Loukas et al. (2019) survey IDSs for vehicles. This publication
also encompasses 36 IDSs for automobiles and automobile
networks capturing the state-of-the-art of intrusion detection
in this sector. With the exception of one publication, all of the
reviewed publications are network-based approaches monitoring
either the CAN or vehicular ad hoc networks.

Buczak and Guven (2016) elaborate on data mining and ML
methods that are used in IDSs. The publication addresses high-
level descriptions of the methods as well as particularities like
their time complexity. Furthermore, the authors recap example
papers that utilize the correspondingmethods.We foundmany of
the described methods in the publications of our SLR, which
makes their publication a good source for more detailed
descriptions.
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Luh et al. (2017) review approaches that focus on the detection
of targeted attacks. In the domain of HIDSs their survey covers
seven approaches. The authors’ research questions revolve around
how semantics aspects are utilized by the approaches under
consideration. In comparison to our classification, architectural
aspects or aspects referring to the interplay of different techniques
in different phases of the detection are not targeted.

3 STUDY DESIGN

In order to execute the SLR, we follow the process described by
Kitchenham and Charters (2007) and Brereton et al. (2007). This
process defines a general methodology for conducting SLRs in the
software engineering domain. Since we consider the composition
of application-aware HIDS to be a software engineering topic, we
follow this process. The process may differ in certain ways,
depending on the type of research questions. For example,
data extracted from discovered publications may be
evaluated using statistical or qualitative methods. In our
case, the research questions, as defined in Section 3.2 are of
a qualitative nature, so we do not employ statistical methods
for data analysis.

Figure 1 depicts this SLR process with our particular
characteristics (e.g., number of surveyed publications) specified
in the Business Process Model and Notation (BPMN) [Object
Management Group (OMG), 2014]. The SLR process is split into
three coarse-grained phases: Planning, conducting, and
reporting. In the planning phase, the research questions are
defined. The research questions are part of a review protocol,
laying out a basic search and filtering strategy in order to find
appropriate sources. The review protocol should be approved by
experts not directly involved in the study, which, in our case, was
done by a review board made up of department colleagues and an
external IDS expert. The SLR is then conducted according to the
protocol, which entails a literature search, filtering, quality
assessment, data extraction, and finally data synthesis or
interpretation. Lastly, the results of the SLR should be
published for other researchers (Kitchenham and Charters,
2007), which we do in this publication and the supplementary
material.

In the following, we discuss each step as part of the coarse-
grained SLR phases planning, conducting, and reporting.
For this purpose, we describe each activity step of the
overview in Figure 1 in a dedicated section. After
discussing each step, Section 3.12 introduces the threats to
validity relevant for this SLR and the measures taken to deal
with these threats.

3.1 Fundamentals
As visualized by the step Investigate Fundamentals as part of
the Planning phase in Figure 1, the first step in any SLR is to
familiarize oneself with the fundamentals of the examined
topic to gain an overview of the used terminology and the
current state in the specific field. This is needed to define the
review protocol effectively, especially the search terms and
filtering criteria. In this case, an informal initial literature

study preceded the definition of the review protocol, with
the partial goal of defining the terminology used within the
SLR. We generally follow the definitions of (Bace and Mell,
2001) and (Scarfone andMell, 2007), but extended them by our
understanding of application-aware HIDS as motivated in the
introduction.

3.2 Research Questions
The research questions form the core of the review protocol.
In order to explore the current landscape in application-
aware HIDS, we pose the following research questions (cf.
Define Research Questions as part of the Planning phase in
Figure 1):

RQ1: What are the architectures (e.g., distributed or
centralized) of current application-aware HIDS approaches?
RQ2: What are the techniques of current application-aware
HIDS approaches? The technique comprises the basic
approach and the specific analysis technique used for
behavior classification.
RQ3: What are usage contexts of current application-aware
HIDS approaches? The usage context represents the context
the HIDS is used in (i.e., targeted threats, programs, or
operating systems, and the necessary monitored data).
RQ4: What are the relationships between the techniques, usage
contexts, and architectures?
RQ5: How are the approaches evaluated? Are there practical
case studies using public data sets?

We designed these research questions in such a way that they
cover a range of approaches considered to work on the
application level. They also capture important aspects of
different intrusion detection approaches, such as the
techniques that are used to classify behavior and the context
in which a certain approach is to be used. Since the architecture of
an IDS is important for the realization, it is targeted by the first
research question. We also aim at determining relationships
between certain aspects of intrusion detection approaches. The
research questions form the basis of the following steps within the
SLR process, in that they are used to derive the search terms as
well as the in- and exclusion criteria.

3.3 Search and Filtering Strategy
Following on the definition of research questions a systematic
search procedure for publications as well as criteria for filtering
the results have to be defined (cf. Define Search and Filtering
Strategy as part of the Planning phase in Figure 1). In the
following, we discuss these steps separately. Section 3.3.1
presents the used search terms and libraries. Thereafter,
Section 3.3.2 discusses the overall filtering procedure and the
used inclusion and exclusion criteria.

3.3.1 Search Strategy
The search terms should be defined in such a way, that the largest
amount of relevant sources is found. However, the searches bring
up results that are not relevant to the specific topic or the research
questions, which is dealt with by the filtering criteria. This section
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FIGURE 1 | The SLR process including the number of publications per search step.
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discusses the basic search phrase and the filtering criteria
employed in this study.

Generally, to keep the search terms targeted to the problem,
they are derived from the research questions. Here, the basic
search phrase consists of three main parts. The three parts
contain separate synonyms for the appropriate search terms
that are connected by a Boolean “OR”. In turn, the parts are
connected by Boolean “AND”.

(“Intrusion Detection” OR “Anomaly Detection” OR
“Application Intrusion Detection”) AND
(“Host-Based” OR “Application-Based” OR
“Application Specific” OR “Application Aware” OR
“Application Sensitive”) AND
(“Program Behavior” OR “Application Behavior” OR
“Software Behavior”).

The first part targets the general topic of intrusion detection.
Since “Anomaly Detection” is sometimes used synonymously, it
is also part of this part. Additionally, we added the term
“Application Intrusion Detection”, since it came up in the
preliminary research.

Regarding the second part, the goal in this SLR is to examine
IDS approaches that work on the application level. Since these
approaches are usually host-based, or more specifically,
application-based, these terms and their synonyms comprise
the second part of the search phrase.

In terms of the last part, our research questions focus
approaches that somehow analyze the behavior of software.
Thus, the third part contains terms that target this behavioral
aspect and were used in the literature that we examined in the
preliminary research as part of the Investigate Fundamentals step
in Figure 1.

In order to search efficiently and due to the limited selection in
print libraries with regards to the domain covered in this review,
all used libraries are digital. According to (Brereton et al., 2007),
these are libraries relevant to the field of software engineering
specifically. We limit ourselves to the digital libraries provided by
the publishers ACM, Springer, IEEE, Elsevier. Whereas Springer’s
digital library is not mentioned by (Brereton et al., 2007), it is
recommended by Kitchenham and Charters (2007), so we chose
to include it.

Due to preliminary searches showing results not published
in the aforementioned libraries, we chose to specifically search
for publications from Advanced Computing Systems
Association (USENIX) and the Network and Distributed
System Security Symposium (NDSS), which were
recommended by the review board to be of relevance. In the
case of NDSS publications, we employ Google Scholar and split
the search phrase in order not to run into search term length
restrictions, searching only for publications with NDSS named
as the publisher. For USENIX, we searched the site using
Google, filtering for PDF documents.

3.3.2 Filtering Strategy
The review protocol defines filtering criteria as to ensure that only
the relevant sources are examined in the SLR. This also establishes

the basis for a process, in which sources are in- or excluded in a
repeatable, unbiased, and transparent fashion. The review board
approved the filtering criteria, which again combats potential bias
in the researchers performing the filtering step. Since the process
should be transparent, the reason for exclusion is recorded in the
documentation, which can be found in the Supplementary
Material.

Overall, we use two inclusion and ten exclusion criteria. If a
source deals exclusively with the topic of application-aware HIDS
or introduces a novel approach that follows the definition of
application-aware HIDS, it is included in the pool of source to go
to the next step.

We exclude sources dealing only with HIDS approaches
relying on network data to detect intrusions or are not mainly
concerned with a new application-aware approach. We also
exclude sources if:

• The general topic of the source is not computer science;
• It is in the form of a survey, because only primary literature
should be considered;

• It is in the form of a Bachelor’s, Master’s, Ph.D. Thesis,
project/technical report, or book chapter since these are not
peer reviewed sources;

• It is in the form of a patent or a standard description;
• It is in the form of a panel discussion, preface, tutorial, book
review, poster, or presented slides, since these formats are of
an informal nature;

• It is unclear where and when the source was published and if
it has been peer reviewed;

• The source is not written in the English language, since it is
the working language in this study;

• The full text is not available through the library of
Paderborn University without payment, because no
budget is allocated for this purpose;

• The source was published before 2012.

The decision to exclude sources that did not undergo a formal
peer review process was made to ensure objective filtering of
sources with regards to their originality, validity, and quality.
While there are many excellent theses or technical reports with
detailed information on application-aware HIDS, it would be
difficult to find objective criteria for these aspects, which are
covered by the peer review process of conferences and journals.

During the selection procedure, we first applied the inclusion
parameters and subsequently the exclusion criteria. Once a source
is included, it can no longer be excluded on the basis of the
filtering criteria. Should a source not match any of the criteria
explicitly, it is excluded. The selection procedure is then
performed in stages: The title is examined first, then the
abstract, and finally, the whole text is skimmed or read
completely. If, at any stage, a criterion is met, the source is in-
or excluded and the reason recorded.

3.4 Quality Indicators
To enable the evaluation of source in terms of their quality,
corresponding indicators have to be defined (cf. Define Quality
Indicators as part of the Planning phase in Figure 1). The quality
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evaluation is recommended by (Kitchenham and Charters, 2007)
to assess whether a subpar study is included, which may
negatively impact the results of the data synthesis. Since we
are performing a mostly qualitative data synthesis, we only
consider sources that fulfill all quality criteria, so that the
analysis and the resulting taxonomy reflects high quality
publications. It also reduces the amount of studies in the final
selection, which would otherwise have been too large to fit in the
scope of our SLR.

We employ two quality indicators 1) the fact whether the
source is a journal or high quality conference paper or not and 2)
whether the authors perform a practical evaluation of their
developed HIDS approach. We assume that journal
publications are generally of higher quality than others, since
such publications usually go through several review cycles and the
practice of republishing extended versions of high quality
conference publications. However, not all high quality
conference papers are republished in journal articles and
should still be considered in the SLR. Therefore, conference
papers published at highly ranked conferences (A* and A
according to the CORE-Ranking1) that employ a journal-like
rebuttal phase in the submission process fulfill the first quality
criterion. We employed the CORE-Rankings from 2021 and
checked, if the conferences currently employ a rebuttal phase,
since checking these parameters for past conferences was not
possible in all cases.

The second quality criterion is completely fulfilled, if the
authors perform an evaluation with standardized or publicly
available data. Otherwise, if the authors use data generated on
their own and have not made it publicly available, the criterion is
partially fulfilled. If no practical evaluation is performed, the
criterion is not fulfilled. The final pool of selected sources is made
up of those that fulfill both quality criteria at least partially.

3.5 Review Protocol Approval
This step relates to the Hand Over Review Protocol activity of the
Planning phase in Figure 1. Generally, defining the review
protocol is an iterative process, with several update cycles
based on preliminary searches and feedback from the review
board. In this case, we perform two rounds of feedback with the
full Review Board. After taking the feedback from both rounds
into account, the Review Board approved the protocol and the
SLR can be executed under the guidance of the protocol. As such,
the Review Protocol Approval indicates the transition from the
Planning phase to the Conducting phase.

3.6 Detailed Search Strategy
Since the support for Boolean operators within search phrases
differs for each of the digital libraries, a specific search string is
devised for each of the databases (cf. Derive Detailed Search
Strategy as part of the Conducting phase in Figure 1). Most of the
databases used in this review support Boolean operators, so only
minor adjustments are necessary, such as selecting advanced
search and adding parameters defining that the full text

should be searched. All search phrases are available in the
supplementary documentation, along with the dates of the
search and all search results.

As already mentioned, NDSS USENIX do not provide their
own digital libraries that allow searching with Boolean
operators. Therefore, for USENIX we opt to search their
website using Google, filtering for PDF results only. For
USENIX, we search using Google Scholar, splitting the search
phrase to avoid running into length restrictions. We use the
advanced search feature and put one term from both the
“Intrusion Detection” and “Observation Target” parts into
the “All of the words” field. Then, the terms from the “Point
of Implementation” part of the search phrase are places in the
“Any of the words” field. In addition, the Publication/Journal
field is set to NDSS.

3.7 Search Documentation
Having defined the specific search strategies for each digital
library, we execute the searches (cf. Conduct Search in
Figure 1). The documentation of the searches for each digital
library is provided in the supplementary material to this article.
After searching all libraries, we have 844 results in total.

3.8 Filtering Sources
In order to filter the sources, we start by excluding sources
published after 2012 (cf. Filter Sources in Figure 1). Thus, we
cover a period from 2012 to the time of our searches in mid-April
2019. This exclusion criterion was added since the purpose of the
SLR is to reflect the state of the art, considering the review board
advice. This leaves the rest of the publications to be filtered in the
manner described in Section 3.3. After filtering, 140 publications
are left to be reviewed for their quality. Please note again that we
finalized the SLR for our original publication (Schubert et al.,
2019). In particular, we did not extend the period for this
publication.

3.9 Quality Assessment
The Quality Assessment (cf. Conducting phase in Figure 1) is
conducted by two researchers, each working on their own
subset of publications. A crosscheck was performed, in
which each researcher reviewed some of the other’s
assigned sources to ensure no bias or errors are part of
the quality evaluation. The 21 sources containing a
practical evaluation of the IDS approach and being
published in journals and at highly ranked conferences
with rebuttal phases make up the final pool of selected
publications. Table 1 shows these sources and the
corresponding journals or conferences, respectively.

3.10 Data Extraction and Synthesis
To answer the research questions posed in the review protocol,
relevant data needs to be extracted, consolidated and interpreted
from the sources. The Data Extraction and Synthesis steps are
closely linked in our case (cf. Conducting phase in Figure 1).
The corresponding process is described in Section 7 in more
detail.1http://portal.core.edu.au/conf-ranks/
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In order to systematically interpret and present the findings, we
develop a feature model, as first introduced by Kang et al. (1990) and
later refined by Czarnecki et al. (2005). Feature models are meant to
document, represent, and discover software system domains and
their relationships. Here, we use the featuremodel to characterize the
different approaches. To this end, extracted IDS characteristics are
represented as features in a tree format, while allowing for the
representation of relations between the characteristics. During the
data extraction process, it is therefore necessary to extract these
characteristics as well. In addition to providing an overview of all
possible characteristics of application-aware HIDS approaches, the
feature model can be used to classify single approaches. Hence, we
select the corresponding features for each approach such that they

conform to the variability constraints expressed by the model. The
result of this selection is a Variant Model as explained in Section 7.

Figure 2 shows the elements of our feature model. Features
represent IDS characteristics. They are hierarchically structured and
may contain sub-features or feature groups. Features may be
mandatory, meaning they must be selected in a classification, or
optional when they can be left out. Cardinalities indicate that a
feature can be selectedmore than once in an approach, x and y being
the upper and lower bound, respectively. If a feature group is
connected with the OR connector, at least one of the contained
features has to be selected in each approach. For the XOR feature
groups, only one of the connected features may be selected in an
approach.

TABLE 1 | Publications in the final pool.

Title and authors Journal/Conference

Trust in IoT: Dynamic emote attestation through efficient behavior capture—Ali et al. (2017) Cluster Computing

SAMADroid: A novel 3-level hybrid malware detection model for android operating system—Arshad et al. (2018) IEEE Access

SHADuDT: Secure hypervisor-based anomaly detection using danger theory—Azmi and Pishgoo. (2013) Computers & Security

PbMMD: A novel policy based multi-process malware detection—Bidoki et al. (2017) Engineering Applications of Artificial Intelligence

On early detection of application-level resource exhaustion and starvation—Elsabagh et al. (2018) Journal of Systems and Software

Inferring software component interaction dependencies for adaptation support—Esfahani et al. (2016) ACM Transactions on Autonomous and Adaptive Systems

LEAPS: Detecting camouflaged attacks with statistical learning guided by program analysis—Gu et al. (2015) IEEE/IFIP International Conference on Dependable Systems and
Networks

Watch me, but don’t touch me! contactless control flow monitoring via electromagnetic
emanations—Han et al. (2017)

ACM SIGSAC Conference on Computer and Communications
Security

Anomaly detection techniques based on kappa-pruned ensembles—Islam et al. (2018) IEEE Transactions on Reliability

An anomaly detection system based on variable N-gram features and one-class SVM—Khreich et al. (2017) Information and Software Technology

Combining heterogeneous anomaly detectors for improved software security—Khreich et al. (2018) Journal of Systems and Software

Data-driven anomaly detection with timing features for embedded systems—Lu and Lysecky (2019) ACM Transactions on Design Automation of Electronic Systems

Adaptive security monitoring for next-generation routers—Mansour and Chasaki (2019) EURASIP Journal on Embedded Systems

Generating profile-based signatures for online intrusion and failure detection—Masri et al. (2014) Information and Software Technology

Intrusion detection for resource-constrained embedded control systems in the power grid—Reeves et al. (2012) International journal of critical infrastructure protection

Long-span program behavior modeling and attack detection—Shu et al. (2017) ACM transactions on privacy and security

RAMD: Registry-based anomaly malware detection using one-class ensemble classifiers—Tajoddin and
Abadi (2019)

Applied intelligence

Unifying intrusion detection and forensic analysis via provenance awareness—Xie et al. (2016) Future generation computer systems

Detection of anomalies in behavior of the software with usage of markov chains—Zegzhda et al. (2015) Automatic control and computer sciences

A defense framework against malware and vulnerability exploits—Zhang et al. (2014) International journal of information security

Secloud: A cloud-based comprehensive and lightweight security solution for smartphones—Zonouz
et al. (2013)

Computers and Security

FIGURE 2 | Elements of our feature model.
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Starting with an initial version of the feature model, we added
more features as more publications were examined and removed
unused ones. Thus, only features found in the final pool of sources are
present in the feature model. This way, the feature model accurately
represents the characteristics of the selected publications. The final
feature model and the SLR results follow in Section 4.

3.11 Reporting Findings
According to the guidelines of (Kitchenham and Charters, 2007),
the results of any SLR should be reported and published, since any
SLR can give valuable insight into the examined topic. In
addition, since one of the goals of an SLR is to reduce bias,
the documentation should be made available as well, ensuring
repeatability and transparency. In the case of this SLR, the results
were published in a conference paper along with the search
documentation and the raw extracted data, as well as the
feature model from the data synthesis (Schubert et al., 2019).
This article presents a more in-depth description of the SLR and
the continuation of our work on application-aware HIDS. Again,
we publish the documentation and the raw data alongside this
article.

3.12 Threats to Validity
An SLR seeks to eliminate bias through awell-defined procedure and
an independent validation thereof by a review board. Nevertheless,
bias can occur when only few people (i.e., two in this case) execute
the search, data extraction, and interpretation steps. Here, we discuss
the threats to validity of the SLR presented in this paper.

A general threat to meta-studies such as SLRs is
the uncertainty about the validity of the surveyed
publications. It may be, that the application-aware HIDS
approaches in the literature do not lead to the expected
results or were not evaluated in the described manner, for
example. In order to mitigate this threat, a full replication
study would have to be performed. Since the HIDS used in the
discussed approaches are not generally openly available, such a
replication study was not feasible for us to execute. Therefore,
we assume that the descriptions and evaluations of the
approaches are valid.

For the more specific types of threats, we follow the system laid
out by Wohlin et al. for evaluating the validity of experiments in
software engineering to guide our discussion (Wohlin et al.,
2000). Each threat belongs to one of the following categories:
Conclusion validity, internal validity, construct validity, and
external validity. In the following, we present the applicable
threats from these categories, according to Wohlin et al.’s
checklist, and present our mitigation measures.

3.12.1 Conclusion Validity
The risk of drawing biased or false conclusions from statistical
information is covered by the conclusion validity threat. Generally, it
is concerned with the conclusions drawn from observing the
relationship between a treatment and an outcome. In this case,
the extracted features and their frequency can be considered the
“treatment” and our interpretation the “outcome”. In the following,
we discuss the relevant aspects leading to this threat.

Low Statistical Power
In an SLR, the statistical power of the data extracted from the
search results depends on the SLR process, since errors during
searching, filtering, and evaluating the results have a direct impact
on the resulting pool of included sources. In the case of bad search
phrases, for example, whole groups of relevant sources could be
left out of the review, negatively impacting the amount of results
and the topics covered in the results.

This threat is mitigated in this review by directly deriving the
search terms from the research questions and expanding them to
complete phrases using suggestions from the review board. Thus,
potential bias is eliminated and the search phrases match the goal,
that is, answering the research questions.

Another aspect of this threat is that the examined sources may
not be representative of the whole field of research being
addressed. In order to perform inferential statistics and
generalize results to the whole population, i.e. make statements
about the whole field of research addressed by the SLR, the sample
size must be large enough to reach a certain statistical power. In
this case, the 21 sources selected in the SLR process do not make
up a large enough sample size. Therefore, we perform a
descriptive analysis and do not claim that our findings hold
for the whole research field of application-aware IDS. The
findings should be seen as indications and are not to be
generalized.

Fishing
“Fishing” refers to the selective alteration of research results by
the researcher. It may threaten the validity of the searching,
filtering, extraction, and evaluation steps, usually through a
biased person executing these steps.

Here, two people executed the review with a third person and
the review board giving feedback and serving as a controlling
instance to eliminate bias. The review protocol was checked by
the review board repeatedly and changed based on their input,
mainly on the search terms, further reducing potential bias.

Another mitigating factor is the feature model used to
represent the data in a structured manner. It defines a fixed
syntax for the sources to be classified into and enables consistency
checks, so that the data extraction is performed faithfully to the
overall feature model. In the case of a source not fitting into the
feature model, it was adapted and the consistency was checked
with regards to previously classified sources.

Reliability of Measures
Since only two people perform the data extraction, filtering, and
quality evaluation in this study, the reliability of measures, such as
the pool of selected sources and the extracted data, is not
guaranteed. However, the standardized process is followed by
the researchers at each step, treating all sources in the same
manner, reducing the error potential.

3.12.2 Internal Validity
Internal validity refers to the causal relation between treatment and
outcome. Therefore, in this SLR, it refers to the causal relation
between extracted data and the conclusions drawn from interpreting
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this data. Any effects that negatively impact the extraction and
interpretation of data in an experiment may threaten the internal
validity, since they invalidate the causality of data and conclusion.

Maturation
Executing an experiment may tire the subjects. This effect is
referred to as maturation. In an SLR, there are no subjects, but
such effects may still occur when the researchers are executing the
review. Here, this threat was countered by following the process
laid out by the review protocol and double-checking the results
after potential maturation effects subsided.

Instrumentation
Tools that are used in an experiment are referred to as
instrumentation. They must be fit for the experiment’s task,
otherwise they negatively impact the results. In an SLR these
tools are usually forms and databases to record the process. In this
SLR, the instrumentation evolved during the course of the
execution. Thus, we corrected inadequate tooling, mainly in
terms of excel tables, and thereby reduced the threat.
Additionally, to check the feature model for consistency we
used a custom feature model editor that allows to check the
variant models for conformance to the complete feature model.
We employed the consistency check function when new features
were added to the feature model, as described in Section 7.1.
These automated checks were crosschecked manually on
randomly chosen publications. Additionally, each determined
inconsistency was validated manually as a starting point of the
corresponding refactoring.

3.12.3 Construct Validity
The design of an experiment is subject to construct validity. An
SLR is susceptible to this, since the search phrases and material
filtering or evaluation parameters must be sound.

Experimenter Expectancies
A potential threat to the validity of the construct of the
experiment are the expectations of the experimenter, in this
case the researcher performing the SLR. Similarly to the threat
of “Fishing” discussed above, the researchers’ expectancies
may be influenced by personal biases. To eliminate bias,
frequent feedback from the review board was taken into
account and the review protocol was followed as closely as
possible.

3.12.4 External Validity
The external validity refers to the generalizability of the
experiment’s results to practical applications. Here, this means
the applicability of the found sources to HIDS solutions used in
practice.

Interaction of Setting and Treatment
The setting of an experiment may be different to the practical setting in
which the results are applied, threatening the external validity. In this
case, the found HIDS approaches may perform well in a scientific

FIGURE 3 | Top-level features.

FIGURE 4 | The architecture subtree.

FIGURE 5 | The approach subtree.
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setting but not in actual computer systems during practical use.
However, all of the examined HIDS approaches contain practical
implementations, ensuring at least a basic level of practical applicability.

4 RESULTS

This section follows the research questions defined in Section 3.2. For
any research question, we each introduce the corresponding subtrees
of the synthesized featuremodel and discuss our conclusions. Figure 3
shows the top-level features, which constitute the main categories of
our taxonomy. The following Figures 4–10 depict the subtrees of the
top-level features. The numbers shown in the figures express how
many publications select the corresponding feature. We only show
these numbers for potential leaf selections to increase the readability of
the figures while keeping the most important information.

4.1 RQ1: Architecture
Generally, only ten publications discuss the Architecture of their
approach. We found three different types of architectures,
i.e., Centralized, Agent-based, and Hybrid architectures (cf.
Figure 4). We classify an architecture as being Centralized if
the complete IDS is deployed on a single system. This type of IDS
architecture is used in five publications and, thus, constitutes the
most prominent architectural style. The main reason for this is
that a centralized IDS is the easiest and fastest type to realize a
research prototype and more elaborated architectures are not in
the focus of the corresponding publications.

An Agent-based architecture uses agents for data collection
and preprocessing. Please note that the term agent is common in

the HIDS domain and refers to remote monitoring entities or
probes. It should not be confused with agent as used, e.g., in the
domain of agent-based computing.

Any publication that does not strictly adhere to any of the
aforementioned architectures is classified as being Hybrid. The
only publication being classified like this is Zhang et al. (2014),
which encompasses centralized monitoring and classification but
explicitly refers to a remote entity to perform an initial
examination of the application in scrutiny.

4.2 RQ2: Techniques
As depicted in Figure 5, we found approaches that realize Misuse
and/or Anomaly Detection. Misuse Detection describes the process to
detect attacks based on previously known data of malicious activities.
In contrast to this, Anomaly Detection searches for deviations of
normal system behavior to detect security incidents. Only one of our
reviewed publications realizes exclusively Misuse Detection. The
remaining 20 publications are either purely anomaly-based (15
approaches) or work with a combination (5 approaches).

The Analysis Technique subtree of our feature model is the
most complex. This directly shows the complexity of the topic
itself and that most of the reviewed publications focus on this
topic. The Analysis Technique feature has a cardinality of (1 .. 10)
(cf. Figure 3). Most approaches combine several techniques in
terms of machine learning pipelines or ensemble classifiers, and
several publications discuss a variety of alternative Analysis
Techniques.

The subfeatures of Analysis Technique are structured in two
groups. The group consisting of Preprocessing and Classification
(cf. Figure 6) describes in which phase a technique is used. The

FIGURE 6 | First part of the analysis technique subtree.
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second group (Conformance .. Machine Learning) (cf. Figure 7)
provides information regarding the used algorithms or the
produced models.

The majority of the approaches uses benign data in
Preprocessing steps. This again reflects the predominance of
anomaly-based approaches. Furthermore, seven publications

FIGURE 7 | Second part of the analysis technique subtree.
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discuss automatic Responses that follow on detected security
incidents. Here, we distinguish between Active and Passive
responses. In the former case, the system automatically initiates
countermeasures. In the latter case, the system informs persons
responsible, e.g., system administrators, and relies on them to
counteract the incident. For the Classification, we can additionally
distinguish between Batch and Continuous techniques, where the
latter classify single Events or Segments constructed using fixed
Length or Time intervals. Furthermore, we select the Self-adaptive
feature whenever an anomaly that is not classified as being
malicious is used to extend the underlying classification model.

The Conformance, Frequency Based, and Distance Based
features generally describe classification techniques. We select
the Conformance feature whenever an approach checks strict
conformance to a specification, without using statistical means.
An example could be a sequence of system calls that is checked
against a model of normal system call sequences. 12 publications
encompass at least one analysis step that uses this type of check. A
Frequency Based analysis compares the number of occurrences of
events on segments. Furthermore, a Distance Based analysis
compares the similarity of feature vectors.

The Model Building feature subsumes the different types of
artifacts that are constructed during a Preprocessing phase. 17
publications mention such an analysis step. In addition to the
representation of these artifacts, we distinguish between the
construction via a Static analysis or by analyzing Dynamic
data acquired by monitoring. The fact that the Dynamic
feature is selected the most is not surprising. IDSs are
dynamic analyses by definition. Therefore, the benefit of
having a preprocessed representation of dynamic system
information is evident. However, the concept of additionally
utilizing information obtained by static analyses is common in
the IDS domain.

16 of the reviewed publication encompass some sort of
Machine Learning technique. The most commonly employed
technique are support vector machines (SVMs) with seven
selections in total. SVMs are studied for years and known for
their good performance in the context of multiple application

FIGURE 8 | The context subtree.

FIGURE 9 | The monitored data subtree.
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domains and datasets (Meyer et al., 2003). Moreover, six
publications use Clustering techniques to refine previously
inferred models that again will be used for classification in
later steps. This observation is in line with similar
observations of Buczak and Guven (2016).

The Ensemble feature comprises algorithms that the authors
use to combine several classifiers to form an ensemble classifier.
We found three publications that utilize this technique. The
corresponding authors aim for an increased precision of their
combined approach in comparison to the individual classifiers.

4.3 RQ3: Context
As depicted in Figure 8, we mainly distinguish between targeted
Threats of the approaches and the Environment of the approach
in this research question. The cardinality of the context feature
allows to differentiate between several contexts (cf. Figure 3).
This is used tomark certain contexts as being directly respected in
the conceptual design of an approach. To this end, we utilize the
Design Driver feature. We select this feature if the authors
identify a certain characteristic in the context of their
approach and argue how they respect this characteristic. We
do not select the feature if, e.g., the authors use a Context in their
evaluation due to convenience. This typically happens with
Operating Systems or Programs that are widely available.

14 out of our 21 publications mention Design Drivers for their
approach. As some publications mention several Design Drivers,
we end up with 20 selections of context features being classified as
Design Drivers. We can conclude that most of the reviewed
approaches are driven by a Context, without a strong tendency
towards the Environment (ten selections) or certain Threats (nine
selections). Moreover, the generality of the most prominent
Threats (Exploit Vulnerability and Malware) shows that this
does not necessarily mean that a certain IDS is only capable of
detecting a specific type of attack.

Another dimension of this research question refers to the
Monitored Data of the approaches (cf. Figure 9). Here, we see a
predominance of system-call-based approaches (11 publications).
With the exception of one publication, all publications that select
the Linux feature also monitor System Calls. Especially for Linux,
there exists a number of tracing tools that can be utilized in this
context. Furthermore, there is a long history of such approaches
in the IDS community encompassing the prominent work of
Forrest et al. (1996).

4.4 RQ4: Relationships
This section provides a more general view on relationships
between features that we discuss in Section 4.1, Section 4.2,
or Section 4.3 separately. In particular, we refer to inter-tree
dependencies spanning the subtrees discussed there. The
relatively small sample size of 21 publications makes statistical
analysis infeasible. Thus, we report on relationships that we noted
during the reviewing and the data synthesis phases.

First, we discuss resource-constrained environments (Android
and Embedded Systems). Here, the authors use either Agent-
based architectures or elaborate on the realization of their
approach as a Centralized hardware module. Furthermore, all
approaches targeting Embedded Systems perform exclusively
Anomaly Detection. One of the reasons for this, although not
always mentioned by the authors, is the very restricted availability
of malicious data for this type of systems. Additionally, the only
publication that directly targets timing anomalies as an indicator
for security incidents also targets Embedded Systems (Lu and
Lysecky, 2019). The timing in these systems, particularly in the
subdomain of cyber-physical systems (CPSs), is typically more
predictable than in general-purpose systems. This makes
deviations in the timing behavior a strong indicator for
security incidents (Zimmer et al., 2010).

Second, several authors mention the risk of mimicry attacks
(Wagner and Soto, 2002) in the context of anomaly-based
systems. These attacks mimic normal system behavior to
evade detection by an IDS. We did not add these attacks to
the feature model as the authors use the term to describe the
concept of evasion and not the type of attack the IDS tries to
detect. The authors comment on two closely related possibilities
to counteract mimicry attacks. The first possibility is to extend the
monitoring capabilities of the approach, e.g., by not exclusively
relying on System Calls but also analyzing Function Calls or other
artifacts (Khreich et al., 2017). The second possibility is to respect
more information in the analysis, e.g., in addition to a sequence-
based analysis they also analyze the timing behavior of the events
(Lu and Lysecky, 2019).

Lastly, the selection of the Design Driver feature in 14
approaches indicates that the Context has an impact on the
design of the IDS. However, these relationships span a wide
range from having a motivational nature to triggering
fundamental, sophisticated design decisions. Thus, many
relationships mentioned in the publications are hard to generalize.

FIGURE 10 | The evaluation subtree.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 56787313

Schubert et al. Application-Aware Intrusion Detection

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


4.5 RQ5: Evaluation
As a practical evaluation is a prerequisite for the inclusion of a
publication in this SLR, all of the publications include case studies
of an implementation of their approach (cf. Figure 10).
Unfortunately, the authors do not publish these implementations.

Only four of the publications utilize commonly available data
sets for their evaluation. This is a well-known issue in the IDS
community and, as such, observed in several publications. For
example, Buczak and Guven (2016) observe that even if studies
utilize common data sets they do it in a nonuniform fashion, e.g.,
by only using a subset of the data. The lack of evaluations that rely
on common data sets hinders the comparability of IDS
approaches and the reproducibility of evaluation results. This
is also the reason why we do not include results of the evaluations,
like the approaches’ precision or recall, in our feature model.

However, the usage of common data sets is in many cases
simply not possible because appropriate data sets do not exist. For
example, none of the approaches that target Embedded Systems is
evaluated using such a data set. Besides privacy and intellectual
property protection issues, this domain is characterized by a high
heterogeneity, which is hard to represent in such data sets.

5 KEY FINDINGS AND AUTOMOTIVE
IMPLICATIONS

This section summarizes the key findings of our SLR and
discusses the implications they have for the automotive sector.
For this purpose, we follow the structure of our research questions
(cf. Section 3.2).

Architecture: Architectural aspects are underrepresented in the
publications reviewed in the context of our SLR (cf. Section 4.1). In
particular, we could not find any approach that we would classify as
being distributed. In our understanding, a distributed IDS consists
of minimal self-contained components and encompasses a
modularization of the analysis itself. Furthermore, a distributed
architecture has to enable the reuse of components for different IDS
configurations and their deployment across different platforms.

This is particularly meaningful in resource-constrained and
highly connected environments, such as the next generation of
automotive systems. The argumentation is analogous to the usage
of agent-based architectures in these environments as
computational expensive tasks can be outsourced to remote
entities. However, as connectivity cannot always be
guaranteed, a layer of resource-efficient analyses can directly
be deployed on the system.

Techniques: Furthermore, none of the reviewed publications
utilizes behavior-specification-based techniques. These
techniques rely on human experts to specify benign system
behavior. Thus, they constitute a subclass of anomaly
detection-based approaches. Mitchell and Chen (2014) state
the high potential of these techniques in the context of CPSs
but also the disadvantage of having a high effort for the creation
of the formal specification.

However, automotive systems already tend to provide
thorough specifications due to the safety-critical nature and

legislative regulations. Thus, utilizing this information for
anomaly detection is a promising research opportunity.

Furthermore, 16 out of the 21 publication utilize some kind of
ML algorithm. Out of the 16 publications making use of ML,
seven employ an SVM in their anomaly detection process, two of
which under the same lead author [(Khreich et al., 2017; Khreich
et al., 2018)]. Therefore, SVMs make up the largest proportion of
any 1 ML technique in the examined publications.

ML is one approach to automate the task of specifying benign
and malicious behavior, respectively. On the one hand, this
releases the IDS developer from the cumbersome task of a
manual specification. On the other hand, the configuration of
the ML approach itself is not trivial and requires expert
knowledge. Section 6 elaborates on this in more detail.

Context and Relationships: As already mentioned in Section
4.4, we could not identify an overarching structured process for
the configuration of application-aware HIDS, presumably due to
the complexity of the domain. The argumentation for a
configuration is mostly driven by expert knowledge of the
authors and trial-and-error approaches for the selection.

This is hardly compatible with the automotive sector that
historically strives for standardization and zero-error ability
due to extensive supply chains, regulations, and safety
concerns. A partial configuration support is still possible.
For example, Buczak and Guven (2016) elaborate on decision
criteria for the selection of ML techniques. Additionally, the
selection of monitoring points is restricted by the target
platform. Moreover, the general problem of balancing
different (competing) constraints in software design is in
the focus of search-based software engineering (Harman and
Jones, 2001). Thus, techniques that originate from this
research area could help to systematize the trial-and-error-
like approaches.

Evaluation: Section 4.5 already discusses the problems that
originate from the nonuniform evaluation based on public data
sets and the issues regarding their availability. In combination
with design processes that follow a trial-and-error paradigm, the
lack of comparability of the resulting configurations is obvious.

For the automotive sector, this is particularly critical as the
high standards for intellectual property protection collide with
the need for representable data sets. One way to cope with this is
to establish methods for data set generation that guarantee a high
quality. Furthermore, a common framework for the prototypical
realization of approaches can strengthen their comparability in
terms of their runtime performance.

6 PRELIMINARY RESULTS ON USING
AUTOML

As stated in the previous section, we could not identify
approaches that support the developer in the configuration of
application-aware HIDSs. This finding is particularly critical
when it comes to the configuration of the actual Analysis
Technique since this task stands out in terms of its complexity
(cf. Section 4.2). Thus, our first efforts on improving the state of
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the art of application-aware HIDSs focus on this Analysis
Technique area.

The main challenge in the configuration of analysis techniques
for application-aware HIDS is the extraction of specification of
knowledge about the benign andmalicious behavior of the system
under development. As explained in Section 4.2, application-
aware HIDSs typically apply combinations of misuse and
anomaly detection for this purpose and represent the
knowledge in terms of rules or other models (cf. Model
Building in Figure 7). In the case of a manual specification,
the HIDS developer specifies models for the attack detection
based on knowledge about malicious behavior or based on
deviations from the intended system behavior, respectively.
The complexity of this task mainly results from the sheer
extent of possible benign and malicious behavior. Approaches
based onML aim at learning these models and, thus, automate the
tedious task of specification. Our SLR results underline this, as 16
of the 21 publications that we surveyed utilize ML algorithms in
their approaches (cf. Section 4.2).

However, the construction of ML pipelines similarly is a
tedious and time-consuming task, because it encompasses data
cleaning, data preprocessing, feature construction, selection of a
model family, optimization of hyperparameters, postprocessing
of the models, and the analysis of results. In the case of
application-aware HIDSs, this is even more problematic as
those steps have to be conducted for each application and
potentially each version of those applications.

This section introduces the results of our first experiments on
the usage of AutoML for the configuration of machine learning
pipelines for application-aware HIDS at design time. The general
goal of AutoML approaches is to make machine learning systems
accessible and effectively usable by domain scientists that are not
experts in machine learning. Thus, AutoML frameworks and
tools focus on configuring machine learning pipelines.
Fundamental capabilities of AutoML are to optimize the
choice of preprocessors, the choice of machine learning
algorithms, and the values of hyperparameters (Hutter et al.,
2019). In the context of application-aware HIDSs, the
frameworks can be used to conFigure tailored pipelines for
each version of an application. The AutoML frameworks can
be executed at design time based on runtime data of the
application under consideration. Thus, the AutoML
frameworks do not have to be executed on the resource-
constrained automotive systems, i.e., they do not introduce
any runtime overhead.

We use two different AutoML frameworks for our
experiments, namely, auto-sklearn and TPOT. Auto-sklearn
(Feurer et al., 2015) utilizes bayesian optimization with a fixed
number of variables to solve the underlying configuration
problem. TPOT (Le et al., 2020) utilizes genetic programming
for this task and allows a higher complexity of the ML pipeline
than auto-sklearn. Both frameworks are recommended by a
recent evaluation of AutoML Frameworks (Balaji and Allen,
2018), making them a good fit for our first experiments.

The following section elaborates on the dataset that we used in
our experiments and on the data preprocessing procedure.
Thereafter, Section 6.2 introduces the execution environment,

the configuration of the AutoML frameworks, and the results of
the experiments. Finally, Section 6.3 discusses these results.

6.1 Data and Preprocessing
Due to the lack of an host-based automotive dataset, we opt for
using ADFA-LD (Creech and Hu, 2013), which is also the most
used common dataset we found in our systematic literature
review (cf. Section 4.5). The traces provided by ADFA-LD
comprise sequences of System Calls and exclude their
parameters. The dataset was created on a system running with
Ubuntu 11.04, prepared to be exploitable by means of six attack
vectors:

1) Brute force password guessing attempts via SSH
2) Brute force password guessing attempts via TCP
3) The creation of a new superuser by a malicious payload

encoded into a normal executable
4) Remote injection of Metasploit’s Meterpreter Java payload

and the subsequent execution of various malicious actions
5) Linux executable Meterpreter upload via social engineering

and subsequent execution of various malicious actions
6) Injection of C100 Webshell by means of a PHP-based

vulnerability and subsequent privilege escalation

Table 2 shows the general structure of the dataset. Creech and
Hu (2013) created the traces of the training and validation
datasets during normal operation and filtered them depending
on their size. Analogously, they created the traces for the attack
dataset by executing each of the aforementioned attacks ten times.
This results in a number of text files that contain sequences of
integer identifiers, which represent the corresponding
system calls.

We conduct some basic preprocessing to make this data
processable by the AutoML frameworks, which by default do
not yet support the kind of data we are facing, i.e., sequential and
categorical data. Wunderlich et al. (2019) evaluated different
preprocessing methods and the corresponding system call
representations in the context of ADFA-LD. Since their setting
is similar to our experiments in terms of preprocessing, we opt for
following closely on their approach.

Firstly, we construct a training and a testing dataset that
encompasses benign and malicious behavior. For this purpose,
we split the attack dataset of ADFA-LD. We add the traces
obtained by the first five attack iterations to the training
dataset of ADFA-LD. Analogously, we add the traces of the
last five iterations to the validation dataset.

Secondly, our setting is an IDS that is used to classify segments
of a fixed Length (cf. Section 4.2). This enables the IDS to be used
in an online fashion. Here, we use the technique of sliding
windows introduced by Forrest et al. (1996) or more precisely
its full sequence variant (Inoue and Somayaji, 2007). Following
Wunderlich et al. (2019) we choose a window size of twenty. This
splits the sequences of system calls in overlapping segments of the
corresponding size. We label these segments with respect to their
origin as benign or malicious.

Thirdly, we balance the training dataset. Since the training
dataset contains more benign segments than malicious ones, an
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AutoML algorithm could produce pipelines that tend towards
classifying new segments as benign. There are a number of
approaches to cope with imbalanced data. For example, in the
context of AutoML we could choose a metric that is capable of
expressing the performance of a pipeline on imbalanced data.
However, to be as comparable as possible to Wunderlich et al.
(2019), we opt for the additional preprocessing step and use
random oversampling of the underrepresented class. Thus, we
duplicate malicious segments randomly until the dataset is
balanced.

Lastly, some of our experiments apply one-hot encoding
(OHE) (cf. Zheng and Casari (2018)) to respect the categorical
nature of system calls. The representation of system calls in terms
of integer identifiers implies an order on those system calls.
However, there is no obvious order on the set of system calls
supported by a kernel. OHE is a simple, state-of-the-art approach
to cope with this and it produced the best results of the
approaches evaluated by Wunderlich et al. (2019). OHE
substitutes each system call of the segments with a vector of
the size of all possible system calls, where each position represents
a system call. Here, all entries of this vector are zero except the one
at the position dedicated to the corresponding system call. The
resulting vectors are not ordered. As such, this step potentially
increases the performance of a classifier.

6.2 Settings and Results
All of our experiments were executed on a virtual machine with
Ubuntu 18.04.4, eight cores (Intel Xeon E5-2,695 v3), and 128 GB
RAM. Furthermore, we use version 0.6.0 of auto-sklearn and
version 0.11.1 of TPOT. We try to keep the configuration of the
frameworks as simple as possible. We set the n_jobs parameter of
both frameworks to eight, hereby, enabling the utilization of all
cores. Furthermore, we set the per_run_time_limit parameter of
auto-sklearn and the comparable max_eval_time_mins
parameter of TPOT to 30 minutes, limiting the time spend for
the evaluation of a certain configuration. The parameters limiting
the overall runtime of the frameworks are set to 24 h.

We conducted the experiments on encoded and non-encoded
data (cf. Section 6.1). Generally, both frameworks have the
capabilities to optimize the data preprocessing. By default,
TPOT uses OHE only for features that have less than eleven
unique values, rendering it inapplicable in our case. Thus,
providing encoded and non-encoded datasets is a
straightforward way to increase the comparability of the
frameworks. To account for the usage of sparse matrices in
the case of encoded datasets, we have to set the config_dict
parameter of TPOT to TPOT sparse.

Table 3 presents the results of our experiments. We report on
two runs of each AutoML Framework. One run on encoded and
one run on non-encoded data. Furthermore, we show the best
results of the experiments presented by Wunderlich et al. (2019)
to give the reader a comparison with a manually configured
classifier. Please note that these results are not obtained with the
goal of constructing the best possible classifier but with the
objective of comparing different representations of system
calls. Thus, they may not accurately represent the best
classifier a human machine learning expert would configure.
Although the authors also use ADFA-LD as a basis, their
dataset is not strictly the same as used in this publication.
Wunderlich et al. (2019) perform a randomized split of the
attack traces where half of these traces are added to the
training and the other half to the validation dataset2. As such,
the dataset construction is not completely reproducible for us.

For each of these runs, we show the true positive rate (TPR),
false positive rate (FPR), balanced accuracy, and the accuracy. For
the runs of the AutoML frameworks these values represent the
performance of the constructed pipeline. We present these
pipelines in the supplementary material of this publication. In
our setting, a higher TPR relates to a better detection of attacks
and a lower FPR relates to fewer false alarms. Furthermore, in
contrast to balanced accuracy, accuracy is not a valid metric due
to the unbalanced validation dataset. However, we include it
because the balanced accuracy of the experiments of Wunderlich
et al. (2019) is not available (marked as NA in Table 3).

Generally, the results produced by utilizing the AutoML
frameworks are similar to those produced by the manual
configuration of the ML pipeline. Our best run uses auto-
sklearn on encoded data. Compared to Wunderlich et al.
(2019) it performs slightly worse in terms of the TPR but also
slightly better in terms of the FPR. Furthermore, the results of the
AutoML runs do not defer to a large margin from each other.
However, they indicate that the preceding encoding of the dataset

TABLE 2 | Structure of ADFA-LD (cf (Creech and Hu, 2013; Wunderlich et al., 2019)).

Type of data Nbr. of traces Nbr. of system calls

Training data benign 833 308,077
Validation data benign 4,373 2,122,085
Attack data malicious 746 317,388
— — 10 Attacks per vector —

TABLE 3 | Results of the two AutoML experiments conducted by us and of the
experiment of Wunderlich et al. (2019) using a conventional ML approach.

Approach One-hot encoded TPR/FPR/Balanced
accuracy (accuracy)

Auto-sklearn yes 0.90/0.13/0.88 (0.87)
— no 0.88/0.15/0.87 (0.85)
TPOT yes 0.90/0.16/0.87 (0.84)
— no 0.88/0.15/0.87 (0.86)
Wunderlich et al. (2019) yes 0.95/0.16/NA (0.85)

2As stated in personal communication
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had positive effects on the performance. This is not surprising as
we essentially add a meaningful preprocessing step that the
AutoML framework does not have to find by itself.

6.3 Discussion
AutoML frameworks do not yet support our problem setting
by default. Thus, we conducted basic steps in the data
preprocessing to tailor the dataset to the needs of the
frameworks. Given these circumstances, the results
absolutely encourage to further investigate the utilization of
AutoML in the context of application-aware HIDS. In terms of
their performance, the ML pipelines configured by the
frameworks are comparable to the manually configured one
of Wunderlich et al. (2019). However, they are useable by
domain experts that are not experts in ML. Furthermore, they
automate cumbersome and time-consuming tasks, which is a
benefit even for ML experts. This is particularly important for
application-aware HIDS approaches, as the effort for the
manual configuration of ML pipelines for each version of
an application will most likely hinder the employment of
these approaches in practice.

Please note that this section reports on our first experiments
and does neither represent 1) a final solution for the construction
of ML pipelines for application-aware HIDSs for the automotive
sector nor 2) a thorough evaluation of the AutoML frameworks.
This is due to several reasons.

Regarding the former point, we do not utilize a dataset
collected from an automotive system but ADFA-LD (Creech
and Hu, 2013). As mentioned before, this is due to the simple
fact that public automotive datasets for the evaluation of HIDSs
do not exist and are also not easily constructible. However,
ADFA-LD comprises sequences of System Calls. This data
source is also available on the modern and flexible automotive
systems mentioned in Section 1. Nevertheless, we do not assume
that ADFA-LD and the covered attacks are representable for
automotive systems. Additionally, our setup does not consider
the resource consumption of the constructed pipeline, which can
be a crucial factor particularly in the context of algorithm
selection for resource-constrained systems. Moreover, the steps
described in this section require a training dataset that
encompasses benign and malicious behavior. These are not
easily available in many if not most productive settings.
Additionally, the system calls of ADFA-LD cannot be
associated to particular processes (Xie and Hu, 2013). As such,
ADFA-LD is designed to evaluate system-wide, host-based IDS
approaches and does not target application-aware approaches.
We expect that the AutoML frameworks produce better results on
application-aware datasets due to the expected lower variance in
the benign behavior.

Regarding the latter point, we do not follow best practices for
comparing AutoML tools (cf. Lindauer and Hutter (2019)) but
want to give an intuition on their applicability in the context of
intrusion detection. Furthermore, the comparison with the
manually configured classifier of Wunderlich et al. (2019) is
not meant to be used in terms of a thorough evaluation due
to the reasons mentioned in Section 6.2.

7 FEATURE MODELS IN SYSTEMATIC
LITERATURE REVIEWS

This section describes how we used feature models to represent
and relate the different IDS approaches found in the SLR. As
already mentioned, feature models were first introduced by Kang
et al. (1990) and developed further by Czarnecki et al. (2005).
Originally intended to visualize feature trees for software systems,
feature models can be used to systematically represent different
entities according to their differentiating features in any domain.
By representing features in this way, commonalities and
differentiations between entities can be identified.

The different syntactical elements of feature models are
presented in Figure 2 and described in the data extraction and
synthesis description in Section 3.10. In short, feature models
describe the features an entity can have. This entity is represented
by the root node of the feature model, which is in the form of a
tree. A node in a feature model represents a certain feature, which
can have an arbitrary number of child nodes connected in groups.
Within these groups, the logic of Boolean operators can be used
between the features contained in the group. The exemplary
partial feature model in 11, for example, shows a grouping using
the Boolean “OR”, requiring one or more features within the
group to be fulfilled.

Section 7.1 presents the process employed to create and refine
the feature model as more sources are added. In Section 7.2, we
discuss the experience of working with feature models to facilitate
the data synthesis in an SLR.

7.1 Application
The goal of creating the feature model is the creation of a taxonomy
and to simplify reasoning over the different IDS approaches by
visualizing and clearly structuring the characteristics and the
relations between them. This facilitates the understanding of the
data by fitting it into amodel with defined syntax and semantics. The
complete feature model contains all possible features, that is, in this
case all important differentiating characteristics of application-aware
HIDS. Thus, it is a representation of all possible application-aware
HIDS approaches found in the SLR.When the features of one entity,
in this case an HIDS approach, are represented as specified by the
feature model in a tree format, this tree represents a configuration of
features, also called variant model. The relationship between feature
model and variant model is analogous to classes and objects in the
unifiedmodeling language used in software engineering. The variant
model can be understood as being an instance of the feature model,
containing the features of a specific entity, in this case an application-
aware HIDS approach, fulfills. The variant models must be
consistent to the variability constraints of the feature model. For
example, optional features may be missing in the variant model,
whereas mandatory features must be contained. Comparing two
variant models allows to quickly identify the distinguishing features
between two classified entities.

Figure 11 depicts our iterative process of creating feature and
variant models. As such, it shows the internals of the Data
Extraction and Synthesis subprocess of Figure 1. Firstly, we
created the initial version of the feature model based on the
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existing taxonomies discovered in our preliminary research, by
Lazarevic et al. (2005); Luh et al. (2017); Scarfone and Mell (2007).

Secondly, we examine the publication that is to be added and
label it by the characteristics of the presented IDS approach. In
the case of characteristics that we encountered in a previously
examined publication, we label them with the feature from the
feature model representing the characteristic. We introduce new
labels for characteristics that we encounter for the first time.
These labels correspond to features that have to be added to the
feature model eventually. Thirdly, we write the summary of the
approach and focus on the characteristics that we labeled.

In the next step, the new features are added to the overall
feature model. This may lead to a simple extension of the feature
model by a feature in a certain branch or trigger the need for a
refactoring, in which sub-groups are moved or introduced for
example. In a fifth step, we create a variant model for the
examined publication, including the selection of the newly
found features.

Lastly, a check for consistency is performed for each already
existing variant model. Since changes were made to the feature
model by adding new features, publications that were labeled at
the beginning may have a variant model no longer consistent with

the feature model. In our case, the feature model tooling is able to
check automatically the consistency of variant models to the
feature model.

Found inconsistencies are removed and the inconsistent
publications are relabeled. If this leads to changes in the
overall feature model again, more consistency checks are
performed until all publications are labeled correctly and the
corresponding variant models are consistent with the feature
model. In a last step, features that are still present in the feature
model but not selected by any variant model are removed.

7.2 Lessons Learned
During the creation of the feature model used in this article and
our previous work (Schubert et al., 2019), a few lessons became
apparent. In general, we perceive feature models as a good way of
representing the data extracted during the SLR, especially in cases
where qualitative data is to be examined. Having the feature model
helps in having consistent data extraction and, thus, consistent
reasoning on the extracted data. In our case, the consistency check
during the labeling of publications found inconsistencies quite
often, which may have gone unnoticed in a manual labeling
approach. Such inconsistencies would have had a direct result

FIGURE 11 | The data extraction and synthesis process.
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on the validity of the SLR results, since the number of times a
certain inconsistently labeled characteristic appears would have
been incorrect or features could have been selected in an
inconsistent manner. Therefore, the feature model helped
ensure the validity of the interpretation of the SLR. The feature
model can also serve as a guide when examining a publication,
since it points to details that are especially noteworthy. It also
becomes immediately obvious when an approach is unusual, since
it does not fit the feature model, requiring adaptation.

However, feature models are not without drawbacks. Firstly,
the iterative process of creating the model can be difficult, since
adding features can result in a complete refactoring, requiring
large changes to the model. It is also not advisable to create the
model without tooling that supports feature models and can
check for consistency between the feature model and variants.
With manual feature model creation, it is very difficult to ensure
consistency and the results would be prone to errors, making the
use of the feature model useless.

CONCLUSION AND FUTURE WORK

This article presents the results of our SLR concerning application-
aware HIDS as introduced in our previous work (Schubert et al.,
2019) and adds further aspects. We filtered the initial 844
publications and conceived a detailed taxonomy in terms of a
feature model with 148 features that classifies 21 current
publications. We use this taxonomy to answer our research
questions, summarize the key findings, and infer implications
toward the realization of productive application-aware HIDSs in
an automotive context. In this article, we document the underlying
review procedure in more detail than in our previous work
(Schubert et al., 2019). Furthermore, we introduce our lessons
learned about the application of feature models for SLRs. Finally,
we conducted experiments and report on preliminary results on
using AutoML for supporting HIDS developers on the task of
configuring analysis techniques based on machine learning.

The readers get detailed answers to our research questions, and
they can use our taxonomy, the supplementary material, and the
classified publications as a basis for further information.
Particularly, the taxonomy represents the structure and the
variation points of current application-aware HIDSs approaches
and thus helps in understanding new approaches. Furthermore, the
underlying variant models are detailed classifications of the
publications in the final pool. The reader interested in a certain
feature can therefore inspect the supplementary material and find
all publications that select this feature, as well as summaries of these
publications. These publications can serve as a starting point to
dive deeper into the topic by, e.g., snowballing.

Moreover, our key findings and implications for the automotive
sector provide a management summary of the main aspects of
application-aware HIDSs as well as an outline for their
automotive utilization. Researchers who focus on application-
aware HIDS technology in general can benefit from our results
due to the currency of the reviewed approaches. Our approach of
using feature models for the classification enables adapting and
extending our taxonomy for the purpose of elaborate SLRs, and

the lessons learned provide guidance for the application. In addition,
our experiments regarding the applicability of AutoML yield that its
performance is nearly as good as the application of conventional ML
approaches.However, theHIDSdeveloper gets a systematic approach
with much more automation and usable by non-ML experts.

Our inferred implications do not yet form a complete research
agenda towards HIDS technology for automotive systems. Thus,
the most fundamental future work is to concertize domain-specific
requirements on this technology. Furthermore, we will focus on
several aspects mentioned in the inferred implications. In
particular, we see a great potential in the utilization of AutoML
in the context of application-aware HIDS. Thus, we will work on
the limitations discussed in Section 6.3. Additionally, we will assess
behavior-specification-based techniques, which we consider as
being a great research opportunity in the automotive context.
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