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Automatic Speech Recognition (ASR) is widely used in many applications and tools.
Smartphones, video games, and cars are a few examples where people use ASR routinely
and often daily. A less commonly used, but potentially very important arena for using ASR,
is the health domain. For some people, the impact on life could be enormous. The goal of
this work is to develop an easy-to-use, non-invasive, inexpensive speech-based
diagnostic test for dementia that can easily be applied in a clinician’s office or even at
home. While considerable work has been published along these lines, increasing
dramatically recently, it is primarily of theoretical value and not yet practical to apply. A
large gap exists between current scientific understanding, and the creation of a diagnostic
test for dementia. The aim of this paper is to bridge this gap between theory and practice
by engineering a practical test. Experimental evidence suggests that strong discrimination
between subjects with a diagnosis of probable Alzheimer’s vs. matched normal controls
can be achieved with a combination of acoustic features from speech, linguistic features
extracted from a transcription of the speech, and results of a mini mental state exam. A fully
automatic speech recognition system tuned for the speech-to-text aspect of this
application, including automatic punctuation, is also described.
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INTRODUCTION

Dementia is broadly defined as deterioration in memory, thinking and behavior that decreases
a person’s ability to function independently in daily life (McKhann et al., 2011). The clinical
diagnosis of dementia, particularly Alzheimer’s disease (AD), is very challenging, especially in
its early stages (Dubois et al., 2015). It is widely believed to be underdiagnosed, even in
developed countries, and even more so in less developed countries. As people live longer, the
prevalence of AD is huge and growing, with more than five million AD sufferers estimated in
the US alone and an annual negative economic impact of over $200 billion (Association, 2019).
New diagnostics are appearing, but they are often costly (e.g. involving brain imaging or novel
lab tests), invasive (e.g. involving spinal taps, blood samples or the use of radioactive tracers),
or both. A simple quick non-invasive test would be very desirable. In addition, recruitment for
clinical trials of putative dementia therapies is hampered by lack of tests capable of yielding
cohorts with a high likelihood of having the condition the therapy is designed to effect. An
accurate diagnostic test would increase the feasibility and reliability of clinical outcome
monitoring.
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There are good indications that dementias can be
characterized by several aphasias (defects in the production
and use of speech) (Jacobs et al., 1995; Lowit et al., 2006;
Cuetos et al., 2007). This seems plausible since speech
production involves many brain regions, and thus a disease
that effects particular regions seems likely to leave detectable
“finger prints” in the speech of those with dementia. There are
many relevant background scientific studies reported in the
literature including those that attempt to establish specific
voice-based features whose distributions are statistically
different between those with dementia vs. normal controls
(Bucks et al., 2000; Pakhomov et al., 2010; Meilán et al., 2014;
König et al., 2015; López-de-Ipiña et al., 2015). Recently, a study
by Eyigoz et al. (Manera et al., 2020) has provided additional
evidence that the emergence of AD can be predicted using
linguistic features.

Using speech as a neuropsychological assessment tool is now
widely accepted. For example, the Boston Naming Test (BNT)
(König et al., 2015) asks patients to see a picture and respond to
questions within a short amount of time. Verbal fluency by
describing a picture (Hernández-Domínguez et al., 2018) is
another approach involved in diagnosing Alzheimer’s. In most
of these works, the features are manually extracted and their
correlation to psychological benchmarks such as MCI (Mild
Cognitive Impairment) or MMSE (Mini-Mental State Exam)
are analyzed. MMSE, is a neuropsychological test (pencil and
paper) which yields a score in the 0–30 range in about 10–15 min.
Scores above 25 usually are assumed to indicate normal
cognition. While not specifically designed for Alzheimer’s
diagnosis, it is often a first assessment applied by physicians,
and can provide a useful “first cut” assessment. In the current
work, we report on experimental results that combine MMSE test
scores, basic demographic features (age, gender, race, and years of
education) and a pool of features extracted from a voice sample.
Using pattern discovery algorithms to identify minimal size
feature sets, we provide evidence that combining selected
speech features with the MMSE can yield an improved
diagnostic test for detecting probable Alzheimer’s disease.
These results were obtained using features extracted
automatically by algorithms applied to the speech signal (wave
file) and either manually produced transcripts or fully automated
transcripts produced by a custom designed ASR and punctuation
system. The manually generated transcripts and automatically
generated transcripts achieve approximately the same level of
diagnostic precision, giving support to the hypothesis that current
speech recognition technology is capable of supporting a fully
automatic system.

The classical approaches to AD diagnosis (McKhann et al.,
2011) rely on clinical criteria, often using neuropsychological
tests, but require an autopsy for definitive diagnosis. Hence,
recently, there has been much effort devoted to more reliable
tests, seeking biomarkers in bodily fluids or imaging.
Unfortunately, such tests are usually costly in time and money
and bring their own risks (e.g. using radioactive tracers, or
punctures). It is widely believed that AD is underdiagnosed,
particularly in the undeveloped world, but also in the more
developed nations. It is also believed that the disease

pathology is at work years or decades before cognitive decline
becomes apparent. This inability to accurately detect the disease
early and accurately may have also contributed to the failures of
clinical trials of putative AD agents. Hence, we believe there is a
strong need for an accurate diagnostic test that is easy to execute,
non-invasive and inexpensive. Here, we present results of efforts
to produce such a test based on samples of human speech.

While there is yet no definitive evidence that such a test is
possible, we subscribe to the intuition that speech, unique to our
species, and requiring the coordinated activity of a number of
brain regions, may have the characteristic that a lesion in one or
more of these brain regions may well leave distinct finger prints in
the speech. Furthermore, it is known that some speech-based tests
have diagnostic utility (e.g. verbal fluency). Given recent advances
in computational linguistics, this intuition seems to have a
growing following based on the recent increase of research
publications aimed in this direction.

We perceive two major challenges: one scientific, and one
engineering. Can we provide convincing evidence that accurate
diagnosis is possible with speech-based features, and can such a
test be automated to the level that relatively untrained clinicians
can use it? We believe our results provide encouragement that
both challenges can be met.

This paper is organized as follows. In Speech Sample Collection
we review the collected dataset and give some analysis of the
dataset. In Using ASR to Obtain the Transcripts, the methodology
of speech-to-text analysis is described. In Classifier Design the
final machine learning model that we used is described.
Conclusions are given in Conclusions.

SPEECH SAMPLE COLLECTION

A popular protocol for collecting speech samples for aphasia
analysis work is to ask volunteers to describe what they see in a
picture. They are able to view the picture while they speak. This
protocol was used for all speech samples used in this work. There
are some speech samples available on the web from the Dementia
Bank audio database (Weiss and Bourgeois, 2012), but the audio
quality is quite low. For our earlier work (Schaffer et al., 2005), we
did exploit 140 of the Dementia Bank cases using manually
prepared transcripts. This significantly increased our sample
size. These samples were examined for use, but were generally
of too low quality to be used for the experimental work reported
in this study, especially the automatic speech recognition
component. Since our long range goal was a fully automatic
diagnostic tool, later work used our ASR system, which limited
our samples to our own with high audio quality.

TABLE 1 | Demographic Summary of dataset.

Grp n Age (sd) Years edu (sd) MMSE (sd)

NL 46 71.43 (12.6) 13.28(2.4) 28.7 (1.5)
AD 26 78.48 (10.9) 13.81 (2.3) 20.92 (6.6)
Total 72 74.04 (12.4) 13.48 (2.4) 25.89 (5.6)

NL � Normal, AD � Alzheimer’s disease; sd � Standard deviation, ed � education.
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Since we elected not to use the Dementia bank database, 72
new samples (summarized in Table 1) were collected using
modern digital recording equipment and a new picture
(Sadeghian et al., 2015; Sadeghian et al., 2017). Twenty-six of
these participants were AD (identified by measuring MMSE
score, and verified by physician assessments) while 46 of them
were normal. The average sample length was 75.1 s (sd 61.0 s) and
the average age was 73.8 years (sd 12.1 yrs). Some modest
preprocessing was performed on audio files, such as removing
the beginning and ending pauses, click removal and signal
strength normalization. These steps are straightforward to
automate. The resulting acoustic speech files were processed
directly for acoustic features such as pauses and pitch
contours. A manual transcript was generated for each of the
72 samples. The manual transcripts were used to extract linguistic
features (e.g. word counts, syntactic complexity, idea density). For
comparison, we also created transcripts using ASR (Automatic
Speech Recognition) and give diagnostic results based on the
automatic methods.

Features, Subset Selection and
Classification Approach
Each transcript was passed to the Charniak Parser (Charniak,
2000) trained with the Penn Treebank Switchboard corpus. The
raw text of the transcript, and the part-of-speech (POS) tagged
parser outputs were used to compute a number of linguistic
metrics. These metrics include (but not limited to): average
number of words per sentence, percentage of sentences that
are classified as being “short,” i.e. at most 5 words, length of
the shortest sentence, the fraction of the words in the transcript
that are auxiliary verbs or infinitives.

The syntactic complexity measures computed by Roark et al.
(2011)) were computed, including a re-implementation of idea
density (Snowdon et al., 1996). A number of metrics that capture
various aspects of vocabulary richness were also computed as well
as counts of words related to the picture content. The Linguistic
Inquiry Word Count (LIWC2015 (Pennebaker et al., 2015))
features were also computed. These and all the other features,
such as speech pauses and pitch features, were combined into a
single feature vector for each subject. These 231 features from the

speech samples were combined with four demographic
features and the MMSE score to give 236 total potential
features. This feature computational procedure is illustrated
in Figure 1.

USINGASR TOOBTAIN THE TRANSCRIPTS

In a fully automatic system, all the steps must be done
automatically, including the crucial step of speech-to-text.
There were about 72 min of data collected from participants.
All the ASR work was done with Kaldi software (Povey et al.,
2011). We made use of a combination of Hidden Markov Model
(HMM) and Deep Neural Network (DNN) methods. In the
beginning stages of this work we attempted to use a
commercial off the shelf system, but did not find it suitable to
be adapted for this application.

ASR Design
The first step for designing an ASR system is to prepare the
dictionary (lexicon), which is a listing of all the words used in the
language model, and the allowable pronunciations for each of
these words. For the ASR acoustic models, we first created simple
monophone models, then used those models to design triphone
models, and finally implemented a DNN-based recognizer using
the triphone models. All models were built using 39 Mel
Frequency Cepstral Coefficient (MFCC) features, computed
with 25 ms frames spaced apart by 10 ms. A Bigram language
model was developed based on the manual transcriptions. For
monophone models, 3-state HMMs with 64 mixtures were used
whereas for triphone models, 500 tied states were modeled with
8,000 Gaussian mixtures.

FIGURE 1 | Block diagram for creating database of features.

TABLE 2 | ASR Word Accuracy (%).

Model Train = Test Train ≠ Test Train ≠ Test and
VAD

Monophone 37.9 22.7 41.2
Triphone 85.2 27.6 48.2
DNN 89.2 42.7 65.7
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For the DNN part of the recognizer, a network with two
hidden layers was used in which each layer had 300 neurons. The
initial learning rate was α � 0.015 and it was decreased to α �
0.002 in the final step. The activation function was hyperbolic
tangent and the minibatch size was 128. To estimate the initial
parameters of the model, we tested using the training data (ten
different sets of test data were chosen with replacement from the
same training cohort). Results are given in Table 2. We refer to
cases where the train and test sets are the same as “cheating,” and
these cases are clearly not a true indication of performance on
unseen data. Such cases, however, are useful to estimate an upper
limit on accuracy possible with a given method.

When we used “honest” (completely separate training and test
data) with 10-fold cross validation (Bishop, 2006), the word
accuracy for test data was dramatically degraded to 47% from
the best DNN case (89.2%) given in Table 2. This extremely poor
generalization from training to test data led us to look for
problems by carefully examining the speech files. By listening
carefully to the files, we observed many silences (pauses) in the
files that could be removed with an algorithm.We speculated that
these silence intervals were severely degrading ASR accuracy. To
address this issue we used a VAD (Voice Activity Detector)
system.

A Voice Activity Detector (VAD) is a method for detecting the
presence of speech in an audio signal. Several VAD algorithms are
available (Savoji, 1989; Benyassine et al., 1997; Sohn et al., 1999).
The method which we chose for this work was based on Sohn
et al. (1999)). In this method, the unknown parameters are
estimated using maximum likelihood (ML) and a likelihood
Ratio Test (LRT). Further decision optimizations were
performed using the decision directed (DD) method (Ephraim
and Malah, 1984) and a hang-over scheme based on Hidden
Markov Models (HMMs) for estimation of the unknown
parameters. We describe and illustrate this method a little
more in the next paragraph.

Consider a speech signal which is degraded by uncorrelated
additive noise. In this case, for each frame we can define null and

alternative hypotheses as (where S is signal and N represents
noise):

H0 : No Speech available : X � N

H1 : Speech available : X � N + S

An overview of the method is depicted in Figure 2.
Applying VAD to the speech files removed an enormous
amount of silence within the speech files. Figure 3 shows
the effect of this VAD on one of the speech samples from the
database. As can be seen, most of the silence in the speech file is
removed using the VAD algorithm. VAD helps to improve
ASR accuracy. Although the average of the recognizer HMM +
DNN “honest” accuracy is increased to around 65.7%, in
comparison to state-of-the-art ASR methods, the accuracy
still seems low.

FIGURE 2 | Diagram of using VAD for speech Bishop, 2006.

FIGURE 3 | Plot of sample speech segment before (upper) and after
(lower) applying VAD.

Frontiers in Computer Science | www.frontiersin.org April 2021 | Volume 3 | Article 6245944

Sadeghian et al. Alzheimer’s Automatic Speech-Based Diagnostic

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


The accuracy highly depends on the number of speakers used
for training. Increasing the size of the training database improves
the acoustic model by using more samples which results in better
Gaussian Mixture Model (GMM) and other parameter estimates.
Additionally, the language model also highly depends on the
number of training speakers. Since the number of speakers in the
database was only 72, the best way to examine this effect was to
use the Leave one out (LOO) method where we used 71 speakers
for training and just one for testing, and then repeat for each
speaker. The minimum accuracy among all the speakers was
22.4% and the maximum accuracy was 93.9%; the average
accuracy was 68.7% with a standard deviation of 16. A closer
examination of the worst case speaker revealed that the speaker
still had a large number of pauses and OOV (Out of Vocabulary)
words. Although the improvement in accuracy from 68% to
68.7% is very modest, at least it is in the right direction and
also the LOOmethod allows us to look at the performance of each
speaker individually. Based on the assumption that a word
accuracy of 68.7% would be sufficient, and the fact that there
were no clear-cut ways to improve this accuracy for this very
difficult small database, we used the ASR method just described
for the remainder of this work.

Automatic Punctuation
As mentioned earlier, we wanted to make use of two type of
speech features, acoustic and linguistic features. For extracting
linguistic features, the main punctuation needed is the sentence
boundaries. The accuracy needed in the determination of
sentence boundaries, the accuracy of determining “.” vs. no
punctuation, and the benefit of determining other punctuation

is not clear. One method for automatic punctuation is to
determine the sentence boundaries using a Support Vector
Machine (SVM) and place the periods through a machine
learning method (Beeferman et al., 1998). One other method
which is popular is to use Conditional Random Fields (CRF) in
the lexicon and, based on pause information, detect the sentence
boundaries (Wei and Ng, 2010). Batista and Mamed (Batista and
Mamede, 2011) used a combination of these two methods in
Portuguese speech. The method that we used for this work was
based on the method of Tilk (Tilk and Alum, 2016). In this
method, a model based on a Recursive Neural Net (RNN) is
developed which is trained using provided transcriptions. The
structure of this model is depicted in Figure 4. The inputs of this
model are one-hot encoded sequences of words in sentences
where an end of sequence token is added to the list. The ultimate
output of the network at time t is the prediction of the probability
of punctuation yt which is used between word −1 and xt. The
Gated Recurrent Unit (GRU) approach was developed by Cho
et al. (2014)) whereby each recurrent neuron captures the
dependencies of different time scales adaptively. Using a GRU
activation function with a shared embedding layer weight of We,
the state ht for the forward recurrent layer is defined by:

h
→

t � GRU(xtWe, h
→

t−1).

Similarly, a reverse recurrent state can be defined with h
←
t

whereby the words in the sentence sequence are processed in
reverse. This type of configuration helps the model to identify if
the sentence is in a declarative or question context. This means we
assigned one layer of forward and one layer reverse recurrent
state. Additionally, this allows the model to identify if a new
sentence is started, considering the current word.

On top of this bidirectional state, there is a unidirectional
GRU which keeps the track of the position at time t (based on
the mechanism explained by Bahdanau et al. (2015)). There is a
late attention that can consider both bidirectional and
unidirectional outputs and creates an output to the late
fusion step. The output of this model is the probability of
using each punctuation at time t in the sequence of words.
For our project, since only the boundary of sentences was
important, we considered the “period” as the only
punctuation that is required to be predicted. For this whole
process of punctuation prediction, the effect of the acoustic part
of speech is not considered. Tilk and Alum (2016) described
another variation of this method in which another layer is added
to the model that uses the effect of the duration of the pause in
model design and it is considered part of the input training data.
Although it may improve the results, this method was not used
in this work, due to the added complexity.

For training the model, originally we used our own database
but, because of the low number of sentences, the model was not
accurate. Therefore, we used one of the available free databases,
“Europal v7” (Kohen, 2005). In the English version of this corpus,
2,218,201 sentences from more than 800 speakers, containing
more than 53million words, were used. Around 90% of these data
were used for training while 10% were used as a development
(validation) set. There are two classes--no punctuation and

FIGURE 4 | The structure of the punctuation detection model.
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period. The training and testing data is chosen based on the
sequence of the punctuations and their location in sentences.

The RNNmodel was trained using a learning rate of 0.02 while
an L-2 norm of the gradient was kept below the threshold of 2 by
renormalization whenever it exceeded the threshold. The
stopping criteria for training was whenever the perplexity of
the development set became worse for the first time during the
iterations. In the first step, the weights were initialized using the
normalization technique with zero bias. All the hidden layers
contained 256 neurons. For training the model the Theano
package (Bastien et al., 2012) with a GPU (Graphical
Processing Unit) was used. The sequence of input words was
chunked into 200 word long slices where each slice starts with the
first word of the relevant sentence and if the slice ends with an
unfinished sentence, the sentence is copied to the beginning of the
next slice. Clearly, the output sequence is one element shorter
since no punctuation is placed before the first word. Because of
the huge amount of training data, the slices were grouped tomini-
batches of 128 slices and were shuffled before each epoch. The
output vocabulary can predict any punctuation such as comma,
period, question mark and no punctuation. However, for this
project, we only predicted the period. The error rate of
punctuation prediction in this case is 15.3%. This error rate is
computed by comparing the predicted punctuation and the actual
one frommanual punctuation. The f1-score (test of accuracy) was
also obtained. This value is computed from the combination of
precision (correctly positive predictive values out of all the
predicted positive values) and recall (correctly positive
predictive values out of all the actual positive values). The f1-
score is below what we expected but this is mostly due to many
OOVs in transcription that the DNN is not capable of
punctuating accurately. The confusion matrix, cumulative over
all 72 subjects, is given in Table 3.

CLASSIFIER DESIGN

The end goal of this work, from a technical perspective, is a two-
way classifier to determine AD vs. NL (Normal) from a slate of
features selected from the very large group described above. This
problem is very challenging due to the very large number of
candidate features (236), and the small database (72 speakers).
We hypothesized that only 5–10 of these 236 features would be
needed and useful for the final decision making. The challenge
was to “discover” these “good” features using a small database,
and in a manner that these features and classifier would perform
well for data other than those used in this study. The two-way
classifier model and the feature subset selector are depicted in
Figure 5. All subjects were divided 90/10 into training and

validation sets and full 10-fold cross validation was
performed. For thoroughness, three approaches were used
to investigate this step—GA-SVM, Random Forest, and
Neural Network.

In our first approach, based on the diagram shown in Figure 5,
a genetic algorithm (GA) was used as the feature subset selector
while a Support Vector Machine (SVM) was the classifier which
was trained using the features selected by the GA. This GA-SVM
approach has been successfully applied to a number of
bioinformatics pattern discovery tasks (Schaffer et al., 2005).
This approach may generate and test more than a million
subsets before it halts. An array of top candidates usually
yields several alternative feature-set classifiers with differing
performance. Summarizing, the genetic algorithm strives to
locate feature sets of high accuracy and minimum size.

We used a 10-fold cross-validation approach. Each fold used
90% of subjects for feature subset identification and model
training. The remaining subjects were tested only once. The
different folds often found different feature sets to be best, but
there were many commonalities. In the end, we identified 12
different feature sets, all comprising combinations of only 10
features. The five most important features are listed in Table 4.
Each of these feature-sets (called classifiers) was then trained on
each fold’s training data and tested on the test cases only once.
Experiments showed that 12 different classifiers typically made
errors on different subjects, so their classification predictions
could profitably be combined with an ensemble method. A
Generalized Regression Neural Network (GRNN) (Specht,
1991) oracle is a maximum-likelihood, minimum variance
unbiased estimator that has been shown to give very robust
classification performance (Masters et al., 1998). Theoretically,
it is the best one can do with a fixed data set. Since each of the 12
classifiers made different errors, they were combined using the
GRNN oracle ensemble method yielding a single diagnosis
predictor.

Since we had so few cases, we did not try to locate new features
subsets that might have benefited from the automatic transcripts,
but simply applied the same classifiers found on the large dataset,
but tuned them separately for the manual and automatic
transcripts in the same 10-fold fashion. The MMSE alone, the
oracle using manual transcripts, and the oracle using automatic
transcripts all made eight errors (8/72 � 11.1%), with seven
subjects being misclassified on all. They made an error on one
unique subject each. These seven common erroneously classified
subjects were also errors of the oracle trained on the large dataset.
From these results, we draw confidence that the fully automatic
diagnostic test is likely to have the same success1.

Random Forest
Random forest (RF) is a machine learning technique in which a
decision tree is developed using the training data. RF was
introduced by Ho (1995). Generally, decision trees or recursive
partitioning models are a decision tool based on tree-like graphs

TABLE 3 | Confusion Matrix of Punctuation Detector.

Confusion Matrix Actual values

Punctuation No Punctuation

Predicted values Punctuation 319 554
No Punctuation 1048 8556

1The interested reader may find many more details on our analyses of these data in
Walker and Schaffer (2019)
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and their possible consequences. It creates a flow chart which
contains nodes (leaves) and decisions extracted from each node
(branches). These leaves and branches form a tree-shaped graph
which is referred to as decision tree. This model can yield high
accuracy, robust performance and ease of use. This method is,
however, highly sensitive to data. Hence, resampling is used to
mitigate this issue. Every node in a decision tree, represents a
decision (target) based on a single feature and a threshold which
splits the dataset into two so that similar response values are
collected in the same set. On this fully automated system, 90% of
the data (66 subjects) were used for training while the remaining
speakers were used just one time for testing. A 12-fold cross-
validation was used with the training data which means that 90%
of the data were used for training and the rest for a validation set.
The training data were processed by the RF model to determine
the best combination of the features. The total number of features
was experimentally found to be 25, with10 trees in the forest. The
function of the quality of split is called “Gini.”Gini impurity is the

factor showing how often a randomly selected label is incorrectly
assigned based on the actual target distribution. Mathematically,
it is the summation of the multiplication of the probability of the
properly chosen label (pi)) times the probability of the incorrectly
chosen label (1−pi) for all labels i ∈ {1, . . . ,K}. In equation form,
the Gini impurity IG(p) is defined as:

IG(p) � ∑
K

i�1
pi(1 − pi).

The function is minimized when all the classes in the node lead
to a similar target. Nodes were expanded until all leaves are pure
or until all leaves contain fewer than two samples. Each node was
split until its impurity was higher than a threshold of 1e-7;
otherwise it was considered as a leaf. Due to the randomness
of the process, the experiments were repeated 100 times and the
most repeated features were considered as the desired ones. After
finding the best combination of 25 features, these features were

FIGURE 5 | Overview of classifier to determine AD/NL decision.

TABLE 4 | Selected Features By Classifier.

Feature subset (classifier) Feature long name

1 2 3 4 5 6 7 8 9 10 11 12

x X x x x X x x x x x x Mini-mental state exam score
X Fraction of the total utterance length that is speech (i.e. not pauses) (VAD based)

x X x x x X x x x x x Fraction of utterance in pauses < 0.5 s (energy based)
x x Words > 6 letters Pennebaker et al. (2015)
x X x x x Adjectives Pennebaker et al. (2015)
x X x x x x x x x Male reference words Pennebaker et al. (2015)

X x x Special email words (e.g. BTW, LOL, emogies) and convenience words (e.g. ha, hm, huh, kinda, ya, yah, yup)
x Content density, the ratio of open-class words to closed-class words Roark et al. (2011)

X Readability score that estimates the United States. grade level necessary to understand a text
X x x x Average syllables per word
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tested only one time on the test set. A diagram of this method is
depicted in Figure 6.

A 12-fold cross validation test was considered whereby
each speaker was used only one time as the test speaker. The
overall accuracy using this methodology was 84.00%. Using
LOO (Leave One Out) cross validation, improved the overall
accuracy to 87.5% which shows again how having more data
can improve the overall accuracy for this technique. In this
technique, all speakers except one were used for feature
selection and, after training the model using the most
frequently used features, the model is evaluated on only
one speaker. This procedure is repeated for all the subjects
individually.

Multi-Layer Perceptron
As yet another method, the feature selection was repeated using a
using a NN (Neural Network) - Multi-Layer Perceptron. For this
model, a NN with one hidden layer (containing 25 nodes) was
used as a two-way classifier. The activation functions were
sigmoid. The inputs were features to be evaluated (from
training data) and the outputs were assigned labels for each
subject. A greedy approach was used whereby initially each of
the 236 potential features was evaluated individually and the best
performing feature was found. Best performance was determined
by highest accuracy on a group of test speakers. After the best 1-
feature classifier was found, the best 2-feature classifier was found
by testing all 2-feature options, given that that one of these 2
features was the best feature for the 1-feature classifier. This
process was repeated until some termination point (explained
below) was reached.

The initial experiments “over fit” the training set due to
minimizing the expected loss instead of empirical loss defined
on the training set. To resolve this issue, a weight decay (Krogh
and Hertz, 1991) term was added to the loss function, i. e.

z2l
zW2 (W , b) � l(W , b) + λR(W),

where l(W,b) is the original loss function, λ is the weight decay
parameter and R(W) is defined by:

R(W) � ||vec(W)||.
The decay parameter (L1-regularization) for this experiments

was set to be 0.1 experimentally. Another popular approach for
preventing overfitting, which was also used in our work, was
dropout (Srivastava et al., 2014). The idea of dropout is that α
percent of neurons are omitted from hidden layers during the
training phase. This adds some random noise to the network
through some hidden layers whereas even with similar inputs,
there is no guarantee that higher layers will receive similar inputs.
This is achieved by forcing the activation nodes to zero while in
the test phase the average of the neurons are used. The rate of
dropout for this work was 0.02, again experimentally determined.

For inputting data to the model, the Stochastic Gradient
Descent (SGD) (Bottou, 1998) technique was used. This
method updates the parameters of the NN model from only a
single training sample. One main advantage of SGD is that,
despite batch learning, due to its noisy gradient estimation it
can easily jump out of the local minima in estimation
iterations.

For the first part of the experiments, 72 subjects (fully
automated system) were used where the data were
partitioned as explained previously. Ten-fold cross
validation was used to find the best combination of the
features through the greedy approach described above. The
best feature sets which were revealed by validation data were
later used on a test set to determine the accuracy of the model.
Using these features, the average accuracy of the testing set was
94.44%. As a comparison, the same model was created using

FIGURE 6 | Block diagram of random forest approach.
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manual transcripts, which increased the accuracy slightly to
95.83%. The top three features using this strategy were MMSE,
fraction of pauses greater than 1 s and fraction of total speech
recording that was silence.

As we mentioned earlier, the MMSE score is the most
important feature (best single feature) for an AD/NL classifier.
To see its strength, we tested this feature as the only feature for
the classifier. An accuracy of 70.83% was obtained. To see how
well the MMSE feature could be compensated for by other
features, we removed the MMSE feature and used the NN
feature selector/classifier as described above. This gave an
accuracy of 91.67% for manual transcripts and 93.05% for the
automatic one. The top three features using this strategy were
speech rate, idea density and fraction of pauses greater
than 1 s.

A summary of the key results for the random forest and neural
network two way classifiers (AD/NL) are given in Table 5, in
terms of accuracy, sensitivity, and specificity.

CONCLUSIONS

There do appear to be strong patterns among the speech features
that are able to discriminate the subjects with probable
Alzheimer’s disease from the normal controls. The GA-based
feature subset selection approach provides a powerful way to
locate multiple classifiers that contain many common features
combined with some less common ones, lending themselves to
being combined with ensemble methods (Masters et al., 1998).
We have shown this elsewhere (Land and Schaffer, 2015) along
with a method for enabling the classifier to know when it should
not be trusted. However, these results are likely to be sensitive to
small samples, suggesting larger samples should be used for future
research in this domain.

The greedy algorithm combined with the neural network
two-way classifier was very promising for both feature
selection and final recognizer. For feature selection, this
approach was at least two orders of magnitude faster than
the GA method. The limitation of the NN method is that the
search of the feature space is not nearly as exhaustive as for the
GA method. In future work, the NN method could be
improved in terms of more thorough searching by saving
the top N (where N is some small number such as 5–10)
choices at the end of each iteration, at the expense of some
slowdown in speed. The NN classifier, using common
features, was also as good as the SVM used as the final
classifier with the GA.

We believe this study provides encouragement to seek
speech patterns that could be diagnostic for dementia. The
weaknesses of this study, aside from the obviously very small
sample size, include the cross-sectional design that strives for
a single pattern that works over the whole variety of subjects
in each class. A longitudinal study would permit each subject
to serve as his own control, helping to mitigate the large
within-group variance in speaking patterns, as well as
introduce the possibility for predicting dementia that is
currently not manifest. The features used are by no means
all the speech features that have been associated with
dementia. The computational linguistics domain contains
several additional interesting speech features that, with
some effort, could be included in our basket of candidate
features.

The best accuracy of ∼ 96% achieved in this study for
diagnosing Alzheimer seems promising considering the small
number of samples used. Additionally, the results of manually
and automatically transcribed systems are similar, which shows
that the ASR system worked in an acceptable range and the
punctuator system was likely accurate enough. Summarizing
across all the Alzheimer’s experiments, we conclude the
following with respect to features (from possibilities
including MMSE score, demographics, and acoustic speech
features, linguistic speech features) and approximate
detection accuracy:

1) The most informative single parameter is the MMSE alone,
which results in a detection accuracy of about 71%.

2) If all possible features, includingMMSE scores, are considered,
a detection accuracy of approximately 94% is possible, using
fully automatic methods. Based on the features listed in
Table 4, MMSE is always chosen as one of the key features.
Three linguistic and one acoustic features are selected, which
are fraction of pauses more than 5 s in duration, speech and the
LIWC quantitative feature.

3) If all possible features, except MMSE scores, are considered, a
detection accuracy of approximately 92% is possible, based on
the features listed in Table 4.

4) If only demographic and acoustic features (the “easy” ones) are
considered, a detection accuracy of approximately 83.33% is
possible. However, for this case, there was low sensitivity. That
is, there was a high error rate for AD subjects (often diagnosed
as NL). The most important features for this case are speech
rate (using energy and VAD), fraction of speech length to the
length of whole audio and fraction of pause length to the whole
audio file.
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