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3Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder mainly
characterized by memory loss with deficits in other cognitive domains, including
language, visuospatial abilities, and changes in behavior. Detecting diagnostic
biomarkers that are noninvasive and cost-effective is of great value not only for clinical
assessments and diagnostics but also for research purposes. Several previous studies
have investigated AD diagnosis via the acoustic, lexical, syntactic, and semantic aspects of
speech and language. Other studies include approaches from conversation analysis that
look at more interactional aspects, showing that disfluencies such as fillers and repairs, and
purely nonverbal features such as inter-speaker silence, can be key features of AD
conversations. These kinds of features, if useful for diagnosis, may have many
advantages: They are simple to extract and relatively language-, topic-, and task-
independent. This study aims to quantify the role and contribution of these features of
interaction structure in predicting whether a dialogue participant has AD.We used a subset
of the Carolinas Conversation Collection dataset of patients with AD at moderate stage
within the age range 60–89 and similar-aged non-AD patients with other health conditions.
Our feature analysis comprised two sets: disfluency features, including indicators such as
self-repairs and fillers, and interactional features, including overlaps, turn-taking behavior,
and distributions of different types of silence both within patient speech and between
patient and interviewer speech. Statistical analysis showed significant differences between
AD and non-AD groups for several disfluency features (edit terms, verbatim repeats, and
substitutions) and interactional features (lapses, gaps, attributable silences, turn switches
per minute, standardized phonation time, and turn length). For the classification of AD
patient conversations vs. non-AD patient conversations, we achieved 83% accuracy with
disfluency features, 83% accuracy with interactional features, and an overall accuracy of
90% when combining both feature sets using support vector machine classifiers. The
discriminative power of these features, perhaps combined with more conventional
linguistic features, therefore shows potential for integration into noninvasive clinical
assessments for AD at advanced stages.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder
of the brain and the most prevalent form of dementia. According
to the National Institute of Neurological and Communicative
Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and
Related Disorders Association (ADRDA), the most common
symptoms include an inability to function at work or to
perform usual activities, reduced cognitive capabilities
(including impaired reasoning and visuospatial abilities,
impaired ability to acquire and remember new information,
impaired language function), and changes in behavior.
Language deficit primarily occurs through a decline in lexical
semantic abilities with anomia and word comprehension, object
naming, semantic paraphasias, and a decrease in vocabulary and
verbal fluency throughout the entire span of the disease (Bayles
and Boone, 1982; Forbes-McKay and Venneri, 2005). Effects are
also seen at the pragmatic level, including problems with
maintaining and alteration in discourse planning (Chapman
et al., 2002). At the phonetic and phonological level, speech in
patients with AD is principally characterized by a low speech rate
and by frequent hesitations (Hoffmann et al., 2010); however,
syntactic processing is relatively preserved at the early stages of
the disease (Kavé and Levy, 2003; Forbes-McKay and Venneri,
2005).

There is no single universally accepted medical test for the
diagnosis of AD; instead, physicians typically use a variety of
methods with the help of specialists (including neurologists) to
make a diagnosis. This includes a combination of taking feedback
from family members and carers asking about changed patterns
in behaviors and thinking, getting family history, and mental
status examination. NINCDS established the criteria for AD
diagnosis and requires that the presence of cognitive
impairment needs to be confirmed by neuropsychological
testing for a clinical diagnosis of possible or probable AD
(McKhann et al., 1984). Neuropsychological testing should be
performed when the routine history and bedside mental status
examination cannot provide a confident diagnosis (McKhann
et al., 2011). Suitable neuropsychological tests include the Mini-
Mental Status Examination (Folstein et al., 1975), Mini-Cog
(Rosen et al., 1984), Addenbrooke’s Cognitive
Examination–Revised (ACE-R) (Noone, 2015), Hopkins Verbal
Learning Test (HVLT) (Brandt, 1991), and DemTect (Kalbe et al.,
2004). Other routes include the use of blood tests and/or brain
imaging (MRI) to check for high levels of beta-amyloid, an
accumulation of protein fragments outside neurons, and one
of the several brain changes associated with AD (Straiton, 2019).

Medical diagnoses based on the clinical interpretation of
patients’ history, complemented by brain scanning (MRI), are
time-consuming, stressful, costly, and often cannot be offered to
all patients complaining about functional memory. The other
alternatives are extensive neurological screening tests that are
used for the early diagnosis of AD and dementia. These tests
require experts to interpret the results, strongly relying on brief
cognitive tests, and are performed inmedical clinics, with patients
required to visit the clinics for diagnosis. There is a need for new,
less invasive approaches that improve and speed up the process of

early diagnosis, reduce distress to patients, and place less
emphasis on extensive and expensive formal testing. Currently,
researchers are therefore investigating the impact of
neurodegenerative impairment on patients’ speech and
language, with the hope of deriving tests that are easier to
administer and automate via natural language processing
techniques (see, e.g., Fraser KC. et al., 2016).

Conversational dialogue is the primary means of human
natural language use, so dialogue, and open domain dialogue
in particular, might provide more generally applicable insights in
studying the effects of AD on dialogue (Nasreen et al., 2019).
Conversational analysis (CA) studies have traditionally looked in
more detail at what characteristics of dialogue with dementia
might be important (Jones et al., 2016; Elsey et al., 2015;
Hamilton, 2005; Davis and Maclagan, 2010; Mirheidari et al.,
2019; Perkins et al., 1998; Varela Suárez, 2018). Although some
computational works explore the detection of dementia from
speech and interaction (e.g. Luz et al., 2018; Broderick et al., 2018;
Mirheidari et al., 2019), it is so far relatively limited, and there is
little work on how dementia might affect interactional patterns in
natural conversations (Addlesee et al., 2019).

AD is associated with many characteristic changes in language
and speech not only with individual capabilities but also
consequently in the interactive patterns observed in
conversations. However, most language-based approaches so
far use picture description or narrative tasks, or analyze
individual speech, and thus miss conversational clues. This
article examines the function of combining single-speaker
disfluency features with interactional (dialogue) features to
analyze the predictive power of these features in the diagnosis
of AD. Extracts from the spontaneous speech of 15 AD and
15 non-AD patients from a conversational dataset, the Carolinas
Conversation Collection (CCC), are analyzed to highlight the
function of these interactional patterns, particularly pauses within
a patient’s utterances and during turn changes with a
conversation partner in natural conversation. As will be
described, we show the value of both disfluency and
interactional information in conversation, combining them to
achieve an overall accuracy of 90% in the recognition of AD from
dialogue data.

PREVIOUS WORK

Much of the work to date in AD diagnosis has focused on
properties of individual language, using various kinds of
linguistic and acoustic features (Jarrold et al., 2014), or
fluency, information content, and syntactic complexity (Fraser
et al., 2016b; Fraser et al., a; de Lira et al., 2011). However, this is
often studied within particular individual language tasks, usually
within specific domains including picture description [the
commonly used Cookie Theft picture description task from
the Boston Diagnostic Aphasia Examination (Goodglass et al.,
2001)], story narration task [e.g. The Dog story (Le Boeuf, 1976)],
and semi-structured interviews [e.g. Autobiographical Memory
Interview (Kopelman et al., 1990)]. Approaches to analysis and
diagnosis therefore usually focus on aspects of individual
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language such as lexical, grammatical, and semantic features.
Kavé and Dassa (2018), for example, examined dementia via a
picture description task in the Hebrew language, using ten
linguistic features, and showed that the AD group produced a
smaller percentage of content words, more pronouns relative to
nouns and pronouns, a lower type-token ratio, and more frequent
words as compared with cognitively intact participants. Orimaye
et al. (2017) built an automated diagnosis model using low-level
linguistic features including lexical, syntactic, and semantic
features (NGrams) from verbal utterances of Probable AD and
control participants. In another line of research, Ahmed et al.
(2013) argued that speech production, syntactic complexity,
lexical content, semantic content, idea efficiency, and idea
density are important features of connected speech that are
used to examine longitudinal profiles of impairment in AD.

Fluency has also been shown to be indicative of AD. Patients
with AD have difficulty performing tasks that leverage semantic
information, and exhibit problems with verbal fluency and
identification of objects (Pasquier et al., 1995; López-de Ipiña
et al., 2013). The semantics and pragmatics of their language
appear affected throughout the entire span of the disease more
than syntax (Bayles and Boone, 1982). Patients with AD talk more
gradually with longer pauses and invest extra time seeking the
right word, which contributes to disfluency of speech (López-de
Ipi et al., 2013). Abel et al. (2009) modeled patient speech errors
(naming and repetition disorders) to the problem of AD
diagnosis. Rohanian et al. (2020) used a deep multi-modal
fusion model to show the predictive power of disfluency
features in the identification of AD.

Pausing behavior is often associated with a lack of fluency, and
several studies have suggested various temporal forms of speech
analysis to identify AD. During speech production, pauses are
often considered a hallmark of a patient’s lexical-semantic
decline, one of the earliest symptoms of AD (Pistono et al.,
2019b). Davis and Maclagan (2010) examined the silent pauses
in a story retelling task with an older woman on two different
occasions and found changes in pauses function signaling
difficulty in word finding to difficulty in finding key
component in the thread of a story. Forbes-McKay and
Venneri (2005) compared the word-finding difficulties during
the discourse in a picture description task among AD and healthy
elderly subjects and stressed the fact that pauses, use of indefinite
terms, and repetition are significantly more frequent in the AD
group. According to Gayraud et al. (2011), AD patients produce
more silence pauses than healthy controls but they found no
significant difference in the duration of pauses. This study was
performed on spontaneous speech data of an autobiographical
task of AD and healthy persons and also identified that silent
pauses occur more often outside syntactic boundaries and are
followed by more frequent words. Singh et al. (2001) utilized
different temporal measures including frequency of pauses, total
pause time, mean duration of pause (MDP), standardized pause
rate (SPR), standardized phonation time (SPT), and a fewmore to
distinguish between AD and healthy control group by performing
statistical analysis and discriminant analysis.

From a more linguistic perspective, silences in conversation
have been analyzed in terms of distinct categories, with several

terms coined to distinguish these, especially pauses at speaker
changes or turn changes. Sacks et al. (1978) distinguished three
kinds of silences in speech: pause (silence within the same
speaker), gap (shorter silence at speaker change), and lapse
(longer pause at speaker change). A normal gap duration is
200–1000 ms, as reported in the literature (Heldner and
Edlund, 2010). Levinson (1983) employed a turn-taking
system by integrating its forms and functions and categorized
silence into three categories: within-turn silence (pause), inter-
turn silence (gap or lapse), and turn silence (attributable silence).
Researchers investigated turn silences within the framework of
conversational analysis (CA) and Relevance Theory (RT) by
taking into account the communicators’ psychological factors,
i.e. why they resort to silence rather than other means of
communication to avoid giving a dis-preferred response
(Wang, 2019). Applying these ideas to Alzheimer’s discourse,
Davis and Maclagan (2009) showed that both filled and silent
pauses are keyed to functions within narration and within a
conversation. They demonstrated that filled pauses (e.g. “uh” and
“um”) serve as placeholders and hesitation markers while silent
pauses serve as a function for word finding, planning a word, and
narrative level as well as an indicator of decreases in other
interactional and narrative skills. They utilized the convention
of Crystal and Davy (2016) to distinguish between micro-pause
(less than a second), average pause (less than 2 s), and long pause
(longer than 2 s) with elderly people (speech rate decreases
with age).

CA’s emphasis on conversation as a collaborative achievement
demonstrates that examining interaction can provide more
insight than separate analysis of the contributions of the two
halves: each contribution to the conversation is built upon and
responds to the partner’s previous contribution. Perkins et al.
(1998) explored turn-taking behavior, repairs, and topic
management in conversations with dementia, and
demonstrated that cognitive deficits may compromise the
ability to secure the conversational floor or hold onto it and
that failure to maintain topics often leads to topic changes by the
conversational partner. Jones et al. (2016) presented a CA study
of dyadic communication between clinicians and patients during
initial specialist clinic visits, while Elsey et al. (2015) highlighted
the role of carer, looking at triadic interactions among a clinician,
a patient, and a carer. They established differential conversational
profiles that distinguish between nonprogressive functional
memory disorder (FMD) and progressive neurodegenerative
disorder (ND), based on the interactional behavior of patients
responding to neurologists’ questions about their memory
problems. Davis et al. (2014) examined how effective
communication can be with the usage of strategies such as
quilting, go ahead, and indirect questions between residents
with dementia and their conversation partners, exploring
various aspects including the impact of different types of
questions, delayed responses, and the number of ideas in
response using idea density.

Interactional features, therefore, promise one way to help
alleviate the problems discussed in Section 1, by contributing
to general, noninvasive methods of diagnosis that can be applied
in natural everyday conversation, and some recent work has
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therefore investigated computational models using machine
learning techniques. In a recent study, Mirheidari et al. (2019)
performed an automated analysis for dementia detection with
CA-inspired features, together with some language and acoustic
features, achieving a classification accuracy of 90%. Luz et al.
(2018) built a predictive model based on content-free features
extracted from dialogue interactions from spontaneous speech in
more natural settings using the CCC corpus of patient interview
dialogues (Pope and Davis, 2011). They achieved promising
results with an accuracy of 86% with only dialogue
interaction-based features with less reliance on the content of
task/dialogue. In a study building on the PREVENT Dementia
project, de la Fuente Garcia et al. (2019) built a protocol for a
conversation-based analysis study to investigate whether early
behavioral signs of AD may be detected through dialogue
interactions. Interactional patterns are considered among the
current challenges to be addressed to make the spoken dialogue
systems usable by older adults or frail patients (Addlesee et al., 2019).
The purpose of this study is to investigate a new set of interactional
features in AD conversations and evaluate their use in a
computational model for AD classification.

DATASET AND FEATURES

Dataset and Participants
This study aims to investigate the behavior of AD patients based
on the interaction patterns, including repairs and pauses within
utterances and between turns, observed in a corpus of dialogue.
This is a post hoc study based on an existing dataset, the CCC
corpus, collected and distributed by the Medical University of
South Carolina (MUSC) (Pope and Davis, 2011). The CCC
corpus is a digital collection of semi-structured interviews
including time-aligned transcripts with audio and video for
some of the samples. These conversations are not based on a
fixed task like picture description, but rather are based on the
general discussion on daily routine, health, and different
occasions like Christmas. AD subjects were aged 65 years and
older with their AD at relatively moderate stages, while non-AD
subjects include unimpaired persons with 12 chronic diseases of
similar age. Each patient is interviewed by a different interviewer,
either a linguistics student or a person from the community
center involved. The demographic and clinical variables available
include age range, gender, occupation prior to retirement,
diseases diagnosed, and level of education (in years). Patients
and interviewers are anonymized for security and privacy
reasons. Access to the data was granted after ethical review by
the both Queen Mary University of London (via QMERC 2019/
04 dated April 25, 2019) and MUSC. As this dataset includes only
elder patients, with diagnosed dementia of Alzheimer’s type at
moderate stage, it can only allow us to observe patterns associated
with AD at a relatively advanced stage. This does not directly tell
us whether these extend to early-stage diagnosis. However, it has
the advantage of containing relatively free conversational
interaction, compared to the more formulaic tasks and one-
sided interaction available in corpora more commonly used in
AD research, e.g. DementiaBank (Becker et al., 1994).

For this particular study, we use the transcript and audio
recording from one dialogue conversation chosen randomly
from each of a total of 30 patients: 15 AD diagnosed
patients (4 male, 11 female) and 15 patients (4 male, 11
female) with other chronic diseases including diabetes, heart
problems, arthritis, high cholesterol, cancer, leukemia but
not AD; no patients were diagnosed as having breathing
problems. These groups are selected to match the age
range, to compare the different patterns of interaction, and
to avoid bias. The demographic data of the participants are
given in Table 1.

Disfluency Features
Detailed language use research helps us to find the indications of
language impairment in AD and is a step toward the design of
future clinical diagnostic tools. Disfluencies like self-repairs,
pauses, and fillers are widespread in everyday speech
(Schegloff et al., 1977). Disfluencies are usually seen as
indicative of communication problems, caused by production
or self-monitoring issues (Levelt, 1983). Individuals with AD are
likely to deal with troubles in language and cognitive skills.
Patients with AD speak more slowly and with longer breaks,
and invest extra time seeking the right word, which in effect
contributes to disfluency (López-de Ipi et al., 2013). The present
research explores the disfluencies present in the speech of AD
patients as they contribute to the severity of symptoms.

Self-repair disfluencies are typically assumed to have a
reparandum–interregnum–repair structure, in their fullest
form as speech repairs (Shriberg, 1994). A reparandum is a
speech error subsequently fixed by the speaker; the corrected
expression is a repair. An interregnum word is a filler or a
reference expression between the words of repair and
reparandum, often a halting step as the speaker produces the
repair, giving the structure as in (1)

John [ likes
︸��︷︷��︸

reparandum

+ { uh }
︸��︷︷��︸

interregnum

loves ]
︸��︷︷��︸

repair

Mary (1)

In the absence of reparandum and repair, the disfluency
reduces to an isolated edit term. A marked, lexicalized edit
term such as a filled pause (“uh” or “um”) or more phrasal
terms like “I mean” and “you know” can occur. Recognizing these
elements and their structure is then the task of disfluency
detection.

TABLE 1 | Demographic data for AD and non-AD patients, with dialogue duration
in minutes.

AD Non-AD

(N = 15) (N = 15)

Age range 60–89 60–79
Years of education 9–16 8–16
Gender M:4 M:4
– F:11 F:11
Total duration of dialogues 152 179.7
Average dialogue duration 10.13 11.97
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Here, each word is either tagged as a repair onset tag (marking the
first word of the repair phase), edit term (edit_terms), or fluent word
by the disfluency detector. To get themost information fromdifferent
types of disfluency, we split repairs between the broad classes of
verbatim repeats (Rpt), substitutions (Sub), and deletes (Del):

1) “So (he + he) brings the fresh flowers . . .”
Repeats

2) “(Someone said that + I heard someone out here say) it is
getting quite cool outside, is it?”
Substitution

3) “. . .and I looked [at + (uh)] and answered her question. . .”
Deletes

We automatically annotated self-repairs using a deep-learning-
driven model of incremental detection of disfluency developed by
Rohanian and Hough (2020) and Hough and Schlangen (2017).1 It
consists of a deep learning sequence model, a long short-term
memory (LSTM) network, which uses word embeddings of
incoming words, part-of-speech annotations, and other features
in a left-to-right, word-by-word manner to learn a sequence model
of, and predict, disfluency tags according to the structure in (1) and
any other edit term words. The model is trained on the disfluency
detection training section of the Switchboard corpus (Godfrey
et al., 1992), a sizablemultispeaker corpus of conversational speech.
Rohanian and Hough (2020) reported the automatic disfluency
detector achieves an F1-score accuracy on detecting the first word
of the repair phase at 0.743 and an F1-score accuracy of 0.922 on
detecting all edit term words on the Switchboard disfluency
detection test data. We considered its accuracy adequate for our
purposes. Automatically deriving the types of interest from the
tagger’s output, we use four disfluency tags for patients (P) and four
for interviewers (I) resulting in a total of eight disfluency features
(details in Table 2).

Interactional Features
Annotation Protocol
We consider any silence of at least 0.5 s length for this particular
study. To categorize the silences, we employed Levinson (1983)’s

definitions: pauses (silences within a single speaker’s turn), gaps
and lapses (silences between speaker turns), and attributable
silences (silences where speaker changes were expected but did
not occur). We further categorized pauses into short pause (SP)
and long pause (LP). An SP is a silence that occurs inside a
single speaker turn, which we advised in the annotation
protocol for average speech rates is greater than 0.5 s and
less than 1.5 s; an LP is a longer pause within a single speaker
turn, normally at least 1.5 s. We used guidelines for these
thresholds rather than strict rules, because of different speech
rates, and the judgment was left to annotators as to which
category the pause fell into based on their perception. Both
SPs and LPs may occur either at a transition relevance place
(TRP) or not at a TRP, but no speaker change occurred. TRPs
are junctures at which the turn could pass from one speaker
to another.

For inter-turn silences and attributable silences, we did not
use explicit time thresholds—annotators used their judgment
when listening to the silences in the context of the conversation
closely and categorized them according to the following
definitions. We define a gap (GA) as a silence at a speaker
change (i.e. turn boundary, with speaker change from I-P or
vice versa P-I) which is not perceived as unusually long.
Following Sacks et al. (1978), a lapse (LA) is then
distinguished from a gap by not only being longer by
“rounds of possible self-selection” but also involving a
discontinuity in the flow of conversation. More precisely,
annotators were told to annotate a silence as a lapse for
unusually long silences in communication between two
individuals, at TRPs, and after which one participant (usually
the interviewer in this dataset) initiates a new topic (topic shift).
The final category, attributable silence (AS), occurs when the

TABLE 2 | The proposed disfluency feature set.

Feature Description

Patient features
# edit_terms Number of # edit_terms within P utterances normalized by the total # of words spoken by P
# Rpt Number of verbatim repeats within P utterances normalized by the total # of words spoken by P
# Sub Number of substitutions within P utterances normalized by the total # of words spoken by P
# Del Number of deletes within P utterances normalized by the total # of words spoken by P

Interviewer features
# edit_terms Number of # edit_terms within I utterances normalized by the total # of words spoken by I
# Rpt Number of verbatim repeats within I utterances normalized by the total # of words spoken by I
# Sub Number of substitutions within I utterances normalized by the total # of words spoken by I
# Del Number of deletes within I utterances normalized by the total # of words spoken by I

TABLE 3 | Inter-annotator agreement: Cohen’s kappa (κ) and observed
agreement (Ao )

Feature name Acronym κ Ao

Short pause SP 0.55 0.83
Long pause LP 0.46 0.79
Gap GA 0.88 0.94
Lapse LA 0.75 0.96
Attributable silence AS 0.66 0.98
Overall – 0.66 0.75

1The python implementation used is at https://github.com/clp-research/deep_
disfluency
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current speaker selects another next speaker (by asking a
question, by naming, or by looking at them), thereby putting
the selected speaker under the obligation to speak next, but for
one reason or another, that selected speaker does not respond;
after the silence, the current speaker, therefore, continues the
conversation (Elouakili, 2017). We define attributable silence as
a longer silence after a question is asked from one party, no
response from the other, and the first party then continues.
Examples of these pause types with conversation samples are
given in the Supplementary Materials. We also differentiated
between speakers (patient P and interviewer I) by assigning
speaker ID (SP_ID) to each labeled pause.

These annotations were performed using both transcripts
and audio files using ELAN software (Sloetjes and Wittenburg,
2008).2 To check the inter-rater agreement, two annotators
annotated the silences of at least 0.5 s in one randomly
selected AD patient dialogue; both had a good knowledge of

linguistics and were familiar with the annotation rules. We use a
multi-rater version of Cohen’s κ (Cohen, 1960) as described by
Siegel and Castellan (1988) to establish the agreement of
annotators in terms of the overall agreement on all pause
types, and also in terms of each pause type individually—see
Table 3. We got an overall substantial agreement of κ � 0.66 for
all categories of pauses. We got lower, though still moderately
strong, κ values for LP and SP as these are pauses within the
same speaker utterances and patients are older people with
lower speech rates, making it more difficult to decide
whether there is a relatively shorter or longer pause at certain
lengths around the recommended boundary of 1.5 s.

Temporal Measures of Dialogue Interactions
Table 4 presents the extracted set of high-level interactional
features to quantify the P–I interactions. There are 14 features
for P and 12 features for Iwithin the conversation and six features
for overall conversation. This results in a set of 32 features
representing the interaction within the natural dialogue
conversations. We normalize the number of pauses within P

TABLE 4 | The proposed interactional feature set.

Feature Description

# LA Total number of LA is sum of normalized no. of LA from P–I and I-I
Dur_LA Sum of average LA duration from P–I and I–I
# GA Total number of GA is the sum of normalized no. of GA from P–I and I–P
Dur_GA Sum of average GA duration from P–I and I–P
# overlaps No. of segments spoken simultaneously by both P and I. This feature indicates frequency of occurrence that may be

attributed to speech initiation difficulties. (Young et al., 2016)
#Turn_switches per Minute This is calculated by the number of turns per 60 s
Patient features
# SP Number of SP within P utterances normalized by the total # of words spoken by P
Dur_SP Total duration of SP normalized by the total duration of speech by P without pauses
# LP Number of LP within P utterances normalized by the total number of words spoken by P
Dur_LP Total duration of LP normalized by the total duration of speech by P without pauses
# GA(P–I) Number of GA at turn transition from P–I normalized by the total number of turns in the conversation
Dur_GA(P–I) Average duration by considering the total duration of GA (P–I) divided by # GA(P–I)
# AS Normalised number of attributable silence AS after posing the question from I–P
Dur_ AS Average duration of AS from I–P with no response
Standardized pause rate (SPR) SPR is obtained by the total number of words spoken by P divided by the sum of SP and LP.
Standardized phonation time (SPT) SPT is the total number of words spoken by P to the total speech time of the patient excluding SP and LP.
Transformed phonation rate TPR “The arcsine of the square root of the phonation rate (PR)” (Beltrami et al., 2018). PR is the speech time of P to the total

speech time of P including SP and LP
Floor control ratio This featuremeasures the relative amount of time (quantify dominance) the P spends speaking to the total speech time of the

conversation (Aldeneh et al., 2019)
turn_length This feature measures the number of words per turn spoken by P
speech_rate Speech rate is the number of syllables per minute produced by P. It is calculated as the total numbers of syllables produced

by P to the total speech time (in minutes)
Interviewers features
# SP Number of SP within I utterances normalized by the total # of words spoken by I
Dur_SP Total duration of SP normalized by the total duration of speech by I without pauses
# LP Number of LP within I utterances normalized by the # of words spoken by I
Dur_LP Normalized duration of LP
# GA(I-P) Number of GA at turn transition from I–P normalized by the total number of turns
Dur_GA(I–P) Average duration of GA (P–I)
# LA(I–I) Total # of LA is sum of all LA (I–I) normalized by # of turns
Dur_LA(I–I) Average LA duration from I–I with the topic shift
# LA(P–I) Normalized # of LA from P–I with a topic shift
Dur_LA(P–I) Average LA duration from P–I with the topic shift
turn_length This feature measures the # of words per turn spoken by I
speech_rate This feature measures the number of syllable per minute during speech by I

2https://archive.mpi.nl/tla/elan
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or I by the number of words spoken by each respectively instead
of normalizing by the number of utterances because it may be
possible that when P speaks, they use a smaller number of words
per utterance.

ANALYSIS AND EXPERIMENTS

Statistical Analysis
To investigate the importance of each feature, we calculated the
mean and standard deviation (SD) for each group (AD and non-
AD).We chose a nonparametric independent sample test (Mann-
Whitney U) on disfluency and interactional features due to the
small sample size.We applied a nonparametric test as a two-tailed
test for unpaired samples and unequal variances. The value
p< 0.05 was chosen for statistical significance. IBM SPSS
version 26.0 was used for the statistical analysis.

Disfluency Features Analysis
Patient Features
Table 5 shows the results of our analysis indicating a significant
difference between AD and non-AD patient groups in terms of
the rate of patient edit terms, repeats, and substitution per word.
The rate of edit terms is significantly higher (p � 0.001) for AD
patients with amean of 0.029 (SD � 0.009) compared to 0.017 (SD
� 0.006) for non-AD patients. Furthermore, the rate of verbatim
repeat disfluencies is significant (p � 0.011) with a higher mean
value for AD patients than non-AD patients (0.027 vs. 0.011). The
findings also indicate a significant correlation between conditions
and substitution disfluencies (p � 0.045), again with higher rates
for AD patients vs. non-AD patients (0.012 vs. 0.008).
Disfluencies are known to be symptomatic of communication
difficulties. People who suffer from AD typically experience
communication problems through weak conversation flow; it
is reasonable that this will be observable through increased
disfluencies in dialogue. The rate of delete disfluencies is,
however, not found to be significantly different between AD
and non-AD patients, possibly due to lack of data as they are
very rare.

Interviewer Features
As with patient features, we found that there is a significantly
greater rate of edit terms in conversations with AD patients (p �
0.013) with a mean value of 0.009 (SD � 0.011) compared to 0.004
(SD � 0.004) for those with non-AD patients. The rate of repeat
disfluencies (p � 0.048) is also significantly greater with a mean
value of 0.010 (SD � 0.008) in interviewer speech with AD
patients and a mean value of 0.007 (SD � 0.006) in
interviewer speech with non-AD individuals. The rate of delete
and substitution disfluencies are not found to be significantly
different in interviewer speech with AD and non-AD patients.
The fact that there are more disfluencies in the interviewer’s
speech suggests that trouble with communication is shared
between both participants, in line with the Conversation
Analytic emphasis on collaborative achievement.

Interactional Features Analysis
Table 6 presents the mean, SD, the p-values, and test statistic U
(for Mann-Whitney U test) for each of the interactional features
reported in Table 4. Significant differences between the AD and
non-AD groups are marked in bold. Overall, the total number of
GA and the total number of LA are found to be significantly
higher in the AD group. There were fewer turn switches in AD
dialogues with a mean of 2.544 compared to non-AD dialogues
with a higher mean of 3.510. Figure 1 shows the distributions of
three significant features with Figure 1A–C and Figure 1D
representing the distribution of a nonsignificant feature, i.e.
average duration of LA (P–I) between AD and non-AD
groups. There is a great number of AS shown in Figure 1A
with longer silences in the AD group than the non-AD group. The
Y-axis shows the normalized duration while the X-axis shows the
frequency of duration of the AS in each group.

Patient Features
Our analysis found that the patient’s long pauses, duration of long
pause, number of gaps from P–I, and duration of AS exhibit
significant differences between AD and non-AD patient groups.
Standardized phonation time of patients is significantly lower for
AD patients, with a mean of 2.113 and variability of 0.531 for AD
patients, and a mean of 2.839 for non-AD patients. Mean turn
length is significantly higher at 22.52 s for non-AD patients
compared to 12.142 for AD patients. These results suggest AD
patients produce a greater number of pauses with a longer
duration (>1.5 s), with slower speech rates than non-AD
patients. These longer pauses within the patients’ utterances
signal the difficulty in lexical search and semantic processing
problems of finding key components related to events, places, etc.
Additionally, the results suggest that AD patients exhibit higher
variability in the time they either respond to questions by
clinicians (resulting in high values for the number of gaps
from I–P with larger delays) or they preferred attributable
silences (mean duration of 2.468 for AD patients as compared
to 0.414 for non-AD patients) instead of response. Notably, the
floor control ratio is higher for non-AD patients, suggesting that
AD patients hold the floor for less time compared to non-AD
patients. The number of short pauses and duration of short

TABLE 5 | Descriptive statistics (mean, SD) and statistical significance of the
disfluency feature set. ** denotes highly significant at p <0.01; * denotes
significance at p<0.05

Features AD Non-AD Mann-Whitney U
test

Mean SD Mean SD P U

Patient features
# edit_terms 0.029 0.009 0.017 0.006 0.001** 183.5
# Rpt 0.027 0.015 0.011 0.13 0.011* 172.0
# Sub 0.012 0.007 0.008 0.008 0.045* 161.0
# Del 0.005 0.005 0.003 0.005 0.256 137.0

Interviewer features
# edit_terms 0.009 0.011 0.004 0.004 0.013* 170.5
# Rpt 0.010 0.008 0.007 0.006 0.048* 157.0
# Sub 0.05 0.006 0.004 0.004 0.743 145.0
# Del 0.002 0.003 0.001 0.001 0.154 153.0

The boldfaced numbers indicate the best results.
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pauses were not found to be significant between AD and non-AD
patients, suggesting that short pauses are present naturally for
breathing and for planning at the word or phrase level.

Interviewer Features
We found that the duration of LP is approaching significance
with the mean 0.033 (SD � 0.023) for interviewers with an AD
patient being higher than 0.021 (SD � 0.037) for those with non-
AD patients. While only a tendency, we can tentatively conclude
interviewers tend to insert longer silences while interacting with
AD patients. The number of GA at I–P turn changes is
significantly greater at turn exchanges with AD patients, with
an average of 0.103 with a longer duration of 1.515 compared to
the mean of 0.052 with a relatively shorter duration on average of
1.011 at turn exchanges with non-AD patients. The number of LA
is also highly predictive among the two groups in the P–I turn
changes. This means that the frequency of initiating a new topic
by the interviewer after a considerable amount of silence after the
patient has stopped speaking is higher in the AD group with a

mean of 0.031, compared to 0.002 for non-AD patients. Finally,
we found that the average turn length of interviewers interacting
with AD patients is 9.155 s (SD � 4.320) compared to 23.31 s (SD
� 22.31) with non-AD interactions, the mirror image of the case
with patient turn length, where AD patients have far longer turns.
This reveals that although the interviewers paused for longer
periods within their turns while interacting with AD patients they
also tend to speak for a shorter period of time.

Our study provides strong evidence that these interactional
features including pause duration, gaps, lapse duration, presence
of attributable silences, phonation time, and turn length seem to
be sensitive markers of cognitive decline and also distinguish the
AD group from the non-AD group.

Classification Experiments
Our final goal is to perform a classification task to assess whether
AD prediction can be improved by integrating these inter-speaker
interactional features with the intra-speaker disfluency features.
We study the influence of these features using three machine

TABLE 6 | Descriptive statistics (mean, SD) and statistical significance for our interactional feature set. We report p values obtained fromMann-Whitney U tests against a null
hypothesis with no differences in distributions of these interactions on AD. ** denotes highly significant at p< 0.01; * denotes significance at; - shows a trend toward
significance at p<0.1.

Features AD Non-AD Mann-Whitney U test

Mean SD Mean SD p U

#LA 0.051 0.053 0.011 0.020 0.013* 171.5
Dur_LA 3.195 2.592 1.041 1.927 0.026* 166.0
# GA 0.228 0.121 0.104 0.071 0.010* 174.0
Dur_GA 1.400 0.464 1.100 0.245 0.067- 156.0
# overlaps 0.073 0.029 0.109 0.082 0.595 99.0
#Turn_switches per Minute 2.544 0.835 3.510 1.447 0.026* 59.5
Patient features
# SP 0.034 0.013 0.032 0.018 0.455 130.5
Dur_SP 0.064 0.022 0.082 0.06 0.254 85.0
# LP 0.022 0.016 0.012 0.017 0.013* 171.5
Dur_LP 0.106 0.078 0.054 0.065 0.016* 169.5
# GA(P–I) 0.103 0.067 0.052 0.054 0.015* 170.5
Dur_GA(P–I) 1.515 0.820 1.000 0.368 0.098- 152.5
# AS 0.010 0.013 0.002 0.002 0.067- 157.0
Dur_ AS 2.468 3.243 0.414 0.724 0.037* 163.0
(SPR) 22.158 12.54 36.40 28.19 0.137 76.0
(SPT) 2.113 0.531 2.839 0.060 0.002** 41.0
TPR 1.041 0.115 1.114 0.157 0.081- 70.0
Floor control ratio 0.596 0.172 0.712 0.183 0.098- 72.5
turn_length 12.142 6.59 22.52 20.34 0.007** 168.5
speech_rate 164.91 35.74 180.1 37.82 0.345 89.0

Interviewer features
# SP 0.013 0.009 0.017 0.02 0.935 110.0
Dur_SP 0.029 0.020 0.034 0.036 0.902 109.0
# LP 0.006 0.006 0.005 0.007 0.126 149.5
Dur_LP 0.033 0.023 0.021 0.037 0.061- 157.5
# GA(I–P) 0.125 0.068 0.052 0.033 0.002** 184.5
Dur_GA(I–P) 1.363 0.365 1.011 0.301 0.041* 161.5
# LA(I–I) 0.020 0.023 0.027 0.068 0.305 137.5
Dur_LA(I–I) 3.291 3.696 1.316 1.951 0.106 151.5
# LA(P–I) 0.031 0.037 0.002 0.003 0.009** 175.0
Dur_LA(P–I) 2.552 2.161 1.163 2.317 0.081- 155.0
turn_length 9.155 4.320 23.31 22.31 0.001* 34.0
speech_rate 195.49 32.89 183.05 43.09 0.325 137.0

The boldfaced numbers indicate the best results.
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learning classifiers: logistic regression (LR), support vector
machines (SVM), and multilayer perceptron (MLP). We train
each classifier using disfluency features, interactional features,
and then by combining both. As the dataset is fairly small, we
did not use separate splits of data for train and test, but rather
follow a leave-one-out cross validation (LOOCV) scheme to get a
better estimation of generalization accuracy. This process
involves selecting one participant as a test and training the
classifier on the remaining instances. This process is repeated
until all instances have been selected for testing. The
resulting accuracies on all folds are then aggregated into a
final score. We build our models using the Scikit-Learn library
(Pedregosa et al., 2011). We optimize our models with the

following hyper-parameters: logistic regression with
C ∈ {0.001,0.01,0.1,1,10,100,1000} using the “liblinear” solver;
SVM with C ∈ { 0.1, 1, 10, 100, 1000}, c ∈ {1, 0.1, 0.01, 0.001,
0.0001}, using the kernels “rbf” and “poly”; and MLP with the
“relu” activation function, hidden layer sizes of (2,3), and (3,4)
and an initial learning rate of 0.01. We also performed a recursive
feature elimination (RFE) method on both interactional and
disfluency feature set to eliminate the weakest features with
the purpose of removing any dependencies and colinearity.
RFE is a feature selection method that removes a certain
number of weak features per iteration and fits the model with
the remaining features. We then train each classifier with the top
15 ranked features based on RFE.

FIGURE 1 | Feature value histograms for a selection of different pause types, showing differences in distributions between AD and non-AD dialogues. (A) Average
duration of patient attributable silences AS; (B) duration of patient long pauses LP; (C) frequency distribution of interviewer-to-patient gaps GA(I–P); (D) duration of
patient-to-interviewer lapses LA(P–I). (A), (B), (C) show distributions that are significant at p<0.05, while for (D) 0.05<p< 0.1.
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Because our dataset is balanced, we reported our results in
terms of accuracy, precision, recall, F1 score, and area under the
ROC curve (AUC) as evaluation metrics. Precision measures
what percentage of AD predictions correspond to real cases of AD
(i.e. true positive divided by true positive and false positive).
Recall measures the percentage of the actual AD occurrences that
were detected (i.e. true positives divided by false negative plus true
positive). F1 is the harmonic mean of precision and recall. AUC is
commonly used for evaluating the performance of clinical
diagnostic and predictive models (Zou et al., 2007). The ROC
curve is used to show the trade-off between true positive rate
(TPR, recall of the AD class) and false positive rate (FPR, one-
recall of the non-AD class). Different clinical diagnostic scenarios
may call for different TPR/FPR trade-offs, so the area under the
curve (AUC) is used to express the overall level of diagnostic
power; AUC greater than 0.75 is usually recommended for
clinical purposes (Orimaye et al., 2017).

Classification Results and Discussion
Table 7 provides the classification accuracymeasures obtained using
an individual group of features for combining both sets of features
and when applying RFE top 15 selected features against all three
classifier algorithms—LR, SVM, and MLP. It can be seen that the
SVM outperformed both LR and MLP using disfluency features,
interactional features, the combination of both, and with RFE-based
top 15 features. Comparing the two feature sets, the best scores
attained (with the SVM) are in fact identical with accuracies of 83%.
However, by combining the two feature sets we achieved the highest
accuracy of 90% with an F1 score of 0.90 with the SVM classifier.
With LR, we achieved an accuracy of 77% with disfluency features,
80% with interactional features, and an increase in accuracy of
roughly 7% when combining both feature sets with 87%.

MLP performed similarly to LR for disfluency features, with
the same accuracy and F1 score; however, it performs slightly
worse with the interactional features with an F1 score of 0.76
compared to LR and SVM. The combination of both feature
sets showed an increase in the F1 score to 0.80. From the
overall accuracy results with MLP, we can draw the conclusion
that as MLP is a feed-forward neural network with more
parameters and is a more data-hungry algorithm, the small

number of samples and small feature space available for
training is suboptimal.

Luz et al. (2018) used a probabilistic graphical model to classify
AD patients in the CCC, using a slightly bigger dataset but with
shorter dialogue conversations. They used only interactional
features, and achieved comparable accuracies of 0.757 with LR
and 0.837 with SVM classifiers; but did not investigate the role of
different pause types, or the combination with fluency.
Interestingly, they found that AD patients produce longer
turns with more words and a higher speech rate; this contrasts
with our results, in which AD patients produce fewer words than
non-AD patients, with lower speech rates. We note that our
findings align better with other research (Martínez-Sánchez et al.,
2013; Kavé and Dassa, 2018; Pistono et al., 2019a; Themistocleous
et al., 2020). Mirheidari et al. (2019) went a step further,
combining CA-inspired interaction features including turn-
taking behavior with some acoustic and language features, to
achieve a classification accuracy of 90% similar to this study.
However their approach is based on structured interviews
with chosen topics and question types, in more clinical
settings, and the use of features that directly target
particular aspects of this structure (e.g. responses to
particular setting-specific questions).

Effect of Disfluency Features
We found that disfluency tags help as features in AD detection.
With these disfluency features, we got the highest accuracy of 83%
with the SVM classifier, an identical accuracy to using
interactional features. It is also worth examining the ROC
AUC as it evaluates the different classifiers at different true
positive rates and false positive rates. Figure 2A shows the
ROC curve for the disfluency features with the SVM, with
AUC 0.85, and with TPR 0.87 and FPR 0.20 at the chosen
trade-off point. We have chosen this trade-off point as it gives
maximum accuracy.

Effect of Interactional Features
Our interactional features produced promising results in
distinguishing AD from non-AD with overall accuracy
reaching 83% with the SVM classifier, showing that
interactional patterns can provide salient cues to the detection
of AD in dialogues. The results are further enhanced when
adding with disfluency language feature reaching an accuracy
of 90% and F1 score of 0.90. These results suggest that different
pauses behavior not only indicate word-finding difficulties as
AD progresses but also mark disfluency—in certain situations
showing these were used to sustain social interaction as part of
compensatory language (e.g. in the case of attributable
silences). The corresponding ROC curve is shown in
Figure 2B with AUC 0.87, and the chosen trade-off
between TPR and FPR (0.80 vs 0.13). It can also be seen in
Figure 2C that combining these interactional features with
language features over dialogues had the effect of improving
classification performance overall to AUC � 0.89, and
improving trade-offs between true positive (0.93) and false
positive rates (0.13), reducing the false positives while
increasing the true positives.

TABLE 7 |Comparison of results for the AD classification with three classifiers with
LOOCV.

Model Feature set Accuracy Precision Recall F1 score AUC

LR Language 0.77 0.75 0.80 0.77 0.74
Dialogue 0.80 0.81 0.80 0.80 0.80
Both 0.87 0.87 0.87 0.87 0.84
RFE (15) 0.83 0.86 0.80 0.83 0.81

SVM Language 0.83 0.83 0.83 0.83 0.85
Dialogue 0.83 0.83 0.83 0.83 0.87
Both 0.90 0.90 0.90 0.90 0.89
RFE (15) 0.87 0.87 0.87 0.87 0.85

MLP Language 0.77 0.75 0.80 0.77 0.75
Dialogue 0.80 0.77 0.76 0.76 0.79
Both 0.80 0.80 0.80 0.80 0.81
RFE (15) 0.80 0.80 0.80 0.80 0.80

The boldfaced numbers indicate the best results.

Frontiers in Computer Science | www.frontiersin.org June 2021 | Volume 3 | Article 64066910

Nasreen et al. AD Detection from Spontaneous Speech

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


We also reported the top 15 ranked features based on RFE as
shown in Table 8. These features were also found to be significant
in our statistical analysis (see Table 6). As with the statistical test-
based features, Dur_AS has been picked and is ranked first as the
most significant. This confirms the findings of Levinson (1983)
concerning attributable silences and aligns with conversation
analysis studies showing that individuals with cognitive decline

resort to silence rather than other means of communication to
avoid giving a dispreferred response. Among the other useful
features, not only the number of gaps and lapses are found to be
important but also the duration of gaps and lapses are observed
differently in both groups. Turn switches per minute, patient turn
lengths, and standardized phonation time are negatively
correlated with AD patients with higher mean values for non-
AD. That means turn switches happen more frequently, with
longer turn lengths, in conversations with non-AD patients
compared to AD individuals.

Error Analysis
The results in Table 9 show that the SVM model with disfluency
and interactional features attained the highest F1 score, precision,
and recall for both AD and non-AD classes; we show both classes
to provide a measure of both sensitivity (recall of the positive AD
class) and specificity (recall of the non-AD class), standard
measures for diagnostic tests. Note that due to the small
dataset, differences between modes are indicative rather than
statistically significant—see the confidence intervals in Table 9.
The model achieves F1 scores of 0.90 for both the AD and the
non-AD classes. Combining the disfluency features with
interactional features particularly improves the recall of the
AD class (i.e. improves the sensitivity of the classifier): the
SVM model with both feature sets has a recall of 0.93,
improving overused disfluency features alone at 0.87 and over

FIGURE 2 | ROC curves for SVM classification experiments with (A) disfluency features, (B) interactional features, (C) the combined feature set. The red bubble
shows the chosen trade-off point for the classification experiment results in Table 7.

TABLE 8 | Top 15 ranked features including disfluency and interactional features
by RFE.

Features Type Ranking

Dur_AS Interactional 1
turn_switches_per_minute Interactional 2
Dur_LA Interactional 3
Dur_LA (P-I) Interactional 4
#GA Interactional 5
TPR Interactional 6
P_RPT Language 7
I_turn_length Interactional 8
Dur_LA (I-I) Interactional 9
# LA Interactional 10
I_edit_terms Language 11
P_edit_terms Language 12
SPT Interactional 13
P_Turn_Length Interactional 14
I_Speech_rate Interactional 15
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the 0.80 achieved with interactional features. The specificity
(recall for the non-AD class) was lowest when using language
features only at 0.80, significantly lower than the 0.87 achieved
by both using dialogue features alone and combining both
feature sets. A balanced F1 score for both the AD and non-
AD classes with all three combinations was achieved overall
with our chosen threshold (0.84 vs 0.83 for disfluency features,
0.83 vs 0.84 with interactional features, and 0.90 for the
combined feature sets). Depending on the application the
model is used for, higher sensitivity or higher specificity for
AD detection will be more or less desirable and this can be
achieved in line with the AUC results shown in Figure 2, but as
it stands using the combined feature set considerably increases
the sensitivity of AD diagnosis over the most sensitive single
feature set classifier (language features) while maintaining a
high specificity on par with that achieved using dialogue
features. We can observe the confusion matrices of
predictions of the SVM Model with language, interactional,
and combining both in Figure 3which show the influence of (A)
and (B) on (C).

CONCLUSION

This study investigated techniques for the diagnosis of dementia
using features of disfluency and interaction in natural dialogue
conversation, rather than relying on linguistic features alone, or
either structured interviews or picture description tasks. We first
performed a statistical analysis on the disfluency and
interactional features. This analysis indicates that the relative

frequency of edit terms, verbatim repeats, and substitution
disfluencies are derived measures of disfluency in natural
conversations that have different distributions in interviews
with AD patients and those with non-AD patients. We also
found that most of the interactional features, including
attributable silences, gaps, lapses, turn lengths, and turn
switches per minute, are sensitive cues in discriminating AD
patients from non-AD patients. We also observed that in natural
conversation not only are patients’ conversation characteristics
affected but also distinctive patterns can be observed in
interviewers’ or carers’ conversational behavior when talking
to AD patients.

Our results showed the efficacy of detecting AD from dialogue
using machine learning classifiers with different feature sets,
which involved using them separately and then combining
them. We obtained identical overall accuracy scores when
both using disfluency features and interactional features
separately at 83%. Disfluency features hold predictive power
for the identification of AD, giving rise to a classifier with
higher sensitivity (recall on AD � 0.87 vs 0.80), while the
interactional dialogue features allow a higher specificity of AD
detection (recall of non-AD � 0.87 vs 0.80). However combining
the linguistic and interactional features obtained the most
sensitive and specific automatic diagnostic classifier (recall on
AD � 0.93, recall on non-AD � 0.87) with an overall accuracy of
90% on a balanced dataset, suggesting the potential benefits of
integrating these features into clinical assessments via natural
conversation as diagnostics.

We further plan to extend this study by introducing language
markers associated with AD severity beyond disfluencies, as well as

TABLE 9 | Results of AD classification task with SVM classifiers with different feature sets, using LOOCV, with 95% confidence intervals (CI).

Model Class Precision Recall F1 score Accuracy 95% CI

SVM AD 0.81 0.87 0.84 0.83 0.70–0.96
(Language) Non-AD 0.86 0.80 0.83 – –

SVM AD 0.86 0.80 0.83 0.83 0.70–0.96
(Dialogue) Non-AD 0.81 0.87 0.84 – –

SVM AD 0.87 0.93 0.90 0.90 0.79–0.99
(Both) Non-AD 0.93 0.87 0.90 – –

FIGURE 3 | Confusion matrices for AD classification task with different feature sets.
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interactions between them. In particular, we want to use a more
principled approach to lexical markers andmeasures of grammatical
fluency. We also plan to use acoustic features, including prosodic,
voice quality, and spectral features, which contribute to AD
recognition and have higher correlations and interact with
linguistic information. At the interactional feature level, we plan
to include dialogue act (DA) tags that provide more of the speaker’s
illocutionary content at the utterance level, including different tags
for questions, answers types, clarification requests, signals of
misunderstanding, and then use sequences of these DA tags to
predict the disrupted communication patterns in natural
conversations with AD patients.

While the results are promising, there are limitations to the
data used in this study. The CCC only contains older patients
with diagnosed dementia at moderate stages, so it can only
allow us to observe the patterns associated with AD at a
relatively advanced stage, and not whether these extend to
early-stage diagnosis. To overcome this, we need to collect
new datasets that contain spontaneous speech conversations
with patients at different stages of dementia to analyze
disfluencies and interactional features shown in early
cognitive decline.
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