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Examination of speech datasets for detecting dementia, collected via various speech

tasks, has revealed links between speech and cognitive abilities. However, the speech

dataset available for this research is extremely limited because the collection process of

speech and baseline data from patients with dementia in clinical settings is expensive. In

this paper, we study the spontaneous speech dataset from a recent ADReSS challenge,

a Cookie Theft Picture (CTP) dataset with balanced groups of participants in age, gender,

and cognitive status. We explore state-of-the-art deep transfer learning techniques from

image, audio, speech, and language domains. We envision that one advantage of

transfer learning is to eliminate the design of handcrafted features based on the tasks and

datasets. Transfer learning further mitigates the limited dementia-relevant speech data

problem by inheriting knowledge from similar but much larger datasets. Specifically, we

built a variety of transfer learning models using commonly employed MobileNet (image),

YAMNet (audio), Mockingjay (speech), and BERT (text) models. Results indicated that the

transfer learning models of text data showed significantly better performance than those

of audio data. Performance gains of the text models may be due to the high similarity

between the pre-training text dataset and the CTP text dataset. Our multi-modal transfer

learning introduced a slight improvement in accuracy, demonstrating that audio and text

data provide limited complementary information. Multi-task transfer learning resulted in

limited improvements in classification and a negative impact in regression. By analyzing

the meaning behind the Alzheimer’s disease (AD)/non-AD labels and Mini-Mental State

Examination (MMSE) scores, we observed that the inconsistency between labels and

scores could limit the performance of the multi-task learning, especially when the outputs

of the single-task models are highly consistent with the corresponding labels/scores. In

sum, we conducted a large comparative analysis of varying transfer learning models

focusing less on model customization but more on pre-trained models and pre-training

datasets. We revealed insightful relations among models, data types, and data labels in

this research area.
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1. INTRODUCTION

The number of patients with Alzheimer’s Disease (AD) over the
age of 65 is expected to reach 13.8 million by 2050, leading
to a huge demand on the public health system (Alzheimer’s
Association, 2020). While there is no proven effective treatment
on AD, considerable effort has been put forth into early detection
of AD, such that interventions can be implemented at that
stage. Screening measures, neuropsychological assessments, and
neuroimaging scans are not pragmatic, cost-, or time-efficient
approaches for widespread use.

Expressive language impairment is common in AD, such
as reduced verbal fluency and syntactic complexity, increased
semantic and lexical errors, generating more high-frequency
words and shorter utterances, and abnormalities in semantic
content (Sajjadi et al., 2012; Fraser et al., 2016; Boschi et al.,
2017; Mueller et al., 2018a). Expressive language impairment has
also been observed in patients with Mild Cognitive Impairment
(MCI), a population at high risk for the development of
AD (Mueller et al., 2018b; Kim et al., 2019; Themistocleous et al.,
2020). Furthermore, recent meta-analytic and systematic reviews
have found thatmeasures of expressive language contribute to the
prediction of progression fromMCI to AD (Belleville et al., 2017;
Prado et al., 2019).

Researchers have explored spontaneous speech as a means of
practical and low-cost early detection of dementia symptoms. Pitt
Corpus (Becker et al., 1994), one of the large speech datasets,
includes spontaneous speech obtained from a Cookie Theft
Picture (CTP) description task. Since then, the CTP task has
become popular in dementia research and it has been further
explored with computerized agents to automate and mobilize the
speech collection process (Mirheidari et al., 2017, 2019b) and in
other languages including Mandarin (Chien et al., 2019; Wang
et al., 2019a), German (Sattler et al., 2015), and Swedish (Fraser
et al., 2019b). Other spontaneous speech datasets for dementia
research include those collected from film-recall tasks (Tóth
et al., 2018), story-retelling tasks (Fraser et al., 2013), map-
based tasks (de la Fuente Garcia et al., 2019), and human
conversations (Mirheidari et al., 2019a). While a number of
studies have investigated speech and language features and
machine learning techniques for the detection of AD and MCI,
this research field still lacks balanced and standardized datasets

Abbreviations: ADRD, Alzheimer’s Disease and Related Dementias; AD,
Alzheimer’s Disease; MCI, Mild Cognitive Impairment; HC, Health Control;
WLS,Wisconsin Longitudinal Study; CTP, Cookie Theft Picture; IVA, Intelligent
Virtual Agent; IU, Information Units; MFCC, Mel Frequency Cepstral Coefficient;
LLDs, Low-Level Descriptors; LSP, Line Spectral Pair; AOI, Area of Interest; ASR,
Automatic Speech Recognition; ML,Machine Learning; MMSE,Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; GDS, Geriatric Depression
Scale; GAI, Geriatric Anxiety Inventory; SVM, Support Vector Machine; PCA,
Principal Component Analysis; DNN, Deep Neural Network; MECSD, Mandarin
Elderly Cognitive Speech Database; LM, Language Model; DNN, Deep Neural
Network; FCN, Fully Convolutional Network; CNN, Convolutional Neural
Network; GAP, Global Average Pooling; FC, Fully Connected; OARS, Older
Americans Resources and Services; LDA, Latent Dirichlet Allocation; ADReSS,
Alzheimer’s Dementia Recognition through Spontaneous Speech; SVF, Semantic
Verbal Fluency; NLP, Natural Language Processing; RMSE, Root-Mean-Square
Error; IR, Image Recognition; GPU, Graphics Processing Unit; LSTM, Long
Short-Term Memory.

on which these different approaches can be systematically and
fairly evaluated.

Speech datasets available for dementia research are often
small. As shown in Table 1, if we consider AD and non-
AD as two classes, the numbers of user-samples in each class
are in the hundreds. In the past few years, researchers have
explored handcrafted features and machine learning algorithms
with these datasets for building classification and regression
models. Mueller et al. (2018a) published a survey to show
effective linguistic features including semantic content, syntax
and morphology, pragmatic language, discourse fluency, speech
rate, and speech monitoring. The linguistic features were often
identified manually, and the analysis methods were complex
and highly task and data dependent. Croisile et al. (1996)
manually extracted 23 information units from the picture
using language knowledge that were effective in dementia
detection. Fraser et al. (2019a) developed an auto-generation
process of information units for the analysis. Yancheva and
Rudzicz (2016) and Fraser et al. (2019b) further proposed
to auto-generate topic models that can recall 97% of the
human-annotated information units. Similarly, the acoustic-
based analysis was started with pre-defined features and recently
automated with computational models. Hoffmann et al. (2010)
considered acoustic features for each utterance. Fraser et al.
(2013) evaluated the statistical significance of pause and word
acoustic features. Tóth et al. (2015) considered four descriptors
for silent/filled pauses and phonemes. Gosztolya et al. (2016) and
Tóth et al. (2018) implemented a customized automatic speech
recognition (ASR) and automatic feature selection for phones,
boundaries, and filled pauses. Haider et al. (2019), Luz et al.
(2020) proposed an automatic acoustic analysis approach using
the paralinguistic acoustic features of audio segments. However,
the performance results of handcrafted features and customized
machine learning algorithms are highly dependent on the tasks
and datasets. In 2020, the Alzheimer’s Dementia Recognition
through Spontaneous Speech (ADReSS) Challenge became the
first shared-task event focused on AD detection (Luz et al., 2020).
The ADReSS organizers pre-processed the CTP dataset of the
Pitt Corpus and provided the same dataset to the challenge
participants, enabling a fair competition. The techniques and
results in this paper will strictly follow the guideline of the
ADReSS Challenge.

In recent years, transfer learning techniques have significantly
advanced the research on Image Recognition (IR), Automatic
Speech Recognition (ASR), and Natural Language Processing
(NLP). Transfer learning focuses on storing knowledge gained
from an easy-to-obtain large-sized dataset from a general task
and applying the knowledge to a downstream task where the
downstream data is limited. A typical transfer learning model
incorporates a pre-trained model as its backbone and is later
customized for the downstream task. The pre-training process is
computationally intensive and requires a dataset of sufficient size.
Different pre-trained models result in different performances as
they inherit different knowledge from the pre-training datasets. It
is commonly believed that the higher similarity between the pre-
training and downstream datasets results in better performance
of the downstream task. In addition to the selection of an
effective pre-trained model, the customization of the transfer
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TABLE 1 | Cookie Theft Picture datasets.

Dataset Language Total HC MCI AD

ADReSS Luz et al., 2020 English 156 78 78

Pitt Corpus Becker et al., 1994 English 312 104 208

WLS Herd et al., 2014 English 1366

IVA Mirheidari et al., 2019b English 33 16 17

Hebrew CTP Kavé and Dassa,

2018

Hebrew 70 35 35

MECSD Wang et al., 2019a Mandarin 85 65 20

NTU Chien et al., 2019 Mandarin 50 40 10

Swedish CTP Wallin et al., 2016 Swedish 67 36 31

French CTP Fraser et al., 2019b French 58 25 33

learning model is critically important to the downstream task.
This customization is often based on two strategies.

• Fixed feature extractor: Remove the last one or several layers
from the pre-trained model, and treat the rest of the pre-
trained model as a fixed feature extractor for the downstream
dataset. Then, apply a simple classification model over the
features from the fixed feature extractor. The training process
will only modify the weights of the classification model.
The fixed feature extractor strategy can avoid the overfitting
problem when the downstream dataset is small.

• Fine-tuning: Replace the last one or several layers of the pre-
trainedmodel with customized layers for the downstream task.
In the training process, the weights of the pre-trained model
are fine-tuned by continuing the back-propagation. In this
strategy, the pre-trained model produces generic features, and
the fine-tuning process modifies the model to be more specific
to the details of the downstream task. The fine-tuning strategy
often requires the downstream dataset to be sufficiently large
to avoid the overfitting problem.

We explored transfer learning with a fine-tuning strategy for the
following reasons: (i) the fine-tuning strategy relies more on the
data and less on the customization of the network architecture.
Specifically, for each pre-trained model, we adopted the same
modification strategy, i.e., replacing the last layer with a standard
fully connected (FC) layer and fine-tuning the weights of all
layers with the training dataset of the downstream task. (ii)
We envisioned the downstream dataset is a special task, which
requires a different knowledge set from the tasks corresponding
to the pre-training dataset. The fine-tuning strategy enables the
training using a downstream dataset to customize the model
using back-propagation, which puts more emphasis on the newly
acquired knowledge. (iii) The fixed feature extractor strategies
have been explored in literature (Balagopalan et al., 2020; Koo
et al., 2020; Pompili et al., 2020).

Koo et al. (2020) and Pompili et al. (2020) employed transfer
learning techniques to extract both acoustic and linguistic
features from pre-trained models, combined these features
with handcrafted features, and customized a convolutional
recurrent neural network to perform the downstream tasks. Their
customized network architectures, though different in detail,
produced similar results and conclusions. In comparison, we

did not use pre-trained models as a fixed feature extractor,
but followed the fine-tuning strategy to train an end-to-end
network model. Balagopalan et al. (2020) compared handcrafted
features including lexico-syntactic features, acoustic features,
and semantic features, with pre-trained automatic features using
BERT (Devlin et al., 2018), and concluded that automatic features
(83.3% accuracy) outperform the handcrafted features (75.0%
accuracy). Edwards et al. (2020) explored multi-scale (word and
phoneme level) audio models and their models achieved 79.2%
accuracy at best, which is higher than the models using text
features (i.e., Word2Vec) and multi-modal fusion. Rohanian
et al. (2020) proposed a multi-modal gating mechanism to fusion
audio and text features in a Long Short-Term Memory (LSTM)
model and achieved a better accuracy of 79.2% compared to the
LSTM model with either audio or text features (highest accuracy
73.0%). Yuan et al. (2020) explored disfluencies and fine-tuning
pre-trained language models, aligned audio and text using forced
alignment, and re-created the punctuationmarks in the text using
manually defined thresholds to identify pauses. It achieved an
accuracy of 85.4% using BERT and 89.6% using ERNIE (Sun et al.,
2020). We consider the thresholds used to identify pauses (Yuan
et al., 2020) is still a handcrafted feature. In comparison with
the above works, we avoid the complex design and evaluation
of handcrafted features and the heavy network architecture.
We built an end-to-end network model using the pre-trained
networks and a fine-tuning strategy. In addition, Pappagari
et al. (2020) employed speaker recognition and natural language
processing methods. Specifically, it explored the x-vector (Snyder
et al., 2018) and BERT for extracting acoustic and linguistic
features, fusioned them with Gradient Boosting Regressor, and
achieved 75.0% accuracy using the ADReSS training/test dataset.
We considered that our selected pre-training tasks are more
representative and similar to the AD classification task, compared
to the speaker recognition task (Snyder et al., 2018; Pappagari
et al., 2020).

In this paper, we explored a variety of transfer learning
techniques and compared several transfer learning models. Note
that our training and testing processes strictly followed the
ADReSS challenge, i.e., we only used the ADReSS training dataset
for training and reported the classification/regression results
over the ADReSS testing dataset. Specifically, we investigated
the following:

• Evaluation of transfer learning: We studied four types
of pre-trained models, and customized and fine-tuned our
transfer learning models based on the downstream tasks and
datasets. We evaluated the impact of the similarity between
the pre-training datasets and the downstream datasets on
the performance.

• Multi-modal transfer learning: We applied a multi-modal
transfer learning to incorporate inputs of both audio and
text. We investigated whether the audio and text data
share complementary information to further improve the
performance of the downstream tasks.

• Multi-task transfer learning: We applied a multi-task
transfer learning to output both the AD/non-AD labels
and the Mini-Mental State Examination (MMSE) scores (a
test assessing global cognitive functioning). We investigated
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whether two downstream tasks are highly correlated and
whether integrated training can reinforce the performance of
the two tasks.

2. SPEECH DATASET FOR DEMENTIA
RESEARCH

In the ADReSS challenge (Luz et al., 2020), a pre-processed CTP
dataset from the Pitt Corpus (Becker et al., 1994) is created
with the balanced groups of participants in age, gender, and
cognitive status. The ADReSS training dataset includes speech
data from 24 male participants with AD, 30 female with AD, 24
male non-AD participants, and 30 female non-AD participants.
The ADReSS testing dataset includes speech data from 11 male
participants with AD, 13 female with AD, 11 male non-AD
participants, and 13 female non-AD participants. The complete
dataset information can be found in Luz et al. (2020). In
this paper, we studied the ADReSS dataset, i.e., we trained
our models with the ADReSS training dataset and reported
the performance of classification and regression tasks over the
ADReSS testing dataset.

3. PRE-TRAINING DATASETS

In this section, we describe datasets in four domains, i.e., image,
audio, speech, and text. These datasets have been successfully
explored in their domains for enhanced performance of transfer
learning models.

3.1. Image Dataset
The most commonly used large-scale image classification
dataset for pre-training is ImageNet (Deng et al., 2009).
ImageNet (http://image-net.org/) is an image dataset organized
according to the WordNet hierarchy. Each meaningful concept
in WordNet, possibly described by multiple words or word
phrases, is called a “synset.” There are more than 100,000
synsets in WordNet, the majority of which are nouns (80,000+).
ImageNet provides, on average, 1,000 images to illustrate each
synset. Images of each concept are quality-controlled and
human-annotated. ImageNet pre-training has been widely used
in various computer vision tasks, such as fine-grained image
classification (Russakovsky et al., 2015; Fu et al., 2017; Cui et al.,
2018), object detection (Redmon et al., 2016; He et al., 2017), and
sense text detection (Zhou et al., 2017; Wang et al., 2019b).

3.2. Audio Dataset
AudioSet (https://research.google.com/audioset/) (Gemmeke
et al., 2017) is extracted from YouTube videos. It consists of
10-s segments, and each segment is labeled by human effort. All
segments are organized in 632 classes, organized in a hierarchical
structure with a max depth of 6 levels. AudioSet is considered
as a general audio dataset, e.g., the top-level classes include
“Human sound,” “Animal sounds,” “Natural sounds,” “Music,”
“Sounds of things,” “Source-ambiguous sounds,” and “Channel,
environment and background.” The dataset contains 1,789,621
segments (4,971 h) in total. AudioSet is commonly used for

the pre-training of acoustic event detection (Arora and Haeb-
Umbach, 2017) and sound event tagging (Diment and Virtanen,
2017).

3.3. Speech Dataset
LibriSpeech (http://www.openslr.org/12/) (Panayotov et al.,
2015) is a corpus of approximately 1,000 h of 16 kHz read
English speech, prepared by Vassil Panayotov with the assistance
of Daniel Povey. The data are derived from reading audiobooks
from the LibriVox project and has been carefully segmented and
aligned. The typical usage of this dataset is for ASR (Huang
et al., 2020; Zhang et al., 2020). It could also be used for self-
supervised training (Chi et al., 2020; Liu et al., 2020), and transfer
to the downstream task like phoneme classification, speaker
recognition, and sentiment classification.

3.4. Text Dataset
BERT (https://github.com/google-research/bert) dominates NLP
research by learning powerful and universal representation
and utilizing self-supervised learning at the pre-training stage
to encode the contextual information. The representation is
beneficial to performance, especially when the data of the
downstream task is limited. The pre-training datasets for
BERT include the BooksCorpus (Zhu et al., 2015) (800M
words) derived from textbooks and Wikipedia (2500M words)
derived from Wikipedia websites. BERT (Devlin et al., 2018)
and its variants (Lan et al., 2019; Liu et al., 2019; Beltagy
et al., 2020) have been developed using self-supervised training
for downstream tasks, e.g., text classification and question
answering. Longformer (Beltagy et al., 2020) is a variant of
BERT to allow the model to learn long dependencies in pre-
training, and its pre-training databases additionally include one-
third of a subset of the Realnews dataset (Zellers et al., 2020) with
documents longer than 1,200 tokens as well as one-third of the
StoryCorpus (Trinh and Le, 2018).

4. DEEP TRANSFER LEARNING MODEL

Our transfer learning models were built within three steps:
(1) pre-training, (2) fine-tuning, and (3) testing. In the
pre-training step, a model was trained with a large-sized
dataset. In the fine-tuning step, we tuned the model with the
ADReSS training dataset. In the testing step, we evaluated the
model using the ADReSS testing dataset. In the following,
we introduce the transfer learning models based on two pre-
training approaches: a supervised classification approach and a
self-supervised learning approach.

4.1. Supervised Classification Approach:
MobileNet and YAMNet
For this approach, we explored the audio part of the ADReSS
datasets. We observed the ADReSS organizers segmented the
audio data into small pieces by setting the log energy threshold
parameter to 65 dB with a maximum duration of 10 s from
(Haider et al., 2019; Luz et al., 2020). However, there was a
concern that the segmentation may cause critical time-series
information loss. Any smaller speech segments hardly represent
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the overall speech sample. In addition, the speech continuity
is removed by segmentation, making the model inaccurately
capture the time-series characteristics. Thus, our approaches
aimed to accommodate an entire speech sample of each
participant as input and preserve the time-series characteristics
of the speech, similar to works (Hershey et al., 2017; Zhang et al.,
2018).

MobileNet is a lightweight network architecture that
significantly reduces the computational overhead as well as
parameter size by replacing the standard convolution filters
with the depth-wise convolutional filters and the point-wise
convolutional filters, as proposed by Howard et al. (2017). The
total parameters of the MobileNet backbone are of a size 17.2
MB, significantly less than other convolutional neural networks.
Considering the limited size of the speech dataset, we considered
a smaller model with less complexity, such as MobileNet, which
may worth being tested. MobileNet is pre-trained with the
ImageNet dataset for an image classification task. The MobileNet
architecture is shown at the above layer, as shown in Figure 1.
With an RGB image as input, the output is the probability that
the image belongs to each of the 1,000 classes.

MobileNet architecture: The core of MobileNet architecture
is a backbone Convolutional Neural Network (CNN), which
consists of a set of convolution, pooling, and activation
operations. The detailed architecture can be found in the
paper (Howard et al., 2017). We used the full width (1.0)
MobileNet backbone pre-trained on a resolution of 128*128
images. The backbone takes an image as an input, which is 3-
dimensional (h,w, 3)-matrix where h is height, w is width, and
3 represents the RGB channel. The backbone converts an input
of (h,w, 3)-matrix to an output of (h′,w′, 1024)-matrix where
(h′,w′) are functionally related to (h,w), and 1024 represents the
feature channel number, i.e., the depth of the backbone CNN.
The output (h′,w′, 1024)-matrix is then fed to a Global Average
Pooling (GAP) layer for reducing the dimensions of h′ and w′

and obtaining a 1024-dimension feature. A Fully Connected (FC)
layer with 1,000 neurons produces the output according to the
wanted 1,000 classes. Finally, a softmax activation layer is added
to produce the classification results as the probabilities for 1,000
classes that add up to 1.

Transfer learning via MobileNet: MobileNet is pre-trained for
an image classification task where its input is an image, and its
output is probabilities of the classes. To apply transfer learning of
MobileNet to our AD classification task, in the fine-tuning and
testing steps, we need to convert an audio sample to an image
sample and customize the model for the AD/non-AD outputs.

1. Extracting Mel Frequency Cepstral Coefficient (MFCC)
feature maps from audio samples: Mel-frequency cepstral
coefficients have been widely used in speech recognition
research (Muda et al., 2010). Yancheva and Rudzicz (2016) and
Fraser et al. (2016) carried out an acoustic-prosodic analysis
on the Pitt Corpus using 42 MFCC features. We extracted an
MFCC feature map for each participant’s entire speech sample.
The MFCC feature map is denoted as a (p, t)-matrix where the
hyper-parameter p (64) is the MFCC order, and t is related to
the duration of the speech sample. We used the librosa function
with a sampling rate of 22,050, a window size of 2,048, and

a step size of 512. By extracting the MFCC feature maps, we
converted the speech dataset to an image dataset. The advantages
of MFCC feature maps include conversion from speech toMFCC
feature maps can be done automatically; the silent pauses in
the audio data were preserved as a distinctive feature in MFCC
feature maps; and speech from the investigator and filled pauses
from the participant were preserved in MFCC feature maps and
shown to be important (Tóth et al., 2018).While identifying these
audio segments requires expensive human efforts or customized
ASR, we envision the classification model with the input of the
MFCC feature maps may learn and understand the patterns of
the information.

2. Customizing model for the downstream task: Our proposed
model is shown at the bottom layer of Figure 1. Our architecture
employs the pre-trained backbone CNN module from the
MobileNet. Denote the MFCC feature map of the audio sample
as a (p, t, 1)-matrix. To match with the module input, i.e., an RGB
image, we duplicated the MFCC feature map twice and made
the MFCC feature map as a (p, t, 3)-matrix. In this way, we can
feed the MFCC feature map into the backbone CNN module of
the MobileNet in the same way as an RGB image. The output
of the backbone CNN is denoted as a (p′, t′, 1024)-matrix where
(p′, t′) are functionally related to (p, t). We employed a GAP-
2D (two-dimensional) to reduce p′ dimension and t′ dimension
of the matrix. We then employed a fully connected layer and a
softmax activation layer to produce the classification results as
two probabilities for the two classes AD/non-AD that add up to 1.

Transfer learning via YAMNet: While the MobileNet
architecture is pre-trained with the ImageNet dataset, Gemmeke
et al. (2017) pre-trained a similar architecture using the
AudioSet dataset, called YAMNet. The input of YAMNet is
the Mel spectrogram from audio data with dimensions of
(p, t, 1). Compared to MobileNet, YAMNet might better apply
to our downstream task because the pre-training dataset and
the downstream dataset are both audio datasets, and the
input formats to the Backbone CNN in the pre-training/fine-
tuning/testing phase are kept the same, i.e., a feature vector of
(p, t, 1).

4.2. Self-Supervised Learning Approach:
BERT
While the supervised classification approach utilizes labeled
datasets, self-supervised learning approaches take advantage of
unlabeled datasets for pre-training. The removal of the labeling
requirement enables the model to extract knowledge from an
extended range of data sources, e.g., digital books,Wikipedia, and
online news. We propose a Text BERTmodel and a Speech BERT
model for AD classification, as shown in Figure 2.

Transfer learning via Text BERT: BERT (Devlin et al., 2018) is
a milestone in the natural language processing domain. BERT is
pre-trained with BooksCorpus (Zhu et al., 2015) (800M words)
and Wikipedia (2500M words). It adopts two self-supervised
tasks in the pre-training step: Masked Language Model (MLM)
and Next Sentence Prediction (NSP). Specifically, given a pair of
sentences, we first put a special [CLS] token at the beginning
of the first sentence and a special [SEP] token between two
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FIGURE 1 | Supervised classification approach.

sentences. Second, random masking is applied to mask a set
of words with a special [MASK] token. Then the pre-processed
input is fed into the BERT model, which then outputs an
embedding corresponding to each input token. The pre-training
is performed via the two self-supervised tasks: theMLM task aims
to predict the masked words with the context; the NSP task aims
to predict whether the second sentence is followed by the first
sentence in the original dataset. In the fine-tuning and testing

steps, the output embedding of the [CLS] token is used. To apply
BERT to our AD classification task, we added a fully connected
(FC) layer and a softmax activation layer to the output of the
BERT model. The FC layer has two neurons, which stands for
the AD and no-AD classes, respectively.

Transfer learning via Speech BERT: The Speech BERT, named
Mockingjay (Liu et al., 2020), is similar to the Text BERT
except for some differences: The input is the Mel spectrogram
of speech data instead of the word embeddings. The pre-
training task contains only the Masked Acoustic Model (MAM)
task. The input does not have the [CLS] and other special
tokens. Thus, instead of using output embedding of the [CLS]
token for classification, we used output embeddings of all the
tokens. To apply Speech BERT to our AD classification task,
the output of the Speech BERT is fed into a 1D convolutional
layer that convolutes through time dimension, then fed into
a global average pooling layer to obtain the average through
time dimension, and finally fed into an FC layer and a softmax
activation layer.

5. MULTI-MODAL TRANSFER LEARNING

While Text BERT and Speech BERT models analyze text and
audio datasets separately, we explored a multi-modal transfer
learning via a Dual-BERT model, using both text and audio as
inputs.We envision that the text and audio data of a given patient
are highly related, and the outputs could reinforce each other
during the training process. Dual-BERT incorporates two pre-
trained BERT models, one is Text BERT and the other is the

Speech BERT. As shown in Figure 3, the architectures of the
Speech BERT and the Text BERT models remain the same as
in the previous section. We further designed two types of fusion
methods: Add fusion and Concat fusion.We used term “training”
instead of “fine-tuning” in the following, as wemainly considered
the new multi-modal transfer learning. For each fusion method,
we also considered two types of training strategies, separate
training and joint training.

Add fusion model: The outputs of our previous models are
probabilities from the last softmax activation layer. Thus, we
considered an Add fusion that adds up the outputs of the FC
layers of two models, as shown in the upper part of Figure 3.
If the Text BERT and Speech BERT models have consistent
classification results, the Add fusion model outputs the result
with more confidence compared to any of the two single
models. On the other hand, if the two models have inconsistent
classification results, the Add fusion model outputs the result
that receives higher confidence from any of the two models. We
considered two training strategies. (1) (Separate) We train the
Text BERT and Speech BERT with text and audio, respectively.
Then, the Add fusion layer will only be considered during
the testing process. (2) (Joint) We train the Text BERT and
Speech BERT jointly using the joint output from the Add fusion
layer. The difference between these two training strategies is
that the first strategy considers the confidence of the models,
while the second one further considers the complementary
information between text and audio data. The Add fusion part
has no trainable parameters. In the separate training strategy,
the training does not apply to the Add fusion part; in the joint
training strategy, the Add fusion part is involved in the training
process but has no parameters to be learned.

Concat fusion model: Another way to explore the multi-modal
transfer learning is to concatenate the tensors of the Text BERT
and Speech BERT models before the FC layer. As shown in the
bottom part of Figure 3, after the concatenation, the Concat
fusion model has an FC layer with two neurons for classification
of AD/non-AD. In this model, features from text and audio
are better integrated for the classification task. The Concat
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FIGURE 2 | Text BERT and Speech BERT.

fusion model always requires joint training for the additional
FC layer. We have two training strategies. (1) (Separate) We
train the Concat fusion model using three outputs separately.
(2) (Joint) We train the Concat fusion model using the joint
output only.

6. MULTI-TASK TRANSFER LEARNING

Multi-task transfer learning aims to solve multiple learning tasks
at the same time while exploiting commonalities and differences
across tasks. This can result in improved learning efficiency
and enhanced performance for the task-specific models when
compared to training the models separately.

The ADReSS challenge provides both AD/non-AD labels and
MMSE scores for each data sample. In this section, we focused
on the Text BERT as it produces significantly better results than
the Speech BERT. As shown in the upper part of Figure 4, we
first applied transfer learning from the Text BERT to an MMSE
regression task; we placed an FC layer with a single neuron to
the output of the Text BERT, and then added a Leaky ReLU
layer to output the MMSE score. Since the MMSE scores are
non-negative values, we adopted the Leaky Rectified Linear Unit
(ReLU) activation and the mean squared error loss. The bottom
part in Figure 4 shows a multi-task transfer learning where we
put an FC layer with a single neuron for the regression task and
an FC layer with two neurons for the classification task. The
classification task employs the softmax activation layer, and the
regression task employs the Leaky ReLU activation layer. For loss
functions, the classification task uses the cross-entropy loss, and

the regression task uses the mean squared error loss. For training,
we jointly optimized the cross-entropy loss and themean squared
error loss with the corresponding labels.

7. PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation of the
proposed deep transfer learning models. We strictly followed the
ADReSS challenge (Luz et al., 2020) using the ADReSS training
and testing datasets.

7.1. Implementation Details
We followed the original implementation of the pre-trained
models. Specifically, the speech BERT and text BERT were
implemented with PyTorch. The MobileNet and YAMNet were
implemented with Tensorflow. We downloaded the pre-trained
parameters of these models from online sources. For the
classification task (AD/non-AD), we used the cross-entropy loss,
and for the regression task (MMSE), we used the mean squared
error loss. We trained our models using the Adam algorithm as
optimizer (Kingma and Ba, 2014) with batch size 8 and a small
learning rate of 1e-6 for models that do not use Speech BERT. For
models that use Speech BERT, as our Graphics Processing Unit
(GPU) resource has 32 GB memory (NVIDIA TESLA V100), we
used batch size 1 to adapt our training process to the limited
memory resources. We employed a fine-tuning strategy and
trained all layers, including those in the pre-trained models.
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FIGURE 3 | Multi-modal transfer learning using Text/Speech BERT (Dual BERT).

FIGURE 4 | Multi-task learning using Text BERT.

7.2. Training Strategy
Our training strategy for all models had five rounds. In
each round, we used the ADReSS training dataset to train
a model with a maximum of 2,000 epochs. The training
stopped before reaching 2000 epochs only if the training
loss was less than a pre-defined threshold of 1e-6. After the

training, we selected the epoch with the smallest training
loss and obtained the performance result over the ADReSS
testing dataset using the selected epoch. We repeated the
above process for five rounds, obtained five results, and
reported their mean and standard deviation. We consider that
the mean and standard deviation represent the effectiveness
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of the model. We also reported the best result among all
epochs in five rounds to reveal the maximum potential of
the models.

7.3. Evaluation Metrics
For the classification task, we employed evaluation metrics of
accuracy TN+TP

N , precision π =
TP

TP+FP , recall ρ =
TP

TP+FN , and

F1 score 2πρ

π+ρ
, where N is the number of participants, TP, FP,

and FN are the numbers of true positives, false positives, and
false negatives, respectively. For the regression task, we employed
Root-Mean-Square Error (RMSE), the same metric used in the
baseline paper provided by the ADReSS challenge.

7.4. Evaluation of Deep Transfer Learning
Models
In this section, we reported the performance results of our
transfer learning models with an input of audio data or text
data. MobileNet, YAMNet, and Speech BERT were pre-trained
with ImageNet, AudioSet, and LibriSpeech datasets, respectively,
and were used to analyze CTP audio data. BERT base and
BERT large were pre-trained with BooksCorpus, Wikipedia,
and Longformer were pre-trained with additional Realnews and
StoryCorpus. They were used to analyze CTP text data. To
show the advantage of transfer learning, we also reported the
performance results of the models without pre-training. The
performance results are shown in Table 2.

MobileNet: The classification accuracy of MobileNet is 59.00
± 5.66% without pre-training or 58.8 ± 3.49% with pre-
training. Both MobileNet models achieved low accuracy, and the
pre-training process surprisingly lowered the performance. We
concluded the main reason is the knowledge difference between
the pre-training image dataset and the CTP audio dataset.
However, we found that the pre-training helped produce stable
results with a lower standard deviation (from 5.66 to 3.49%).
In addition, we found that Best accuracy reaches 77.08% with
pre-training, much higher than 72.91% without pre-training. In
other words, the model with pre-training has the potential to
achieve higher accuracy, but the model cannot be fine-tuned to
the optimal status due to the limited downstream dataset.

YAMNet: In general, YAMNet would be more effective than
the MobileNet for our downstream task because the pre-training
dataset in YAMNet is AudioSet, which is more similar to the
CTP audio dataset. We confirmed this conjecture with our
evaluation results of YAMNet. The classification accuracy of
YAMNet without pre-training is 53.8 ± 6.88%, and the accuracy
of YAMNet with pre-training is increased to 66.2 ± 4.79%. The
YAMNet with pre-training resulted in a significant improvement
of 12.4% compared to the same model without pre-training,
which demonstrates the similarity between the AudioSet and
the CTP audio dataset. In addition, the pre-training enabled the
YAMNet to produce more stable outputs (from 6.88 to 4.79%)
and higher Best accuracy (from 79.17 to 83.33%).

Speech BERT: Speech BERT, similar to Text BERT, employs
a self-supervised learning approach. The pre-training process
employs the MAM task. Speech BERT has a length restriction
problem of max positional encoding in pre-training of 5,000
tokens (about 1 min). To solve this problem, in training, if the

audio sample produces more than 5,000 tokens, we randomly
choose a window to sample the audio for 5,000 tokens. And in
the testing, we used a non-overlapped sliding window technique
to sample the whole audio and averages the classification
probabilities corresponding to all windows. We further filtered
the audio data of the investigator to reduce the audio length,
while forMobileNet/YAMNet, both audio data of the investigator
and participant were kept as input.

We observed that the Speech BERT model with pre-training
resulted in less accuracy 63.33%, compared to 66.67% from the
model without pre-training. This finding may have been due to
the Speech BERTmodels employing a self-supervisedMAM task,
which is significantly different from our downstream task (i.e.,
classification). Alternatively, the self-supervised MAM task aims
to explore the strong correlation between the audio segments.
While such a correlation in the transcript is explicit due to the
language model, the correlation among audio segments might
be more complicated and more challenging to be learned. In
addition, the pre-training process helps to increase the potential
of the model by providing a higher Best accuracy of 79.17% (>
77.08% without pre-training).

Text BERT: We considered three Text BERT models,
i.e., BERT base and BERT large (Devlin et al., 2018), and
Longformer (Beltagy et al., 2020). The BERT base model has
12 Transformer encoders, and the BERT large model has
24 Transformer encoders. While the BERT base and BERT
large were pre-trained with a max length of 512 tokens, the
Longformer were pre-trained with a max length of 4,096 tokens.
Therefore, when our text sample from ADReSS datasets is
converted to be larger than 512 tokens, truncation is required in
the BERT base and large models. In the Longformer model, all
text samples from ADReSS datasets can be encoded within 4,096
tokens, and thus truncation is not needed. In addition, the pre-
training databases of Longformer additionally include longer text
samples from Realnews and StoryCorpus. To adapt the ADReSS
text dataset to the Text BERT models, we removed the symbols
that do not appear in the pre-training dataset but appear in the
ADReSS text dataset.

We found the performance results of all Text BERT models
are better than the previous models on audio data. Without
pre-training, BERT base achieved 76.67%. With pre-training,
BERT base achieved 80.83%, BERT large achieves 81.67%,
and Longformer achieves 82.08%. The corresponding Best
accuracy increased from 81.25% (BERT base without pre-
training) to 85.42% (BERT base), 87.50% (BERT large), and
89.58% (Longformer). These findings suggest that the Text
BERT models show significantly better performance because
of the similarity of the pre-training text dataset and the CTP
text dataset. In addition, the Longformer resulted in improved
performance because it supports the input of longer text samples
without truncation and has been pre-trained with additional
similar datasets.

7.5. Evaluation of Multi-Modal Transfer
Learning
Focusing on evaluating multi-modal transfer learning, we
expected the joint training using both audio data and text data to
improve the performance results of previous models. In Table 3,
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TABLE 2 | AD Classification results using audio or text and with or without pre-training.

Model Pre-training dataset Classes Precision % Recall % F1 % Accuracy % Best %

Audio Luz et al., 2020 –
non-AD 67 50 57

62 –
AD 60 75 67

MobileNet

–
non-AD 60.40 ± 7.86 58.40 ± 22.76 56.20 ± 13.79

59.00 ± 5.66 72.91
AD 61.40 ± 6.89 59.80 ± 21.07 57.60 ± 10.54

ImageNet
non-AD 72.80 ± 6.97 28.00 ± 8.15 40.40 ± 9.85

58.80 ± 3.49 77.08
AD 55.80 ± 2.48 90.40 ± 1.96 69.00 ± 1.67

YAMNet

–
non-AD 52.20 ± 11.74 19.80 ± 22.61 24.60 ± 22.81

53.80 ± 6.88 79.17
AD 53.40 ± 5.95 87.60 ± 9.56 65.80 ± 1.33

AudioSet
non-AD 69.60 ± 6.80 59.20 ± 7.73 63.40 ± 5.57

66.20 ± 4.79 83.33
AD 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84

Speech BERT

–
non-AD 67.74 ± 3.69 64.17 ± 3.34 65.82 ± 2.68

66.67 ± 2.95 77.08
AD 65.84 ± 2.43 69.16 ± 5.65 67.39 ± 3.71

LibriSpeech
non-AD 66.13 ± 4.12 55.00 ± 4.86 59.94 ± 3.78

63.33 ± 3.12 79.17
AD 61.48 ± 2.76 71.67 ± 4.86 66.12 ± 3.08

Text Luz et al., 2020 –
non-AD 70 87 78

75 –
AD 83 62 71

BERT base

–
non-AD 78.12 ± 1.98 74.17 ± 3.12 76.05 ± 1.82

76.67 ± 1.56 81.25
AD 75.47 ± 2.08 79.17 ± 2.63 77.23 ± 1.50

BooksCorpus/Wiki
non-AD 78.46 ± 1.89 85.00 ± 2.04 81.60 ± 1.96

80.83 ± 2.04 85.42
AD 83.64 ± 2.22 76.67 ± 2.04 80.00 ± 2.13

BERT large BooksCorpus/Wiki
non-AD 83.05 ± 5.12 80.00 ± 3.12 81.40 ± 3.09

81.67 ± 3.34 87.50
AD 80.65 ± 2.66 83.33 ± 5.89 81.89 ± 3.64

Longformer
BooksCorpus/Wiki/

Realnews/Stories

non-AD 77.87 ± 3.75 90.00 ± 2.04 83.44 ± 2.33
82.08 ± 2.83 89.58

AD 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55

AD, Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.

TABLE 3 | AD Classification results of multi-modal learning using both audio and text.

Model Fusion / Training Classes Precision % Recall % F1 % Accuracy % Best %

Speech BERT –
non-AD 66.13 ± 4.12 55.00 ± 4.86 59.94 ± 3.78

63.33 ± 3.12 79.17
AD 61.48 ± 2.76 71.67 ± 4.86 66.12 ± 3.08

BERT base –
non-AD 78.46 ± 1.89 85.00 ± 2.04 81.60 ± 1.96

80.83 ± 2.04 85.42
AD 83.64 ± 2.22 76.67 ± 2.04 80.00 ± 2.13

Dual BERT

Add/Joint
non-AD 78.63 ± 1.77 85.83 ± 2.04 82.07 ± 1.79

81.25 ± 1.86 85.42
AD 84.41 ± 2.13 76.67 ± 2.04 80.35 ± 1.95

Add/Separate
non-AD 78.96 ± 1.57 87.50 ± 2.64 82.99 ± 1.68

82.08 ± 1.66 85.42
AD 86.05 ± 2.60 76.67 ± 2.04 81.06 ± 1.69

Concat/Separate
non-AD 80.39 ± 1.56 85.00 ± 3.33 82.57 ± 1.26

82.08 ± 1.02 85.42
AD 84.21 ± 2.52 79.17 ± 2.63 81.54 ± 1.01

Concat/ Joint

(No pre-train speech)

non-AD 80.36 ± 2.06 85.00 ± 2.04 82.59 ± 1.56
82.08 ± 1.66 87.50

AD 84.10 ± 1.91 79.17 ± 2.63 81.53 ± 1.83

Concat/Joint

(Longformer)

non-AD 78.83 ± 4.18 88.33 ± 4.09 83.15 ± 1.79
82.08 ± 2.12 89.58

AD 86.95 ± 3.38 75.83 ± 6.12 80.79 ± 2.74

Concat/Joint
non-AD 80.02 ± 1.16 86.67 ± 1.67 83.20 ± 1.01

82.50 ± 1.02 85.42
AD 85.48 ± 1.46 78.34 ± 1.67 81.74 ± 1.10

Concat/Joint

(BERT large)

non-AD 83.62 ± 4.25 82.50 ± 5.53 82.80 ± 1.76
82.92 ± 1.56 87.50

AD 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86

YAMNet +

BERT base
Concat/Joint

non-AD 78.06 ± 2.53 85.83 ± 2.04 81.76 ± 2.22
80.83 ± 2.43 89.58

AD 82.70 ± 3.65 82.50 ± 5.53 82.45 ± 3.07

AD, Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.
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we list the performance results of 10 models. The first one is
BERT base, and the second one is Speech BERT, which was
evaluated in the previous section. Their performance results will
serve as a baseline. The next sevenmodels are variants of the Dual
BERT models. Their architectures are a combination of a Speech
BERT model and a Text BERT model. As discussed in section 5,
Dual BERT can employ the Add fusion or the Concat fusion to
combine the Speech BERT and the Text BERT, and can be trained
with a separate training strategy or a joint training strategy. The
last multi-modal transfer learning replaced Speech BERT with
YAMNet as YAMNet achieves an accuracy (66.2%) higher than
Speech BERT (63.33%).

The following observations were made:

• All seven Dual BERT models achieved higher classification
accuracy than the two baseline models, confirming that the
text data and audio data have complementary information that
can be jointly learned by themodel for improved performance.

• Concat fusion achieved higher classification accuracy than
Add fusion. While the Add fusion picks one model with
higher confidence in the classification results, the Concat
fusion aims to merge the features of both text data and
audio data for a hybrid representation. The performance gain
of the Concat fusion further confirms the complementary
information between the text data and audio data.

• From the previous analysis, we found the Speech BERT
without pre-training achieved a higher accuracy (66.67%)
than the Speech BERT with pre-training (63.33%). Thus, we
evaluate a multi-modal transfer learning model using the
Speech BERT without pre-training and BERT base with pre-
training. As shown inTable 3, we confirm that the pre-training
of Speech BERT helps the multi-modal transfer learning to
achieve a higher accuracy (82.50%), compared to the Dual
BERT without pre-training on speech model (82.08%).

• From the previous analysis, we found BERT large (81.67%)
and Longformer (82.08%) outperformed BERT base (80.83%).
Thus, we replaced BERT base with BERT large and
Longformer in the Dual BERT.While themulti-modal transfer
learning using BERT large achieved the highest accuracy
(82.92%), the multi-modal transfer learning using Longformer
achieves the highest Best accuracy (89.58%).

• From the previous analysis, we found the YAMNet yielded the
highest accuracy result (66.20%) among all the models using
audio data. Thus, we evaluated amulti-modal transfer learning
using the YAMNet and BERT base. However, this model did
not outperform any of the Dual BERT models.

7.6. Evaluation of Multi-Task Transfer
Learning
Relation between MMSE regression and AD classification: Given
the ADReSS dataset, we explored a threshold-based strategy to
understand the relation between the MMSE scores and AD/non-
AD labels. We set a threshold T on MMSE scores to infer
AD/non-AD status. If a patient’s MMSE score is less than T,
the patient’s data are labeled with AD; if a patient’s MMSE score
is larger or equal to T, the patient’s data are labeled with non-
AD. We reported the performance result of the threshold-based

FIGURE 5 | Threshold-based strategy (0–30).

TABLE 4 | Threshold-based strategy (20–30).

T Accuracy (Training) Accuracy (Testing) %

20 86.92 75.00

21 88.79 79.17

22 89.72 81.25

23 90.65 83.33

24 92.52 87.50

25 95.33 87.50

26 97.20 89.58

27 96.26 89.58

28 95.33 91.67

29 87.85 83.33

30 71.03 70.83

The highest accuracy in training, the highest accuracy in testing, and the testing accuracy

corresponding to the highest accuracy in training are in bold.

strategy over the ADReSS training/testing dataset separately in
Figure 5 and Table 4. We found that for the ADReSS training
dataset, the highest accuracy is 97.2% at a threshold of 26, and
for the ADReSS testing dataset, the highest accuracy is 91.67%
at a threshold of 28. If we adopt the threshold of 26 from the
training dataset and apply it to the testing dataset, the threshold-
based strategy results in an accuracy of 89.58%, which is the
upper bound that multi-task transfer learning theoretically can
achieve. According to the CTP dataset description (Becker et al.,
1994), the patients with AD have an MMSE score in the range
of 8–30, while the patients with non-AD have an MMSE score
in the range of 26–30. The AD labels are determined from seven
cognitive domains, including memory, construction, perception,
attention, language, orientation, and executive functions. In
comparison, the MMSE is a 30-point widely used cognitive
screening measure, taking about 10 min to administer. In our
evaluation, given the limited number of data samples, a small
number of inconsistent cases might produce a negative impact on
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TABLE 5 | Classification and regression results of multi-task transfer learning using CTP text.

Model Pre-training Settings Accuracy % Best % RMSE Best RMSE

Text Luz et al., 2020
– Classification 75 –

– Regression 5.20 –

BERT base

No

Classification 76.67 ± 1.56 81.25 – –

Regression – – 5.18 ± 0.04 4.65

Multi-task 78.75 ± 1.56 83.33 4.70 ± 0.02 4.39

Yes

Classification 80.83 ± 2.04 85.42 – –

Regression – – 4.15 ± 0.01 4.06

Multi-task 80.83 ± 1.56 87.50 4.96 ± 0.01 4.20

AD, Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds. RMSE: mean and standard deviation of

root-mean-square errors of 5 rounds. Best RMSE: lowest RMSE of all epochs in 5 rounds.

the joint training process when the outputs of single-task models
are highly consistent with the corresponding labels/scores.

We focused on evaluating the proposed multi-task transfer
learning, which is built on the BERT base model with an input
of the CTP text data. One challenge of the multi-task transfer
learning model is the imbalanced loss from the AD classification
task and the MMSE regression task. Denote the regression loss
(mean squared error) as lmse and the classification loss (cross-
entropy) as lce. We define the total loss of the multi-task transfer
learning model as l = λlmse + lce, where λ is a balance factor to
avoid the unbalanced impact between the classification loss and
regression loss. In our experiment, we set λ = 0.01.

We evaluated a regression model and a multi-task transfer
learning model using BERT base. As shown in Table 5, when
using BERT base without pre-training, the multi-task transfer
learning model outperformed the single-task models, i.e., the
classification accuracy is increased from 76.67 to 78.75%, and
the RMSE decreased from 5.18 to 4.70. The evaluation results
confirmed that the two tasks help each other to achieve a better
performance, especially when both single-task models have room
to be improved. In comparison, when using BERT base with
pre-training, the multi-task transfer learning model introduced
limited performance gain in classification and introduced a
negative impact in the regression model. Specifically, the average
classification accuracy remained the same at 80.83%, the standard
deviation decreased from 2.04 to 1.56%, and Best accuracy is
increased from 85.42 to 87.50%, close to the accuracy of 89.58%
from the threshold-based strategy. For classification, multi-task
learning kept the training more stable and increased the maximal
potential of the model, and the MMSE scores provide a limited
positive impact on the AD classification task. For regression,
RMSE increased from 4.15 to 4.96, which reveals a negative
impact of the joint training. This may have been due to the
inconsistent cases of MMSE scores and AD/non-AD labels,
and the MMSE regression task is more fined-grained and thus
received a stronger impact from the inconsistent cases.

7.7. Summary of Best Cases Using Transfer
Learning
Table 6 shows the best cases of our experiments of text-based,
audio-based, and multi-modal transfer learning models. The
best case of the audio model achieved 66.20%, while the best
case of the text model achieved 82.08%. We consider that the
performance gain of the text model may be due to the high

similarity between the pre-training text dataset and the CTP
text dataset. In addition, the multi-modal model using both
audio and text achieved the highest accuracy of 82.92% in its
best case, demonstrating that audio and text data provided
complementary information. Our multi-task model achieved
an accuracy of 80.83%, lower than the accuracy of the text-
based model and the multi-modal model. We consider that the
performance degradation of the multi-task model may be due
to the inconsistency between labels and scores that were used in
multiple tasks.

8. CONCLUSIONS

We explored transfer learning techniques for an AD classification
task and an MMSE regression task. The transfer learning models
were pre-trained with general large-sized datasets, and fine-tuned
and tested using the ADReSS datasets. Our models had minimal
customization and mostly relied on the training data and fine-
tuning process to incorporate the knowledge of the downstream
task into the pre-trained model. From our comprehensive
evaluation, we drew the following three conclusions.

8.1. Transfer Learning on Text Data Results
in High Accuracy, but Transfer Learning on
Audio Data Might Have More Potential
Our findings showed that the transfer learning on text data
achieved high accuracy in the downstream tasks and always
outperformed the transfer learning on audio data. This suggests
that the transfer learning model understands the text better
than the audio. We considered the text data are generated from
the audio data through human transcribing effort. Thus, the
additional information that the text data contain, but not the
audio data contain, might be the transcriber’s knowledge in
the transcribing process. The transcriber extracts task-specific
information, such as the CTP and information units in the
photo. However, while the text data implicitly contain the
transcriber’s knowledge, the audio data do not contain. And
our training process of the transfer learning models on audio
data does not take advantage of the transcriber’s knowledge.
We expect that the task-specific information is highly useful,
and our transfer learning models on audio data can be further
improved by integrating such information. In addition, different
parts of the text might be highly relevant, but the relevance
of different audio segments might be unclear and difficult to
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TABLE 6 | The best classification cases of the audio-based, text-based, and multi-modal models.

Input Model (with pre-training) Classes Precision % Recall % F1 % Accuracy % Best %

Audio YAMNet
non-AD 69.60 ± 6.80 59.20 ± 7.73 63.40 ± 5.57

66.20 ± 4.79 83.33
AD 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84

Text Longformer
non-AD 77.87 ± 3.75 90.00 ± 2.04 83.44 ± 2.33

82.08 ± 2.83 89.58
AD 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55

Audio + Text Dual BERT Concat / Joint (BERT large)
non-AD 83.62 ± 4.25 82.50 ± 5.53 82.80 ± 1.76

82.92 ± 1.56 87.50
AD 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86

AD: Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.

be learned by the proposed models. Thus, we concluded that
the low accuracy of the transfer learning on audio data was
likely observed because the introduced pre-trained models did
not extract good representation from the audio data from the
downstream perspective. However, we envision that the future
large-sized speech datasets might contain audio data and auto-
translated text data via ASR. For example, the larger CTP dataset
WLS (Herd et al., 2014) contains text data from Kaldi ASR.
Thus, our future work on transfer learning aims to explore a
better pre-trained model, including supervised ASR models and
self-supervised audio models.

8.2. Multi-Modal Transfer Learning Reveals
Complementary Information of Text and
Audio
Our multi-modal transfer learning introduced a slight but not
significant improvement in terms of accuracy, demonstrating
that the audio and text data provide complementary information.
Specifically, while the text model alone already achieved high
accuracy, adding the analysis of audio data can improve
performance results almost in every case. More importantly, if we
consider that the text data contain semantic information only, the
complementary information that the audio data contain, but not
the text data contain, might be the non-semantic information,
such as filled pause, silent pause, and other implicit features. The
non-semantic information may or may not be used to implement
effective classification alone, but they should be useful if they are
jointly analyzed with the semantic information. We envision that
the model can be improved if it learns the positional information
of both semantic and non-semantic features, e.g., the pause
information between words or between sentences.

8.3. Multi-Task Transfer Learning Reveals
Positive and Negative Impacts on AD
Classification and MMSE Regression
Our multi-task transfer learning of the classification and
regression tasks yielded significantly better performance when

both single-task models did not perform well. The performance
gain is obtained due to the consistency between most MMSE
scores and the AD/non-AD labels. However, when the outputs
of the single-task models are highly consistent with the
corresponding labels/scores, the performance of multi-task
learning declined due to a small number of samples with
inconsistent scores and labels. This suggests the need to
investigate the meaning behind the AD classification task and
the MMSE regression task. The AD/non-AD labels seem coarse-
grained, but they are generated by evaluating patients on several
cognitive domains. The MMSE is less accurate and considered a
screeningmeasure of global cognitive functioning.We confirmed
that such inconsistency existed by exploring a threshold-based
strategy on the ADReSS training and testing datasets. Thus, we
considered that multi-task transfer learning produces a limited
impact on accuracy improvement due to the inconsistency
between labels and scores. In conclusion, we believe that the
deep transfer learning techniques need to be simple, comparable,
and applicable to newer tasks, larger datasets, and heterogeneous
labels to produce a long-lasting impact in dementia research.
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