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COVID-19 has changed the world fundamentally since its outbreak in January 2020. Public
health experts and administrations around the world suggested and implemented various
intervention strategies to slow down the transmission of the virus. To illustrate to the
general public how the virus is transmitted and how different intervention strategies can
check the transmission, we built an agent-based model (ABM) to simulate the transmission
of the virus in the real world and demonstrate how to prevent its spread with public health
strategies.
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INTRODUCTION

As a novel coronavirus, named SARS-CoV-2, reached epidemic proportions around the world,
policymakers, public health experts and different levels of administrative organizations
recommended various kinds of intervention strategies to slow down the outbreak of the virus.
This urgent work occurred at a rapid pace and was widely reported, yet the general public did not
uniformly enjoy an understanding of the basics of viral transmission in general or the specifics of
COVID-19 in particular that would help them make informed decisions about their own actions or
to support their community in lowering viral transmission. Since an effective public health response
relies in part on personal behavior change (Southwell, et al., 2020), and in the case of COVID-19,
such changes needed to occur amidst substantial misinformation about the virus (Brennan, et al.,
2020), we were intrigued by the problem of providing accessible tools for the public to learn about
viral transmission. We sought to create a tool that would provide users in the public at large with the
opportunity to explore for themselves how population uptake of different public health strategies
affects viral transmission. We built an agent-based model using Unity that uses data
structures to represent individuals in a community with rules governing the interaction between
individuals to simulate the process of viral transmission. The simulation’s interactive interface allows
users to change parameters that effect transmission, including intervention strategies. By changing
parameters at different points in the simulation, users can visualize how different public health
strategies affect the transmission of COVID-19 (Hoertel, et al., 2020). Leveraging Unity’s built-in
rendering system, users can visually monitor a simulated community epidemic situation as it unfolds,
make decisions about what strategies to implement and observe simulated outcomes. To gain some
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understanding of how users engaged the simulation, we
conducted a small qualitative user study with a sample of high
school and college students. The small user group supported the
contention that the simulation offers an accessible opportunity to
explore different viral spread mitigation strategies as well as the
effects on the timing in using these strategies in terms of curbing
community transmission.

MATERIALS AND METHODS
Agent-Based Modeling

We found that most of the models aiming to quantify the
effectiveness of different public health intervention strategies
for COVID-19 fell into one of the two general categories:
equation-based models or agent-based models. Compared with
agent-based models, equation-based models apply a “top-down”
structure. Research using equation-based models typically choose
compartmental models that are commonly used in epidemiology
such as SIR or SEIR models to simulate infectious diseases.
Within these models different parameters such as transmission
rate or contact rate can be manipulated to simulate the
effectiveness of different control strategies (Matrajt and Leung,
2020; Rocklov, et al., 2020). Agent-based models, on the other
hand, apply a “bottom-up” structure. In the usage applied to
epidemics, they start from using data structures to represent each
individual in the community and then let the individuals interact
with each other (thus spreading the virus) based on a selected set
of rules (Eubank et al., 2004; Cliff et al., 2018; Chinazzi et al., 2020;
Hoertel et al., 2020). The application of different intervention
strategies can change those rules accordingly. By engaging these
simulations, users can manipulate the parameters that confer
probability of infection as well as aspects of different intervention
strategies applied and observe the results.

The equation-based models we examined dealt with one or
two intervention strategies by adjusting coefficients. We found it
challenging to fit various intervention strategies reasonably into
one equation-based model to quantify the effectiveness of many
strategies applied concurrently (Lekone and Finkenstddt, 2006;
Biswas et al., 2014; Cuevas, 2020; Rocklov et al., 2020). Moreover,
adding parameters reflecting the implementation of epidemic
intervention strategies increases the complexity of an equation-
based model without necessarily making the model more valid
and accurate when making decisions (Roda et al.,, 2020). In a
“bottom-up” model, the effect of a strategy on the transmission of
the virus is reflected on an individual level (Eubank et al., 2004;
Cliff et al., 2018; Perkins et al., 2019; Chinazzi et al., 2020).
Implementing one or several strategies will change the person-to-
person transmissibility differently and the individual change will
accumulate to have an overall impact on the entire simulation.
Additional reasons for implementing an agent-based model are
that it can involve heterogeneity which categorizes individuals
with different roles representing their possible different responses
and actions in the system and take into account the dynamics of
agents across space and time (CIliff, et al., 2018; Perkins, et al.,
2019; Cuevas, 2020). Through the adjustment of simulation
parameters, the agent-based model enabled us to visually show
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users the simulated effects of differential uptake of public health
measures on virus transmission within the city arrangement.

Quantifying Transmissibility in Simulation
Our simulation is based on the following stochastic epidemic
transmission model (Hoertel et al., 2020). In epidemiology, basic
reproduction number, denoted as Ry, is interpreted as the
expected number of cases which are directly generated by one
case in a certain population. The formula of basic reproduction
number is:

ROZIBT

B is the number of infection-producing contacts per unit time,
and 7 is the mean infectious period. In our model, for simplicity, t
can be regarded as the expected number

E(X) = np

where X, a random variable, is the number of persons an infected
person can transmit virus to per unit time, assuming X follows a
binomial distribution, and n, the number of other individuals a
person can meet per unit day. Hence, the person-to-person
transmissibility, p, is derived from basic reproduction numbers
Ry, assuming

Ry = E(X)t = npt

To compare the simulated effectiveness of different
intervention strategies we quantify each strategy’s effect on the
extent of transmissibility between individuals, p. For example, we
assume that masks can reduce the percent of disease-inducing
particles a person inhales or exhales (7). This makes the person-
to-person transmissibility equal to (I-m)*p. In a different
example, a stay-at-home order strategy can lower the number
of individuals met per day (n). Assuming that a stay-at-home
order can lower a percent of n, then the new n will be (1-a)*n.
Hence the expected number of cases, E(Y), when both masks and
a stay-at-home orders are in effect, can be represented as

EY)= (1-a)n(l-m)pr

If no strategies are implemented, then a and 7 are both 0. All
variables are adjustable in the simulation.

Simulation Design

The simulation was implemented using the popular game
development engine Unity version 2019.4.18flcl (Unity
Technologies (2020), San Francisco). We represent each
individual as a collidable sphere object and paint these spheres
with different colors to represent different health status conditions,
with green standing for “healthy,” orange for “infected,” red for
“detected,” and blue for “recovered.” The simulation follows a
timeline starting from day 0 at 12:00 a.m. Currently there are three
types of building structures: individuals’ residences (houses),
workplaces, and hospitals. Based on these three building
structures, the simulation follows a simple societal model:
individuals leave their houses at some point from 6:00 a.m. to
7:00 a.m, heading to their workplaces that are randomly assigned,
and go back to their houses from the workplaces at some point
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during 6:00 p.m. and 7:00 p.m. For any of their trips between
building structures, each individual will follow a random route
consisting of several roads on the map. Individuals can only move
in one of the four directions in the map defined as “left,” “right,”
“up” and “down.” So accordingly, roads will only have directions of
“left-right” and “up-down.” We make individuals randomly move
in one of the four directions when they are inside their houses or
workplaces, in order to enable them to have contact with other
people currently in the same building. To simply simulate
individual social interactions, the sphere objects that represent
individuals can collide with each other. Collisions won’t change
sphere objects’ original moving directions. In real life, an individual
may or may not interact with many different people in a day, but
the interaction numbers tend to be low (Zhaoyang et al., 2018). In
our simulation instances of interaction can get quite high, so we
have a parameter that sets a cap on at most how many collisions are
counted as valid for each individual per hour.

When a healthy individual interacts or collides with an
infected individual, there is a possibility that the healthy
individual can get infected (health status indicator changed
from green to orange). This possibility is called the
“Transmission possibility per contact” in the simulation and is
a parameter the user can set. From the point that an individual
becomes infected, we set up a timer for that individual to keep
track of how long they have carried the virus. We compared that
length with a preset “incubation time.” If an individual has carried
the virus longer than the incubation time, we assume a symptom
onset for them so that the agent will decide whether to go to a
hospital for a test. The probability of going for a test is also a
parameter that users can manipulate. Once an infected individual
decides to go for a test, regardless of their current location, they
will move to a random hospital on the map. Once an infected
individual arrives at any hospital, their status will change from
“infected” to “detected” (health status indicator changed from
orange to red) and they will remain in the hospital. After passinga
period of time which we set as “average cure time,” the detected
individual will either die or recover. The possibility of a person
dying can also be set as a parameter called “fatality rate.”
Recovered people will leave the hospital and go to their houses
automatically and continue their “house-work place” loop again.
For simplicity reasons, recovered people will neither get infected
again nor infect other healthy people.

During any stage of the simulation, the player can change the
public health strategies that they want to apply. Currently we only
have two strategies implemented--the “Put on masks” order and
the “Stay -at -home” order. If the player selects the “Put on
masks” order, there is a possibility for each individual to obey this
order to “put on a mask.” We simulate this effect by lowering the
transmission possibility between infected and healthy people with
their face masks on. If the player selects the “Stay -at -home”
order, there is a possibility for each individual to obey this order
to stay at their house all day, without commuting between their
workplace and house anymore.

The simulation is highly customizable and the user can simulate
the spread process of many viruses and infectious diseases other
than just COVID-19. The simulation allows the user to change the
following parameters (See Supplementary Material):

ABM Simulation of COVID-19 Strategies

e In terms of the attributes of virus itself
e Transmission possibility per contact--the possibility for a
healthy person getting infected each time they contact an
infected person;
e Initial Infected Percentage--the percentage of population
that get infected at the beginning of the simulation;
e Fatality rate--the ratio of deaths over the total number of
infected cases;
e Average incubation time--the average time in hours between
a person get infected and the onset of the symptom. After the
symptom onset, the infected person will realize they are
infected;
e Average cure time--the average time in hours it takes an
infected person to recover in a hospital;
e In terms of people’s general behavior in the simulation
e Average number of contacts with other people per hour--the
maximum number of valid contacts for each person per
hour. In other words, only the first this number of contacts
per hour a person has with others can generate infections.
e People’s tendency to have a test after they have symptoms--
possibility for an infected person to go to the hospital for a
test after they spot a symptom onset;
e In terms of public health strategy parameters
e Transmission possibility per contact with people wearing
masks--the reduced transmission possibility per contact
after putting “Put on masks” strategy into effect.
e People’s tendency to wear a mask--the possibility of each
person obeying the “Put on masks” order;
e People’s tendency to obey the “Stay--home” order.
¢ And overall, the user can change the size of the population.

The simulation itself is free to download and run. A video
description of the project, as well as the code for the simulation is
also available on the project website (see Supplementary
Material). The visualization of simulation data is conducted
via ggplot2 (Wickham, 2016) from R 3.6.3 (R Core Team,
2020). The simulation data is collected by outputting data into
local csv files. The write-out function is implemented within the
source code (also available, see Supplementary Material).

User Experience Focus Group

The simulation was shared with a convenience sample of seven
students (ages 16-21), all living in the United States in April 2021.
The study was run via Zoom, with students using their PC and
preferred web browser while sharing screen. Each student
participant was given 10 min to interact with the simulation
and the https://pongcenter.itch.io/anti-plague page while the
researcher muted and disabled her camera, unmuting only to
ask or answer questions. This was set in hopes of simulating a
natural, at-home environment, close to how the users would be
using this simulation. The users were then asked a list of questions
to answer related to any observations about the simulation and
their understanding of it (see survey report in Supplementary
Material). The interview was covered by a protocol approved by
UC San Diego’s Human Subjects Protection Program. All
participants provided consent and/or assent to participate (in
the case on minors) in this remote interview.
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FIGURE 1 | The resullts of different simulations given different parameter settings: (A) screen shot of the simulation given RO = 2.7 (B) same as in subplot a, but with
RO = 1.6 (C) shows how population density changes the rate of infection over time for the two different RO values shown in subplots a and b. Lines in each subplot show
time course of infected, recovered and death toll count for each set of conditions.

Frontiers in Computer Science | www.frontiersin.org 4 September 2021 | Volume 3 | Article 642321


https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Wang et al.

ABM Simulation of COVID-19 Strategies

A No Intervention
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FIGURE 2 | The results of different public health intervention methods on infection rate over time: (A) no intervention (B) “put on mask” intervention after first 20
cases detected (C) “stay at home” intervention after first 20 cases detected and (D) “stay at home” and “put on mask” in effect after first 20 cases detected.
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RESULTS

To examine the outcomes of our simulation, as well as the
effects of the public health strategies we implement, we ran
simulations in different scenarios to observe the outcomes. A
statistical comparison between our simulation and real world
data are not feasible at this point for multiple reasons, but
particularly due to the small size of the simulated population in
comparison with real world populations. The data shown here
offer an example of what a user might observe under different
parameter scenarios when using the simulation. To speed up
the simulation, we used Unity time units instead of the real-
world time units. In the simulations shown below, one Unity
time unit represents 1s, and 50 Unity time units will pass for
each frame.

Transmission Under Different Population
Density and Different Rq

We simulated two different R, in low density community. In
Figure 1A the R, is set to 2.7 and in Figure 1B the R is set to
1.6 while the population size is set to 215 in both cases. The two
different R scenarios generate substantially different results: in
Figure 1A over half of the community have been infected while
in Figure 1B approximately over one seventh of the population

have been infected. This simulation comparison illustrates the
idea that given the same community population density, a
disease with higher basic reproduction number is more
contagious and results in a larger number of infections. To
better illustrate the change rate of infected population,
recovered population, and death toll, we plot them as curves
in Figure 1C. Figure 1C shows simulation results under
different population density and different reproduction
number R, (Al-Raeei, 2021). Given the number of
residential buildings is stationary per simulation, the
population density is modified by changing the population
number each household can generate. High density is set to
have 15 agents generated per household. Medium density is set
to have 10 agents generated per household. Low density is set to
have five agents generated per household. The average number
of agents each agent can encounter per hour is set to 1. T is set to
a single Unity time for the sake of simplicity. The probability of
an infected agent transmitting virus to other agents per contact
is set to be 0.0667 under R, = 1.6. The probability of an infected
agent transmitting virus to other agents per contact is set to
0.1125 under R, = 2.7. The curves in the plots stop when there is
no change in the rate anymore. The simulation results show
that the transmission is fastest when both the population
density and basic reproduction number are high. In the
latter simulations, the total population of agents in the
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FIGURE 3 | The results of implementing both public health intervention
methods on infection rate at different phases of the pandemic: (A) both
interventions implemented at the beginning phase (B) both interventions
applied in a later phase of the pandemic.

simulation is set up to 430, using a medium density setting.
Each time we restarted the simulation the number of initial
infected persons was set to 8.

Transmission Under Different Intervention
Approaches

Figure 2 compares a no intervention scenario to three different
public health intervention scenarios: 1) mask order after 20
infected persons detected in the simulation, 2) stay-at-home
order after 20 infected persons detected, and 3) initiating both
mask and stay-at-home measures after 20 infected persons have
been detected. Figure 2A shows that by 2e+05 Unity time units
elapsed there are already over 340 persons infected, more than 79%
of the population. The infection number breaks over 400 at
approximately 2.7e+05 Unity time units elapsed. Figure 3B
shows that adding a mask order, the curve is slowed down and
by the end of 6e+05 Unity time, the infected population is less than
400. Figure 2C shows that under the stay-at-home mandate by the
end of 6e+05 Unity time, the infected population is less than 350,
showing that stay-at-home order is more effective than put-on-
mask alone. Figure 2D shows implementing two strategies
together is more effective than either single strategy alone.

ABM Simulation of COVID-19 Strategies

We also simulated the impact of implementing public health
strategies at different phases of the pandemic, using a medium
density setting. To simulate the effects of implementing public
health strategies during the beginning phase of the pandemic,
we initiated strategies right after the simulation started. To
simulate the effects of delayed implementation of public health
strategies, we initiated strategies only after 50 individual agents
have been infected. Figure 3 shows the simulated reduction in
infections by implementing public health strategies at the
beginning (Figure 3A) versus later in the pandemic
(Figure 3B).

User Experience Focus Group

Our user experience qualitative study provided insights into how
a small sample of high school and college students engaged with
the simulation through both direct observation and questions
about the experience (see Supplementary Material). It was clear
that users understood that the simulation’s primary purpose was
to reflect a pandemic setting and observe effects of public health
interventions on the rate of infection. These users reported
finding the simulation easy to use, although it was observed
that some users skipped the instructions and found themselves
going back to the instructions for more information once they got
further along. Some users made suggestions for further features or
functionality and three wanted to spend more than the allotted
10 min with the simulation in this study (all were provided with
the link to explore further on their own). The visualization aspect
was appreciated as several students noted that it was “cool” to see
the immediate effect of a simulation parameter change on viral
transmission.

DISCUSSION

From the time that SARS-CoV-2 was initially detected and
developed into a global pandemic, different public health
strategies were implemented around the world, with different
levels of population uptake and efficacy. Within the United States
alone, there have been many different approaches to mitigate the
spread of the virus, and quite varied adherence to these
recommended approaches, with concomitant results in
changing rates of infection. The type of public health
mitigation strategy, timing of implementation, and the uptake
of the strategy in the population all impacted the rate of
transmission in the real world (Bremmer, 2020; Gibney, 2020).
The presumed large number of asymptomatic cases demanded
ubiquitous and regular testing as well as contact tracing to detect
infected cases and has been simulated using an SEIR model that
sought to “visualize the invisible” (Peirlinck et al., 2020). Multiple
efforts have been invested in visualizing the spatial distribution of
viral transmission and its frequency through infographics (see
Leung et al. (2020) for review), however, there are key concepts
underlying viral transmission that are important to understand
for making science-based decisions that impact public health and
these remain challenging to grasp for the public at large. We
sought to create an accessible tool for users in the public sphere to
explore different aspects of viral transmission in a simulated
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environment along with the effects of applying simulations of
common public health interventions. Although our efforts were
small in scale and the evaluation of these were qualitative in
nature, our user group found the tool to be easy to use, and we
observed that the trends in our simulation in many ways mirrored
trends observed in viral transmission during COVID-19. It is
important to note, however, that this simulation has not been
validated with real-world data and therefore should not be used in
making health-related decisions.

Visualizations from the simulation shown in Figure 1 illustrate
an expected result: that without any interventions, the transmission
of a virus is quicker when its basic reproduction number Ry, which
measures the level of contagiousness, is high. The rate of
transmission is determined by the population density as well. In
our simulation, as the population density increased, the infection
rate increases rapidly and reaches its highest number quickly. By
making multiple aspects of viral transmission adjustable through
parameters in our simulation, we provide users with a way to
engage with these concepts and observe the effects.

Data from the simulation shown in Figure 2A illustrates that
the virus is transmitted rapidly at the beginning of the pandemic
and once approximately 90 percent of the population are either
infected, or immune, the rate of transmission slows down. Under
the same environment and setting we observe that the
intervention efforts applied alone (Figures 2B,D) and
especially together (Figure 2C) simulated
transmission rate dramatically.

The pandemic has demanded a shift in educational strategies in
all levels, from prior in-person instruction to predominantly
remote learning. This situation has emphasized the need for
hands-on learning opportunities that can be conducted at
home. In addition, in spite of the global spread of the COVID-
19 pandemic, we have not necessarily enjoyed a similar spread in
understanding the nature of viral transmission (Brennen et al.,
2020). Simulation also has a substantial role to play not only in
learning practical skills but also in arenas such as laboratory
learning and practicing simulated medical and dental
procedures (Tabatabai, 2020). There is also considerable value
in using simulations to reconsider work proximity, pedestrian
traffic flow and building density with respect to education
(Sutton and Jorge, 2020). Simulations that can be conducted at
home, on a personal computer, have potential for helping people
understand the nature of viral transmission and their individual
role in minimizing it. We believe our simulation also has value in
terms of inviting users to consider the science behind this sort of
simulation-based planning as well as learning more about the
simulation environment itself as it can be adapted and used for
other purposes. Our small qualitative user experience study
observations suggest that users do find the simulation to be
engaging, visually interesting and informative. A much larger
quantitative study would be needed with assessments conducted
both pre- and post-simulation engagement to understand what
students take away from the simulation in terms of knowledge
gained, behaviors changed, or assumptions challenged.

We would also like to note that although this simulation was
designed for informational purposes, it is possible that one might
compare the simulation results with real world data if the

slow down

ABM Simulation of COVID-19 Strategies

population size of the simulation were dramatically increased.
A rigorous statistical comparison with epidemiological data is
outside the goals of our simulation, and the computational power
available to us. We designed the simulation such that each agent
was fully-instantiated and existed at home, work, hospital or in
transit between those sites. Collisions could probabilistically
cause infection in any of those places, but this design choice
created a computational cost. It is not feasible to simulate a large
population size with a standard computer. We did not design our
simulations to model real-world data statistically, although with a
supercomputer this may be feasible. However, our simulation can
be a practical aid for learning about viral transmission and how
different public health measures might effect the transmission of
the virus. Although this simulation is developed with a goal to
simulate COVID-19, the parameters such as person-to-person
transmissibility, incubation time, fatality rate, etc., can be
manipulated to simulate other contagious diseases as well.

FUTURE DEVELOPMENTS

The simulation we developed serves only as a template or a
prototype for future development. By leveraging the power of
Unity’s user interface (UI) engine, it is relatively easy and
convenient for developers, including novice developers, to
extend the simulation’s features and functionality, thus
increasing the complexity of simulations to make them more
realistic. In the future iterations, we plan to build a UI that allows
players to edit the map by adding or deleting different building
structures and moving their positions. For example, we can develop
additional types of building structures such as public entertainment
venues and public commuting centers to simulate their effects on
viral transmission. We can also simulate the effects of viral
transmission on a particular population’s unique age
distribution by applying differential susceptibilities to individual
of different ages. Finally, we plan to implement more intervention
strategies, specifically large-scale vaccination and contact tracing.
Although these two strategies are challenging to implement in the
real world, they are relatively easy to integrate into the current
model by their nature since the model monitors every individual
agent and every contact taking place in the simulations. We believe
that with the future improvement on algorithms and data
management, more computational resources, more customizable
maps and more intervention strategies added, our simulation
program can provide users with a learning tool that helps them
better understand the nature of viral transmission under many
different conditions. Future developments should also include a
larger study to understand how engagement of the simulation
impacts user understanding of viral transmission and its impact on
public health.
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